大型企业网络配置——OSPF多区域配置
- 格式:doc
- 大小:142.00 KB
- 文档页数:7
OSPF多区域原理与配置【OSPF三种配置方法】1、network 192.168.1.0 0.0.0.255 area02、network 0.0.0.0 255.255.255.255 area03、network 192.168.1.1 0.0.0.0 area0【OSPF通信量分三类】域内通信量:LSA1、LSA2域间通信量:LSA3外部通信量:LSA4、LSA5、LSA7a)标准区域允许‘域内’‘域间’及‘外部’通信量。
LSA为(1.2.3.4.5)b)末梢区域不允许‘外部’通信量存在,允许‘域内’‘域间’通信量及一条默认路由。
LSA为(1.2.3)c)完全末梢只允许‘域内’通信量及一条默认路由。
LSA为(1.2)d)非纯末梢不允许其他区域的外部通信量,允许‘域内’‘域间’及‘本区域’外部通信量。
LSA为(1.2.3.7)e)完全非纯末梢只允许本区域内部,本区域外部通信量及一条默认路由存在,不允许区域间及其他区域外部通信量存在。
LSA为(1.2.7)表-LSA类型一、OSPF的多区域【使用OSPF协议经常遇到的问题】?在大型网络中,网络结构的变化是时常发生的,因些OSPF路由器就会经常运行SPF算法来重新计算路由信息,大量消耗路由器的CPU和内存资源?在OSPF网络中,随着多条路径的增加,路由表变得越来越庞大,每一次路径的改变都使路由器不得不花大量的时间和资源去重新计算路由表,路由器就会越来越低效?包含完整网络结构信息的链路状态数据库也会越来越大,这将有可能使路由器CPU和内存资源彻底耗尽,从而导致路由器的崩溃【解决OSPF协议的以上问题】OSPF允许把大型区域划分成多个更易管理的小型区域。
这些小型区域可以交换路由汇总信息,而不是每一个路由的细节(1)、生成OSPF多区的原因1、生成OSPF多区域的原因改善网络的可扩展性快速收敛2、OSPF区域的容量?单个区域所支持路由器的范围大约是30~200?一些区域包含25台都有可能会显多了,而另一些区域却可以容纳多于500台的路由器【对于和区域相关的通信量定义了下面三种类型】域内通信量(Intra-AreaTraffic):指单个区域内路由器之间交换的数据包构成的通信量域间通信量(Inter-AreaTraffic):指由不同区域的路由器之间交换的数据包构成的通信量外部通信量(External-Traffic):指由OSPF区域内的路由器与OSPF区域外或另一个自治系统内的路由器之间交换的数据包构成的通信量【分层路由的优势】?降低了SPF运算的频率?减少了路由表?减小了链路状态更新报文(LSU)的流量(2)、路由器的类型内部路由器(Internal Router):指所有接口都属于同一个区域的路由器区域边界路由器(Areea BorderRouter):指连接一个或多个区域到骨干区域的路由器,并且这些路由器会作为夫域间通信量的路由网关。
大型企业OSPF组网建设方案一、需求分析大型企业通常具有多个分支机构和大量的内部网络设备。
为了实现这些分支机构的互联以及内部网络的高效管理,需要建立一个稳定可靠的组网架构。
OSPF(开放最短路径优先)是一种链路状态路由协议,能够提供灵活可扩展的IP网络设计和管理。
在大型企业组网中,可以采用OSPF来实现分支机构的互联和内部网络的路由管理。
二、网络架构设计1.核心层:核心层是整个大型企业网络的中心,负责信息的交互和转发。
在这一层,需要使用高性能的路由器,并配置OSPF协议进行网络交换。
2.分支机构层:分支机构层是连接分支机构的关键,需要采用分层交换机。
在每个分支机构内部,可以通过配置OSPF协议来实现与核心层的互联。
同时,对于分支机构之间的通信,也可以通过配置OSPF协议来实现。
3.访问层:访问层是用户接入网络的入口,主要为用户提供连接到网络的端口。
在这一层,可以使用交换机来连接用户终端设备,并通过配置OSPF协议来实现与核心层的连接。
三、OSPF参数配置1.开启OSPF协议:在核心层、分支机构层以及访问层的路由器上,需要开启OSPF协议。
可以使用如下命令进行配置:Router(config)# router ospf process-id其中,process-id为OSPF进程ID,可以根据需要进行指定。
2.划分区域:为了实现更好的管理和控制,可以将大型企业网络划分为多个区域。
可以使用如下命令进行配置:Router(config-router)# area area-id其中,area-id为区域ID,可以根据需要进行指定。
3.配置网络:根据实际情况,需要配置各个网络设备在OSPF协议中的网络地址。
可以使用如下命令进行配置:Router(config-router)# network network-address wildcard-mask area area-id其中,network-address为网络地址,wildcard-mask为通配符掩码,area-id为区域ID。
ospf多区域实验报告OSPF多区域实验报告引言:本次实验旨在深入理解和掌握OSPF(Open Shortest Path First)协议的多区域功能。
OSPF是一种内部网关协议(IGP),用于在大型网络中进行路由选择和路径计算。
通过将网络划分为多个区域,可以提高网络的可扩展性和性能。
本文将介绍实验的背景和目的,详细描述实验的步骤和结果,并对实验进行总结和讨论。
1. 实验背景在大型企业网络中,网络拓扑往往非常复杂,包含大量的子网和路由器。
当网络规模扩大时,单一区域的OSPF可能无法满足需求,因为单一区域的路由计算复杂度较高,且可能导致路由器负载过大。
为了解决这个问题,OSPF引入了多区域的概念,将网络划分为多个区域,每个区域有自己的区域边界路由器(ABR),负责与其他区域交换路由信息。
2. 实验目的本次实验的目的是通过搭建一个包含多个区域的网络拓扑,验证OSPF多区域的工作原理和效果。
具体目标包括:- 理解OSPF多区域的概念和原理;- 配置和验证OSPF多区域的路由信息交换;- 观察和分析多区域对网络性能和可扩展性的影响。
3. 实验步骤3.1 搭建实验环境我们使用GNS3模拟器搭建了一个包含多个区域的网络拓扑。
拓扑包括两个区域,每个区域都有多个子网和路由器,区域之间通过区域边界路由器连接。
我们使用虚拟机作为路由器,并在每个路由器上安装了OSPF协议。
3.2 配置OSPF多区域在每个路由器上,我们配置了OSPF协议,并将相应的接口划分到不同的区域。
在区域边界路由器上,我们配置了区域间的路由信息交换。
通过这样的配置,每个区域内的路由器只需关注自己所在区域的路由信息,大大减轻了路由计算的负担。
3.3 验证实验结果我们通过在路由器上查看OSPF邻居关系和路由表,以及通过ping命令测试不同子网之间的连通性,来验证实验结果。
我们还观察了区域边界路由器之间的路由信息交换情况,以及网络的性能和可扩展性。
4. 实验结果实验结果表明,OSPF多区域功能能够有效提高网络的可扩展性和性能。
OSPF多区域配置和原理一、OSPF协议是链路状态路由协议,它是一个开放的标准。
优点:1、它应用在大多数的路由器上。
2、用SPF(最短路径优先算法),提供环路自由的拓扑结构。
3、通过触发更新,提供快速收敛。
4、是无类的路由协议,允许分等级的划分可变长子网掩码。
缺点:1、需要更多的内存来调整拓扑结构。
2、需要额外的CPU 来处理运行SPF算法。
3、对于一个大的网络,需要小心的把网络划分适当的层次,通过把路由器划分到不同的区域里。
4、它配置起来更复杂,更难排除故障。
二、OSPF 用COST(成本)作为计量值。
三、OSPF中分类的路由器:内部路由器:是指所有接口都在一个区域的路由器。
区域边界路由器(ABR):是指连接一个或多个区域到骨干区域的路由器,并且这些路由器会作为域间通信量的路由网关。
ABR路由器总是至少有一个接口是属于骨干区域的。
自治系统边界路由器(ASBR):是OSPF域外部的通信量进入OSPF域的网关路由器。
四、一个OSPF路由器与DR交换信息用多播地址:DR与BDR与其他路由器交换信息用多播地址:CCNA只涉及一个区域的OSPF路由配置。
1、配置IP地址Router1配置Router1(config)#Router1(config)#inter f1/0Router1(config-if)#ip addRouter1(config-if)#no shutRouter1(config)#inter f0/0Router1(config-if)#ip addRouter1(config-if)#no shutRouter1(config)#inter f0/1Router1(config-if)#ip addRouter1(config-if)#no shutRouter2配置Router2(config)#inter f0/0Router2(config-if)#ip addRouter2(config-if)#no shutRouter2(config)#inter f0/1Router2(config-if)#ip addRouter2(config-if)#no shutRouter3配置Router(config)#inter f0/1Router(config-if)#ip addRouter(config-if)#no shutRouter(config)#inter f0/0Router(config-if)#ip addRouter(config-if)#no shutRouter4配置Router4(config)#inter f0/1Router4(config-if)#ip addRouter4(config-if)#no shutRouter4(config)#inter f1/0Router4(config-if)#ip addRouter4(config-if)#no shutRouter4(config)#inter f0/0Router4(config-if)#ip addRouter4(config-if)#no shut2、OSPF配置Router1配置Router1(config)#router ospf 10Router1(config-router)#network area 0Router1(config-router)#network area 0Router1(config-router)#network area 0Router1(config-router)#Router2配置Router2(config)#route ospf 10 ^ Router2(config-router)#network area 0Router2(config-router)#network area 1Router2(config-router)#Router3配置Router(config)#route ospf 10Router(config-router)#network area 0Router(config-router)#network area 1Router(config-router)#exiRouter4配置Router4(config)#route ospf 10Router4(config-router)#network area 1Router4(config-router)#network area 1Router4(config-router)#network area 1Router4(config-router)#exi3、show ip router 查看路由表例如查看Router1 的路由表Router1#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC is directly connected, FastEthernet1/0C is directly connected, FastEthernet0/0O IA [110/2] via , 00:01:44, FastEthernet0/0O IA [110/3] via , 00:00:29, FastEthernet0/0C is directly connected, FastEthernet0/1O IA [110/3] via , 00:00:29, FastEthernet0/0Router1#4、测试联通性PC>PC>pingPinging with 32 bytes of data:Request timed out.Reply from bytes=32 time=125ms TTL=125Reply from bytes=32 time=125ms TTL=125Reply from bytes=32 time=111ms TTL=125Ping statistics forPackets: Sent = 4, Received = 3, Lost = 1 (25% loss),Approximate round trip times in milli-seconds:Minimum = 111ms, Maximum = 125ms, Average = 120msPC>5、练习改变接口的COST。
多区域 OSPFOSPF MultiArea【实验目的】了解和掌握ospf的原理,熟悉ospf多域配置步骤。
懂得如何配置Vitrul links,Transit area, Stub Area ,Totally Stubby Area, Not-so-stubby area(nssa)。
【实验原理】了解Internal router,Backbone router,Area Border Router (ABR), Autonomous System Boundary Router (ASBR) 以及各种类型链路通告的不同之处,优化ospf网络。
【实验拓扑】【实验设备】路由器五台,串行线,用于配置路由的主机【实验内容】1、按图示配置端口,用ping检查各端口间连通性(A/B,E/F用于virtul links实验; C的lo地址在用于验证external routesummarization D的lo地址加入area 8,为验证interarea summarization; A/F的lo 地址在nssa时才加入)建议配置好各个neighber的vty,可以用一台终端观察整个拓扑。
(config)#enable password cisco(config)#line vty 0 4(config-line)#Login(config-line)#Password cisco利用terminal monitor可在telnet上看到debug输出2、在各个路由器启动ospf进程,注意area的分布Router(config)#router ospf *Router(config-router)#network *.*.*.* *.*.*.* area *查看ABR/ASBR/DR/BDR。
show ip ospfshow ip ospf interfaceshow ip ospf neighborshow ip ospf neighbor detail3、 show ip route查看各router路由表,注意area 10,area 11没出现在别的router。
实验名称OSPF多区域基本配置。
实验目的掌握OSPF基本配置技术。
实现功能构建OSPF多个区域连在骨干网络上。
实验设备锐捷R1726路由器2台,网线2根,V35线缆1对,计算机2台。
背景描述一个公司总部和销售公司分处在两个地方,现为了搭建公司的OA系统,需要通过OSPF协议将两地的网络连在一起。
本实验以两台R2624路由器为例来模拟该环境,路由器1和2通过V35线缆连接。
PC1连着Router1,PC2连着Router2.PC1的网络地址为192.168.11.0/24,两个路由器的串口地址为192.168.12.0/24,PC2的网络地址为192.168.13.0/24.实验步骤1.对Router1进行基本配置:configure terminalhostname Router1interface fa1/0ip address 192.168.11.1 255.255.255.0no shutdowninterface S1/2ip address 192.168.12.1 255.255.255.0clock rate 64000no shutdownexitshow ip interface brief2.对Router2进行基本配置:configure terminalhostname Router2interface fa1/0ip address 192.168.13.1 255.255.255.0no shutdowninterface S1/2ip address 192.168.12.2 255.255.255.0no shutdownexitshow ip interface brief3.对Router1配置路由协议OSPF:Configure terminalRouter OSPF(开启OSPF路由协议)Network 192.168.11.0 0.0.0.255 area 0(定义与本路由器相连的关联网络)Network 192.168.12.0 0.0.0.255 area 1(定义与本路由器相连的关联网络)EndShow ip nei(显示路由表)4.对Router2配置路由协议rip2:Configure terminalRouter OSPF(开启OSPF路由协议)Network 192.168.13.0 0.0.0.255 area 2(定义与本路由器相连的关联网络)Network 192.168.12.0 0.0.0.255 area 1(定义与本路由器相连的关联网络)EndShow ip nei(显示路由表)5.测试网络的连通性,将两台计算机的IP地址设为所属网段的地址,网关设为所连路由器的以太网口的地址。
R1的详细配置Router>en Router#conf t Router(config)#int lo0Router(config-if)#ip add 1.1.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int s0/0Router(config-if)#ip add 12.12.12.1 255.255.255.0 Router(config-if)#no shutRouter(config-if)#clock rate 64000 Router(config-if)#clock rate 64000S0/0 S0/0 S0/1 S0/1 S0/0 S0/012.12..12.0/24 23.23.23.0/2434.34.34.0/24R1R2R4 R31 2 2 3 3 4 Area 0Area 1Lo0:2.2.2.2/24Lo0:3.3.3.3/24R4:Lo0:4.4.4.4/24 Lo10:10.1.0.4/24 Lo11:10.1.1.4/24 Lo12:10.1.2.4/24 Lo13:10.1.3.4/24R1:Lo0:1.1.1.1/24 Lo10:172.16.0.1/24 Lo11:172.16.1.1/24 Lo12:172.16.2.1/24 Lo13:172.16.3.1/24Router(config)#int lo1Router(config-if)#ip add 172.16.1.1 255.255.255.0 Router(config-if)#exitRouter(config)#int lo2Router(config-if)#ip add 172.16.2.1 255.255.255.0 Router(config-if)#exitRouter(config)#int lo3Router(config-if)#ip add 172.16.3.1 255.255.255.0 Router(config-if)#exitRouter(config)#int lo4Router(config-if)#ip add 172.16.4.1 255.255.255.0 Router(config-if)#exitRouter#conf tRouter(config)#router ospf 1Router(config-router)#exitRouter(config)#router ripRouter(config-router)#veRouter(config-router)#version 2Router(config-router)#no auRouter(config-router)#no auto-summaryRouter(config-router)#net 12.0.0.0Router(config-router)#net 172.16.0.0Router(config-router)#endR2的详细配置Router>enRouter#conf tRouter(config)#int lo0Router(config-if)#ip add 2.2.2.2 255.255.255.0 Router(config-if)#exitRouter(config)#int s0/0Router(config-if)#ip add 12.12.12.2 255.255.255.0 Router(config-if)#no shutRouter(config-if)#exitRouter(config)#int s0/1Router(config-if)#ip add 23.23.23.1 255.255.255.0 Router(config-if)#no shutRouter(config-if)#clock rate 64000Router(config-if)#exitRouter(config)#router ripRouter(config-router)#no auto-summaryRouter(config-router)#net 12.0.0.0Router(config-router)#exitRouter(config)#router ospf 1Router(config-router)#net 23.23.23.0 0.0.0.255 a 0Router(config-router)#net 2.2.2.0 0.0.0.255 a 0Router(config-router)#redistribute rip subnets metric-type 1 Router(config-router)#summary-address 172.16.0.0 255.255.252.0R3的详细配置Router>enRouter(config)#int lo0Router(config-if)#ip add 3.3.3.3 255.255.255.0Router(config-if)#int s0/0Router(config-if)#ip add 23.23.23.2 255.255.255.0Router(config-if)#no shutRouter(config-if)#int s 0/1Router(config-if)#ip add 34.34.34.1 255.255.255.0Router(config-if)#no shutRouter(config-if)#clock rate 64000Router(config-if)#exitRouter(config)#router ospf 1Router(config-router)#net 23.23.23.0 0.0.0.255 a 0 Router(config-router)#net 3.3.3.0 0.0.0.255 a 0 Router(config-router)#net 34.34.34.0 0.0.0.255 a 1 Router(config-router)#area 1 range 10.1.0.0 255.255.252.0 Router(config-router)#endR4的详细配置Router>enRouter#conf tRouter(config)#int lo0Router(config-if)#ip add 4.4.4.4 255.255.255.0Router(config-if)#exitRouter(config)#int s0/0Router(config-if)#ip add 34.34.34.2 255.255.255.0 Router(config-if)#no shutRouter(config-if)#clock rate 64000Router(config-if)#endRouter#Router#conf tRouter(config)#int lo1Router(config-if)#ip add 10.1.1.1 255.255.255.0Router(config-if)#exitRouter(config)#int lo2Router(config-if)#ip add 10.1.2.1 255.255.255.0Router(config-if)#exitRouter(config)#int lo3Router(config-if)#ip add 10.1.3.1 255.255.255.0Router(config-if)#exitRouter(config)#int lo4Router(config-if)#ip add 10.1.4.1 255.255.255.0Router(config-if)#exitRouter(config)#router ospf 1Router(config-router)#net 34.34.34.0 0.0.0.255 a 1Router(config-router)#net 4.4.4.0 0.0.0.255 a 1Router(config-router)#net 10.1.0.0 0.0.3.255 a 1Router(config-router)#end各个路由器的基本配置完成使用show ip rou 和show ip ospf database查看各路由器如下R1的R2的R3的R4的. .。
ospf多区域实验报告OSPF多区域实验报告一、实验目的本次实验旨在通过搭建OSPF多区域网络,探究OSPF协议在多区域环境下的工作原理和性能表现,以及对网络的影响。
二、实验环境1. 软件:GNS3网络模拟软件2. 硬件:个人电脑3. 网络拓扑:包括多个区域的OSPF网络三、实验步骤1. 搭建OSPF网络拓扑:在GNS3中搭建包含多个区域的OSPF网络拓扑,确保各个路由器能够相互通信和传输数据。
2. 配置OSPF协议:在各个路由器上配置OSPF协议,包括设置区域ID、网络地址、Hello定时器等参数。
3. 观察网络状态:观察各个区域之间的路由信息交换情况,查看路由表和链路状态数据库,分析各个区域之间的路由信息传播情况。
4. 测试网络性能:通过模拟数据传输和路由切换等操作,测试OSPF多区域网络的性能表现,包括数据传输速度、路由收敛速度等指标。
四、实验结果1. 路由信息传播良好:经过配置和观察,各个区域之间的路由信息能够正常传播,网络能够实现全局路由收敛。
2. 网络性能表现良好:在进行数据传输和路由切换测试时,网络表现出较好的性能,数据传输速度快,路由收敛速度较快。
五、实验总结通过本次实验,我们深入了解了OSPF协议在多区域环境下的工作原理和性能表现。
在多区域网络中,OSPF能够有效地传播路由信息,实现全局路由收敛,同时表现出较好的网络性能。
因此,在实际网络设计和部署中,可以考虑采用OSPF多区域网络,以提高网络的可扩展性和性能表现。
六、展望未来,我们将继续深入研究OSPF协议在不同网络环境下的性能表现,探索更多的网络优化方案,为构建高性能、可靠的网络架构提供更多的参考和支持。
实验一OSPF多区域的配置一.实验目的1.掌握多区域的OSPF配置方法2.区别不同区域的路由3.掌握OSPF的基本配置命令二、实验拓扑图三、实验步骤及要求1.配置各台路由器的IP地址R1(config)#interface loopback 0R1(config-if)#ip address 10.1.1.1 255.255.255.0R1(config)#interface loopback 1R1(config-if)#ip address 10.1.2.1 255.255.255.0R1(config)#interface serial 2/0R1(config-if)#ip address 192.168.1.1 255.255.255.252 R1(config-if)#no shutdownRouter(config)#hostname r2r2(config)#interface serial 2/0r2(config-if)#ip address 192.168.1.2 255.255.255.252 r2(config-if)#clock rate 64000r2(config-if)#no shutdownr2(config-if)#exitr2(config)#interface serial 3/0r2(config-if)#ip address 192.168.1.5 255.255.255.252 r2(config-if)#clock rate 64000r2(config-if)#no shutdownr2(config-if)#exitRouter(config)#hostname r3r3(config)#interface serial 3/0r3(config-if)#ip address 192.168.1.6 255.255.255.252 r3(config-if)#exitr3(config)#interface serial 3/0r3(config-if)#no shutdownr3(config)#interface serial 2/0r3(config-if)#ip address 192.168.1.9 255.255.255.252r3(config-if)#clock rate 64000r3(config-if)#no shutdownRouter(config)#hostname r4r4(config)#interface serial 2/0r4(config-if)#ip address 192.168.1.10 255.255.255.252r4(config-if)#no shutdownr4(config-if)#exitr4(config)#interface loopback 0r4(config-if)#ip address 172.16.1.1 255.255.255.0r4(config-if)#exitr4(config)#interface loopback 1r4(config-if)#ip address 172.16.2.1 255.255.255.02.在r1上进行area1区域OSPF配置Router(config)#hostname r1r1(config)#router ospf 1r1(config-router)#network 10.1.2.0 0.0.0.255 area 1r1(config-router)#network 10.1.1.0 0.0.0.255 area 1r1(config-router)#network 192.168.1.0 0.0.0.3 area 1r1(config-router)#exit3.在r2上进行area1与area0的区域边界路由器(ABR)的OSPF配置r2(config)#router ospf 1r2(config-router)#network 192.168.1.0 0.0.0.3 area 1r2(config-router)#network 192.168.1.4 0.0.0.3 area 0r2(config-router)#exit4. 在r4上进行area2区域OSPF配置r4(config)#router ospf 1r4(config-router)#network 172.16.1.0 0.0.0.255 area 2r4(config-router)#network 172.16.2.0 0.0.0.255 area 2r4(config-router)#network 192.168.1.8 0.0.0.3 area 2r4(config-router)#exit在r3上进行area2与area0的区域边界路由器(ABR)的OSPF配置r3(config)#router ospf 1r3(config-router)#network 192.168.1.8 0.0.0.3 area 2r3(config-router)#network 192.168.1.4 0.0.0.3 area 0r3(config-router)#exit5. 在任一路由器上查看OSPF邻居表r2#show ip ospf neighborNeighbor ID Pri State Dead Time Address Interface 10.1.2.1 0 FULL/ - 00:00:38 192.168.1.1 Serial2/0 192.168.1.9 0 FULL/ - 00:00:39 192.168.1.6 Serial3/0R2路由器已经成功与r1和r3路由器建立邻居关系6.查看r1的路由表,观察其他区域的路由r1#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set10.0.0.0/24 is subnetted, 2 subnetsC 10.1.1.0 is directly connected, Loopback0C 10.1.2.0 is directly connected, Loopback1172.16.0.0/32 is subnetted, 2 subnetsO IA 172.16.1.1 [110/2344] via 192.168.1.2, 00:00:05, Serial2/0O IA 172.16.2.1 [110/2344] via 192.168.1.2, 00:00:05, Serial2/0192.168.1.0/30 is subnetted, 3 subnetsC 192.168.1.0 is directly connected, Serial2/0O IA 192.168.1.4 [110/1562] via 192.168.1.2, 00:00:05, Serial2/0O IA 192.168.1.8 [110/2343] via 192.168.1.2, 00:00:05, Serial2/07.查看r1的OSPF链路状态数据库r1#show ip ospf databaseOSPF Router with ID (10.1.2.1) (Process ID 1)Router Link States (Area 1)Link ID ADV Router Age Seq# Checksum Link count 10.1.2.1 10.1.2.1 310 0x80000007 0x00463f 4192.168.1.5 192.168.1.5 310 0x80000006 0x00164a 2Summary Net Link States (Area 1)Link ID ADV Router Age Seq# Checksum192.168.1.4 192.168.1.5 845 0x80000001 0x00fe75192.168.1.8 192.168.1.5 518 0x80000002 0x0072ec172.16.1.1 192.168.1.5 518 0x80000003 0x00fe0f8.在r1上使用ping命令确认路由的有效性r1#ping 172.16.1.1Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 172.16.1.1, timeout is 2 seconds:!!!!!Success rate is 100 percent (5/5), round-trip min/avg/max = 78/87/94 ms9.查看r4的路由表和ospf的链路状态数据库r4#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set10.0.0.0/32 is subnetted, 2 subnetsO IA 10.1.1.1 [110/2344] via 192.168.1.9, 00:23:31, Serial2/0O IA 10.1.2.1 [110/2344] via 192.168.1.9, 00:23:31, Serial2/0172.16.0.0/24 is subnetted, 2 subnetsC 172.16.1.0 is directly connected, Loopback0C 172.16.2.0 is directly connected, Loopback1192.168.1.0/30 is subnetted, 3 subnetsO IA 192.168.1.0 [110/2343] via 192.168.1.9, 00:23:41, Serial2/0O IA 192.168.1.4 [110/1562] via 192.168.1.9, 00:27:24, Serial2/0C 192.168.1.8 is directly connected, Serial2/0r4#show ip ospf databaseOSPF Router with ID (172.16.2.1) (Process ID 1)Router Link States (Area 2)Link ID ADV Router Age Seq# Checksum Link count 172.16.2.1 172.16.2.1 34 0x80000005 0x00feff 4192.168.1.9 192.168.1.9 14 0x80000004 0x00feff 2Summary Net Link States (Area 2)Link ID ADV Router Age Seq# Checksum192.168.1.0 192.168.1.9 1590 0x80000005 0x00a4bb10.1.1.1 192.168.1.9 1580 0x80000007 0x00d5e1 192.168.1.4 192.168.1.9 9 0x80000008 0x00f206。
OSPF多区域配置1.规划网络拓扑图如下:文字说明:a.R1 与 R2 作为末梢区域area 1b.R2 与 R3 作为主区域area 0c.R3 与 R4 作为末梢区域area 2d.R1 上连接交换机LSW3,LSW3上拥有vlan 8,g0/0/1与g/0/2属于vlan 8e.R1还直连一个主机,网段为192.168.7.0 网段。
2.配置:R1:<Huawei>sysEnter system view, return user view with Ctrl+Z.[Huawei]un in enInfo: Information center is disabled.[Huawei]sysname R1[R1]int e0/0/0[R1-Ethernet0/0/0]ip add 12.1.1.1 30[R1-Ethernet0/0/0]q[R1]int e0/0/1[R1-Ethernet0/0/1]ip add 192.168.8.1 24[R1-Ethernet0/0/1]q[R1]int g0/0/0[R1-GigabitEthernet0/0/0]ip add 192.168.7.1 24[R1-GigabitEthernet0/0/0]q[R1]int loop[R1]int LoopBack 0[R1-LoopBack0]ip add 1.1.1.1 24[R1-LoopBack0]q[R1]int loopback 1[R1-LoopBack1]ip add 192.168.1.1 24[R1-LoopBack1]q[R1]ospf 10[R1-ospf-10]area 1[R1-ospf-10-area-0.0.0.1]network 192.168.8.0 0.0.0.255 //为了能让网段能够到达[R1-ospf-10-area-0.0.0.1]network 192.168.7.0 0.0.0.255 //为了能让网段能够到达[R1-ospf-10-area-0.0.0.1]q[R1-ospf-10]q[R1]R2:[R2]int e0/0/0[R2-Ethernet0/0/0]ip add 12.1.1.2 30[R2-Ethernet0/0/0]int e0/0/1[R2-Ethernet0/0/1]ip add 23.1.1.1 30 [R2-Ethernet0/0/1]q[R2]int loopback 0[R2-LoopBack0]ip add 2.2.2.2 24[R2-LoopBack0]q[R2]int loopback 1[R2-LoopBack1]ip add 192.168.2.1 24 [R2-LoopBack1]q[R2]ospf 10[R2-ospf-10]area 1[R2-ospf-10-area-0.0.0.1]q[R2-ospf-10]area 0[R2-ospf-10-area-0.0.0.0]q[R2-ospf-10]q[R2]R3:[Huawei]sysname R3[R3]int e0/0/0[R3-Ethernet0/0/0]ip add 34.1.1.1 30 [R3-Ethernet0/0/0]int e0/0/1[R3-Ethernet0/0/1]ip add 23.1.1.2 30 [R3-Ethernet0/0/1]q[R3]int loopback 0[R3-LoopBack0]ip add 3.3.3.3 24[R3-LoopBack0]q[R3]int loopback 1[R3-LoopBack1]ip add 192.168.3.1 24 [R3-LoopBack1]q[R3]ospf 10[R3-ospf-10]area 2[R3-ospf-10-area-0.0.0.2]q[R3-ospf-10]area 0[R3-ospf-10-area-0.0.0.0]q[R3-ospf-10]q[R3]R4:[Huawei]sysname R4[R4]int e0/0/0[R4-Ethernet0/0/0]ip add 34.1.1.2 30 [R4-Ethernet0/0/0]q[R4]int loopback 0[R4-LoopBack0]ip add 4.4.4.4 24[R4-LoopBack0]q[R4]int loopback 1[R4-LoopBack1]ip add 192.168.4.1 24[R4-LoopBack1]q[R4]ospf 10[R4-ospf-10]area 2[R4-ospf-10-area-0.0.0.2]q[R4-ospf-10]q[R4]从PC端ping各个路由器的route idPing 1.1.1.1: 32 data bytes, Press Ctrl_C to break From 1.1.1.1: bytes=32 seq=1 ttl=255 time=31 ms From 1.1.1.1: bytes=32 seq=2 ttl=255 time=15 ms From 1.1.1.1: bytes=32 seq=3 ttl=255 time=16 ms From 1.1.1.1: bytes=32 seq=4 ttl=255 time=31 ms From 1.1.1.1: bytes=32 seq=5 ttl=255 time=16 ms--- 1.1.1.1 ping statistics ---5 packet(s) transmitted5 packet(s) received0.00% packet lossround-trip min/avg/ma* = 15/21/31 msPing 3.3.3.3: 32 data bytes, Press Ctrl_C to break From 3.3.3.3: bytes=32 seq=1 ttl=253 time=94 ms From 3.3.3.3: bytes=32 seq=2 ttl=253 time=109 ms From 3.3.3.3: bytes=32 seq=3 ttl=253 time=94 ms From 3.3.3.3: bytes=32 seq=4 ttl=253 time=94 ms From 3.3.3.3: bytes=32 seq=5 ttl=253 time=94 ms--- 3.3.3.3 ping statistics ---5 packet(s) transmitted5 packet(s) received0.00% packet lossround-trip min/avg/ma* = 94/97/109 msPing 4.4.4.4: 32 data bytes, Press Ctrl_C to break From 4.4.4.4: bytes=32 seq=1 ttl=252 time=156 ms From 4.4.4.4: bytes=32 seq=2 ttl=252 time=125 ms From 4.4.4.4: bytes=32 seq=3 ttl=252 time=109 ms From 4.4.4.4: bytes=32 seq=4 ttl=252 time=110 ms From 4.4.4.4: bytes=32 seq=5 ttl=252 time=141 ms --- 4.4.4.4 ping statistics ---5 packet(s) transmitted5 packet(s) received0.00% packet lossround-trip min/avg/ma* = 109/128/156 msPC>查看R2的路由表:3.配置R1与R2 链路认证,使用明文认证R1:[R1]int e0/0/0[R1-Ethernet0/0/0]ospf aut[R1-Ethernet0/0/0]ospf authentication-mode sim[R1-Ethernet0/0/0]ospf authentication-mode simple plain YP[R1-Ethernet0/0/0]q查看邻居路由:两个路由器链路密码不同断开认证邻居关系[R1]dis ospf peer briefPeer Statistic Information----------------------------------------------------------------------------Area Id Interface Neighbor id State0.0.0.1 Ethernet0/0/0 12.1.1.2Full----------------------------------------------------------------------------R2:[R2]int e0/0/0[R2-Ethernet0/0/0]ospf au[R2-Ethernet0/0/0]ospf authentication-mode simple plain YP[R2-Ethernet0/0/0]q查看邻居路由:两个路由器链路密码一样重新连接认证邻居关系[R2]dis ospf peer briefPeer Statistic Information----------------------------------------------------------------------------Area Id Interface Neighbor id State0.0.0.0 Ethernet0/0/1 34.1.1.1Full0.0.0.1 Ethernet0/0/0 12.1.1.1Full----------------------------------------------------------------------------4.配置R3与R4的区域认证,使用密文认证。
OSPF多区域配置在OSPF单区域中,每台路由器都需要收集其他所有路由器的链路状态信息,如果网络规模不断扩大,链路状态信息也会随之不断增多,这将使得单台路由器上链路状态数据库非常庞大,导致路由器负担加重,也不便于维护管理。
为了解决上述问题,OSPF协议可以将整个自治系统划分为不通的区域(Area),就像一个国家的国土面积很大时,会吧整个国家划分为不同的省份来管理一样。
链路状态信息只在区域内部泛洪,区域之间传递的只是路由条目而非链路状态信息,因此大大减少了路由器的负担。
当一台路由器属于不同区域时称他为区域边界路由器(Area Border Router,ABR),负责传递区域间路由信息。
区域间的路由信息传递类似距离矢量算法,为了防止区域间产生环路,所有非骨干区域之间的路由信息必须经过骨干区域,也就是说非骨干区域必须和骨干区域相连,且非骨干区域之间不能直接进行路由信息交互。
实验目的:理解配置OSPF多区域的使用场景掌握配置OSPF多区域的方法理解OSPF区域边界路由器(ABR)的工作特点实验内容:R1、R2、R3、R4为企业总部核心区域设备,属于区域0,R5属于新分支机构A的网关设备,R6属于新增分支机构B的网关设备。
PC1和PC2分别属于分之机构A和B,PC3和PC4属于总部管理员登录设备,用于管理网络。
在该网络中,如果设计方案采用单区域配置,则会导致单一区域LSA数目过于庞大,导致路由器开销过高,SPF算法运算过于频繁。
因此网络管理员选择配置多区域方案进行网络配置,将两个新分支运行在不同的OSPF区域中,其中R5属于区域1,R6属于区域2.基本配置配置骨干区域路由器在公司总部路由器R1、R2、R3、R4上创建OSPF进程,并在骨干区域0视图下通告总部各网段。
[R1]ospf 1[R1-ospf-1]area 0 区域0[R1-ospf-1-area-0.0.0.0]network 10.0.12.0 0.0.0.255[R1-ospf-1-area-0.0.0.0]network 10.0.13.0 0.0.0.255[R2]ospf 1[R2-ospf-1]area 0[R2-ospf-1-area-0.0.0.0]network 10.0.12.0 0.0.0.255[R2-ospf-1-area-0.0.0.0]network 10.0.24.0 0.0.0.255[R3]ospf 1[R3-ospf-1]area 0[R3-ospf-1-area-0.0.0.0]network 10.0.13.0 0.0.0.255[R3-ospf-1-area-0.0.0.0]network 10.0.34.0 0.0.0.255[R3-ospf-1-area-0.0.0.0]network 10.0.3.0 0.0.0.255[R4]ospf 1[R4-ospf-1]area 0[R4-ospf-1-area-0.0.0.0]network 10.0.24.0 0.0.0.255[R4-ospf-1-area-0.0.0.0]network 10.0.34.0 0.0.0.255[R4-ospf-1-area-0.0.0.0]network 10.0.4.0 0.0.0.255配置完成后,测试总部内两台PC间的连通性。
OSPF配置AS:在共同管理下的一组运行相同库有选择协议的路由器的集合为一个“自治系统”IGP:内部网关路由协议——用于在单一AS内决策路由,用来解决AS内部通信!EGP:外部网关路由协议——用于在多个AS之间执行路由,用来解决AS间通信!ospf基本配置:全局:router ospf +区域号指定ospf协议运行的接口以及所在的区域命令如下:network 网络地址反掩码area 区域号修改接口优先级:router ospf模式:IP ospf priority 数值优先级(0~255)设置为0时不参与选举DR为指定路由器,BDR为备份指定路由器!修改COST值:接口模式:IP ospf cost 数值(1~65535)数值小的优先级大。
查看ospf配置:路由表:show IP route邻居列表及状态:show IP router ospf neighborospf配置:show IP ospfospf 多区域配置ABR(区域边界路由器):连接一个或多个区域到骨干区域的路由器,并且这些路由器会作为间通信量的路由网关ASBR:(自治系统边界路由器):可以认为它是ospf域外部的通信量进入ospf域的网关路由器洪扩散。
●组成员LSA(LSA6):是用在OSPF协议的一个增强版本――组播OSPF协议(MOSPF协议)中的。
MOSPF协议将数据包从一个单一的源地址转发到多个目的地,或者是一组共享D类组播地址的成员。
●NSSA外部LSA(LSA7):是指在非纯末梢区域(Not-So-Stubby Area,NSSA)内始发于ASBR路由器的LSA通告。
NSSA外部LSA通告几乎和自主系统外部LSA通告是相同的。
只是不像自主系统外部LSA通告那样在整个OSPF自主系统内进行泛洪扩散,NSSA外部LSA通告仅仅在始发这个NSSA外部LSA通告的非纯末梢区域内部进行泛洪扩散。
●外部属性LSA(LSA8):是被提议作为运行内部BGP协议(iBGP协议)的另一种选择,以便用来传送BGP协议的信息穿过一个OSPF域。
OSPF 单区域配置实验题目: OSPF 单区域配置实验目的:理解协议、ospf 协议,掌握在单区域环境中配置ospf 路由协议,实现简单的ospf 配置实验设备及环境: 路由器RSR10、 路由器快速以太网口、 PC 机 实验拓扑图图17 OSPF 单区域配置实验拓扑图实验步骤1.在路由器上配置IP 地址RA#config tRA(config)# interface FastEthernet 0/0 //进入网口fa0/0RA(config-if)#ip address 192.168.20.1 255.255.255.252 //设置ip 地址RA(config)#interface Loopback 0 //进入内部回环接口RA(config-if)#ip address 192.168.30.9 255.255.255.248 //设置ip 地址RB#config tRB(config)# interface FastEthernet 0/0 //进入网口fa0/0RB(config-if)#ip address 192.168.20.2 255.255.255.252 //设置ip 地址RB(config)#interface FastEthernet 0/1 //进入网口fa0/1RB(config-if)#ip address 192.168.10.1 255.255.255.224 //设置F0/1 F0/0 F0/0 F0/0ip地址RC#config tRC(config)# interface FastEthernet 0/0 //进入网口fa0/0RC(config-if)#ip address 192.168.10.2 255.255.255.224 //设置ip地址RC(config)#interface Loopback 0 //进入内部回环接口RC(config-if)#ip address 192.168.10.33 255.255.255.240 //设置ip地址RC(config)#interface Loopback 1 //进入内部回环接口RC(config-if)#ip address 192.168.10.65 255.255.255.192 //设置ip地址2.配置OSPFRA(config)#router ospf 10 //进入ospf区域10配置模式RA(config-router)#network 192.168.30.8 0.0.0.7 area 0 //声明路由器直连网段RA(config-router)#network 192.168.20.0 0.0.0.3 area 0 //声明路由器直连网段RB(config)# router ospf 10 //进入ospf区域10配置模式RB(config-router)#network 192.168.10.0 0.0.0.31 area 0 //声明路由器直连网段RB(config-router)#network 192.168.20.0 0.0.0.3 area 0 //声明路由器直连网段RC(config)# router ospf 10 //进入ospf区域10配置模式RC(config-router)#network 192.168.10.0 0.0.0.31 area 0 //声明路由器直连网段RC(config-router)#network 192.168.10.32 0.0.0.15 area 0 //声明路由器直连网段RC(config-router)#network 192.168.10.64 0.0.0.63 area 0 //声明路由器直连网段配置OSPF多区域实验题目:OSPF多区域配置实验目的:理解协议、OSPF 协议,掌握在多区域环境中配置ospf路由协议,理解ospf层次型网络的特点实验设备及环境:路由器2621、路由器快速以太网接口、PC机实验基本配置:1.全局设置指定使用OSPF协议 router ospf process-id2.路由设置指定与该路由器相连的网络 network address wildcard-mask area area-id指定与该路由器相邻的节点地址 neighbor ip-address实验拓扑图:图18 配置OSPF多区域实验拓扑图实验步骤1.在路由器上配置IP地址。
多区域下OSPF 配置实验
一.实验目的:
将大型网络划分多个OSPF 区域,掌握多区域下OSPF 的配置。
二.实验要点:
1.OSPF 多区域的划分
2.OSPF 路由条目。
三.实验设备:
Cisco 2621路由器4 台
四、实验环境
区域0
RouterA RouterB
F0/1 172.16.0.1/16
F0/1 192.168.0.1/24
F0/1 172.16.0.2/16 F0/1 192.168.0.2/24
RouterC RouterD
F0/0 172.17.0.1/16
F0/0 192.168.1.1/24
区域1
区域2
图12 多区域下OSPF 的配置
五. 实验步骤
1.按图12连接各路由器。
2.按图121配置各路由器的IP地址等参数。
3.配置路由器RouterA 、RouterB、RouterC和RouterD上的OSPF协议。
RouterA(config)#router ospf 1
RouterA(config-router)#net 10.0.0.0 0.255.255.255 area 0
RouterA(config-router)#net 172.16.0.0 0.0.255.255 area 1
-
.测试各网络之间的连通性。
5.观察各路由器的路由表条目。
5.练习OSPF 的各种诊断命令对OSPF 的运行进行诊断,观察诊断输出。
六. 实验总结
1.多区域OSPF 配置与单区域OSPF 配置的区别?。
开放式最短路径优先协议ospf是一个内部网关协议,它总坐在一个自制系统中,用于自制系统内部的路由选择信息交换.协议号89.ospf协议特点:1:可使用大规模网络,没有跳数限制.2:路由收敛速度块.3:无路由环路产生.4:支持变长子网掩码VLSM.5:采用组播地址发送协议报文,节省了链路资源.6:基于路由器的每个端口的代价来决定最有路径的.cost=100/链路带宽.7:支持区域划分,简便了在大规模网络中的管理.8:支持等代价负载均衡.9:支持验证.ospf的报文类型:1:HELLO报文:用来发现及维持邻居关系2:数据库描述报文(DBD):用来描述本地路由器LSDB的情况.3:链路状态请求报文(LSR):用来请求本地路由器没有的LSA.4:链路状态更新报文(LSU):用来发送对端路由器的请求的LSA.5:链路状态确认报文(LSAck):当路由器收到LSU后,发送LSAck进行确认.ospf的三张表格:1:邻居表:通过hello包来建立邻居关系.2:链路状态数据库(LSDB):ospf通过LSA学习到其他路由器和信息,存储在LSDB中。
3:路由表:通过SPF算法,根据LSDB算出路由表.ospf的网络类型:1:广播网络:需要进行DR和BDR的选举。
选举主要比较路由器的优先级和router-id,优先考虑优先级,优先级高的DR,其次为BDR。
网络中的路由器只需要与DR立邻居关系,新加入的路由器只需要与DR进行数据同步即可,不需要与网络中的其他路由器同步,节省了网路资源。
非DR/BDR路由器通过组播地址224.0.0.6将链路信息发给DR/BDR,然后DR/BDR通过224.0.0.5将链路信息发送给非DR/BDR。
hello包的发送间隔是10秒,宕机时间40秒2:无广播多路访问(NBMA):在帧中继、ATM和X.25这样的网络中不支持广播,ospf 在这些网络当中也要选举出DR/BDR。
hello包的发送间隔时间是30秒,宕机时间间隔是120秒3:点到点:点到点网络一般采用ppp或者hdlc来进行数据的封装。
大型企业网络配置系列课程详解(二)--OSPF多区域配置与相关概念的理解试验目的:1、使用OSPF划分多区域改善网络的可扩展性,其次减少各LSA通告的范围,达到区域内部快速收敛。
2、通过配置末梢区域(Stub Area)、完全末梢区域(Totally Stubby Area)以及非纯末梢区域(NSSA)达到各区域部分LSA通告的减少,从而减少区域内部路由器的路由表条目,增大路由器查找路由表的速度,从而减少了对路由器cpu以及内存的消耗,优化网络结构。
3、通过配置路由重分发,让不同自治系统之间能够互相通信,其次结合NSSA 达到区域内部路由器条目的减少,从而减少了对路由器cpu以及内存的消耗,优化网络结构。
4、通过对试验结果的分析能够更清楚理解配置末梢区域、完全末梢区域以及非纯末梢区域所达到的效果。
试验网络拓扑:Router1 F0/0 <----> Router2 E0/0Router2 E0/1 <----> Router3 E0/1Router2 E0/2 <----> Router5 E0/2Router3 E0/0 <----> Router4 F0/0Router3 E0/2 <----> Router5 E0/3Router5 E0/0 <----> Router6 F0/0Router6 F1/0 <----> Router7 F0/0试验步骤:一、根据网络拓扑图配置各个路由器接口的IP地址(注意端口的激活,非标准网络子网的划分),下面是以R1为例,其它的类似。
R1#configure terminalR1(config)#int f0/0R1(config-if)#ip add 20.0.0.1 255.255.255.252R1(config-if)#no shutR1(config)#int loopback 0R1(config-if)#ip add 1.1.1.1 255.255.255.252R1(config-if)#no shutRouter>Router>enRouter#conf tEnter configuration commands, one per line. End with CNTL/Z.Router(config)#host R2R2(config)#int e0/0R2(config-if)#ip add 20.0.0.2 255.255.255.252R2(config-if)#no shutR2(config-if)#*Mar 1 00:07:34.499: %LINK-3-UPDOWN: Interface Ethernet0/0, changed state to up*Mar 1 00:07:35.499: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0/0, changed state to upR2(config-if)#exitR2(config)#int loop*Mar 1 00:07:45.087: %CDP-4-DUPLEX_MISMA TCH: duplex mismatch discovered on Ethernet0/0 (not full duplex), with R1 FastEthernet0/0 (full duplex).back 0R2(config-if)#*Mar 1 00:07:53.487: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to upR2(config-if)#ip addR2(config-if)#ip address 2.2.2.2 255.255.255.252R2(config-if)#no shutR2(config-if)#exitR2(config)#R2(config)#int e0/1R2(config-if)#ip add 10.0.0.1 255.255.255.252R2(config-if)#no shutR2(config-if)#int e0/2R2(config-if)#ip add 10.10.0.2 255.255.255.252R2(config-if)#no shutR2(config-if)#ex三、基本工作做完之后,开始配置OSPF,各个路由器进程号表示为(R1:10,R2:20……),其次将相连的网段。
首先启用路由器OSPF的进程号,然后将相应的网段都发布出去,注意:每个接口对应那个区域,在写的时候就写那个区域,不可混同。
五、在区域2上配置末梢(Stub)区域(配置Stub区域相对应标准区域(默认状态)可以阻止4、5、类链路状态通告(LSA)的泛洪。
同时,自动生成一条默认路由连接到外部自治系统。
换句话说,删除了以“o E1”或者“o E2”标示路由表条目,从而达到了减少路由条目的目的。
下面的配置不是很明显,是因为另外一个自治系统的路由信息还没有通过路由重发布引进来。
但是,默认路由却很明显,以“o* IA”标示。
链路状态通告LSA:(共有十一种,这里介绍6种常用的LSA通告)1类LSA:路由器LSA—Router LSA,由路由器自身产生的LSA通告,可以通过show ip ospf database router查看。
2类LSA:网络LSA—Network LSA,每一个多址网络(广播型和NBMA)中通过选举出的路由器DR产生的网络LSA通告,可以通过show ip ospf database network查看。
3类LSA:网络汇总LSA—Network Summary LSA,由ABR路由器始发的。
ABR路由器将发送一条网络汇总LSA到一个区域,用来通告该区域外部的目的地址,可以通过show ip ospf database summary查看。
4类LSA:ASBR汇总LSA—ASBR Summary LSA,也是由ABR路由器始发出的,ASBR 汇总LSA除了所通告的目的地是一个ASBR路由器二不是一个网络外,其他的与网络汇总LSA都是一样的。
可以通过show ip ospf database asbr-summary查看。
5类LSA:自治系统外部LSA—Autonomous System External LSA,始发于ASBR路由器,用来通告到达OSPF自治系统外部的目的地或者是到OSPF自治系统外部的默认路由的LSA。
可以通过show ip ospf database external查看。
7类LSA:NSSA外部LSA—NSSA External LSA,是在非纯末梢区域内始发于ASBR路由器的LSA通告。
用作Stub区域必须满足的条件:1、只有一个默认路由作为其区域的出口2、Stub区域里无自治系统边界路由器ASBR3、区域不是骨干区域配置路由器R4所连接的Area 2为Stub区域,注意进程号要和上面配置OSPF的进程号一样。
六、配置Area 3为完全末梢区域--Totally Stubby Area(配置为Totally Stubby Area之后,相当于标准区域(默认状态)可以阻止3、4、5、7类LSA通告的泛洪,换句话说,将不同区域的LSA,区域之间的LSA都阻止了,路由条目仅仅是本区域内的路由条目(只有“C和O IA”的标识存在)和一条通往外部的默认路由,以“O*IA”标识,这种配置一般用在某一区域和外部区域通信很少的网络中,通过一条默认路由代替外部的所以路由条目(包括区域间的和不同自治系统里的)达到减少路由表条目的目的,更有利于优化网络带宽。
注意:配置Totally Stubby Area区域和配置Stub区域的条件是一样的。
配置路由器R5所连接的Area 3为Totally Stubby Area,注意进程号要和上面配置OSPF的进程号一样配置完之后,使用“show ip route”查看路由器R5的路由表,可以看出刚才显示的区域间的路由信息以及不同自治系统里的路由信息都被一条以“O*IA“标识的路由条目所替代了七、在ABSR上配置“路由重分发”使不同自治系统之间相互通信配置路由重复发注意事项:1、必须在两个自治系统相连ASBR上进行配置2、路由重分发的方向一定要正确。
语法规则:Router(config-router)#redistribut protocol [process—id] [metric metric-valuel] [metric-type type-value] [subnets]Protocol:指路由器要进行路由重分发的源路由协议。
可以为ospf、rip、isis……Process-id:指OSPF的进程IDMetric:指重分发路由的度量值,默认为0Metric-type:指重分发的路由类型,可取“1”或“2”默认为“2”,路由条目显示为“O*E1或者O*E2Subnets:连其连接的子网一起宣告出去配置路由器R6,在RIP上将OSPF的度量值转换为跳数,宣告给运行RIP协议的网络七、在ABSR上配置“路由重分发”使不同自治系统之间相互通信配置路由重复发注意事项:1、必须在两个自治系统相连ASBR上进行配置2、路由重分发的方向一定要正确。
语法规则:Router(config-router)#redistribut protocol [process—id] [metric metric-valuel] [metric-type type-value] [subnets]Protocol:指路由器要进行路由重分发的源路由协议。
可以为ospf、rip、isis……Process-id:指OSPF的进程IDMetric:指重分发路由的度量值,默认为0Metric-type:指重分发的路由类型,可取“1”或“2”默认为“2”,路由条目显示为“O*E1或者O*E2Subnets:连其连接的子网一起宣告出去配置路由器R6,在RIP上将OSPF的度量值转换为跳数,宣告给运行RIP协议的网络使用“show ip route”查看路由器R1的路由条目,可以看出多了一条路由条目,那就是通过R6(ASBR)重分发得到的,标识为“O E2”是172.16.0.0/16网段。
这就说明了,两个自治系统可以互相通信了。
R5#show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set20.0.0.0/30 is subnetted, 1 subnetsO IA 20.0.0.0 [110/30] via 10.10.10.1, 00:01:01, Ethernet0/35.0.0.0/32 is subnetted, 1 subnetsC 5.5.5.5 is directly connected, Loopback0172.16.0.0/30 is subnetted, 1 subnetsO N2 172.16.0.0 [110/20] via 40.0.0.2, 00:01:01, Ethernet0/040.0.0.0/30 is subnetted, 1 subnetsC 40.0.0.0 is directly connected, Ethernet0/010.0.0.0/30 is subnetted, 3 subnetsC 10.10.0.0 is directly connected, Ethernet0/2C 10.10.10.0 is directly connected, Ethernet0/3O 10.0.0.0 [110/20] via 10.10.10.1, 00:01:06, Ethernet0/330.0.0.0/30 is subnetted, 1 subnetsO IA 30.0.0.0 [110/20] via 10.10.10.1, 00:01:22, Ethernet0/3R5#八、在area 4上配置NSSA,如果没有R7路由器,那么area 4应该配置为末梢区域或者完全末梢区域,而现在加入了R7,同时也引进了另外一个自治系统,那么area 4就不能满足末梢区域的条件(末梢区域是不允许LSA 5通过的,这就说明,即使在R6(ASBR)上配置了路由重分发也不能让两个自治系统互通),这就需要引入NSSA区域,因为,它可以将5类LSA转换成7类LSA(NSSA区域允许7类LSA通过),两个自治系统里的LSA通告到达area 4时,就变成7类LSA,当离开NSSA区域之后,又回到了5类LSA。