余角与补角--方位角
- 格式:ppt
- 大小:1.07 MB
- 文档页数:15
新2024秋季七年级人教版数学上册第四章几何图形初步《角:余角和补角(方位角)》听课记录一、教学目标(核心素养)核心素养目标:1.空间观念:通过余角和补角的概念学习,增强学生的空间想象能力,理解角之间的互补与互余关系。
2.逻辑推理:掌握余角和补角的性质,学会运用这些性质进行角的计算和推理。
3.数学运算:提高学生的数学运算能力,尤其是在处理角的加减运算时能够准确无误。
4.问题解决:能够应用余角和补角的知识解决实际问题,如计算方位角等。
二、导入教师行为:•教师首先展示一个直角,并提问:“同学们,你们知道这个角是多少度吗?”学生回答后,教师继续引导:“如果我们从这个直角中减去一个角,得到的角与原来的角之间有什么关系呢?”•教师引入余角和补角的概念,简要说明它们各自的定义和性质。
学生活动:•学生积极思考并回答教师的问题,对直角有基本的认识。
•认真倾听教师讲解余角和补角的概念,初步理解它们之间的关系。
过程点评:•导入环节通过学生熟悉的直角入手,自然引出余角和补角的概念,激发了学生的学习兴趣和好奇心。
•教师的提问和引导有助于学生建立新旧知识之间的联系,为后续学习打下基础。
三、教学过程(一)余角和补角的概念讲解教师行为:•详细讲解余角和补角的定义,强调“和为90度”与“和为180度”的关键特征。
•通过图示和实例,帮助学生直观理解余角和补角的概念及其在空间几何中的应用。
学生活动:•认真听讲,记录关键信息,尝试用自己的话复述余角和补角的定义。
•观察图示和实例,加深对余角和补角概念的理解。
过程点评:•教师讲解清晰,图文并茂,有助于学生理解和掌握余角和补角的概念。
•学生积极参与,通过复述和观察,进一步巩固了所学知识。
(二)余角和补角的性质应用教师行为:•设计一系列练习题,包括角的加减运算、判断角的余角和补角等,让学生独立完成。
•巡视课堂,及时发现并解决学生在解题过程中遇到的问题。
•邀请学生分享解题思路和答案,进行集体讨论和纠正。
4.3.3 余角和补角一、余角和补角(1)如果两个角的和等于90°(直角),就说这两个互为余角)即其中每一个角是另一个角的余角。
(2)如果两个角的和等于180°(平角),就说这两个互为补角)即其中每一个角是另一个角的补角。
(3)余角、补角的性质。
同角(等角)的补角相等;同角(等角)的余角相等。
二、方位角;表示方向的角叫方位角。
有时以正北,正南方向为基准,描述物休运动的方向,如“北偏东30°”“南偏东25°”,表示方向的角(方位角)在航行,测绘和工作中经常用到。
概念题二、余角和补角(1)如果两个角的和等于( 角),就说这两个互为角)即其中每一个角是另一个角的角。
(2)如果两个角的和等于( 角),就说这两个互为角)即其中每一个角是另一个角的角。
(3)余角、补角的性质。
同角(等角)的角相等;同角(等角)的角相等。
三、叫方位角。
4.3.3 余角和补角(第一课时)1.探索“互为余角”的概念。
(1)用量角器理出图中的两个角的度数,并求出这两个角的和。
∠1= _ °, ∠2= _°, ∠1+∠2 = °(2)如果两个角的和等于_____度,就说这两个角互为余角。
上题中∠1是∠___的余角,∠2的余角是_____,∠1与∠___互为_____。
(3)说出一副(两块)三角尺中各个角的度数。
一块分别是: °, °, °;另一块分别是: °, °, °.其中:______度的角与______度的角互为余角,______度的角与______度的角互为余角。
(4)一个角是70°39’,那么它的余角的度数是________________。
2.探索“互为补角”的概念。
(1)用量角器理出图中的两个角的度数,并求出这两个角的和。
∠3= °, ∠4= _°, ∠3+∠4 = °(2)如果两个角的和等于_____度,就说这两个角互为补角。
七年级数学上册 6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版的全部内容。
什么是方向角?
难易度:★★★
关键词:角
答案:
(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向。
(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西。
(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角:以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线。
【举一反三】。