勾股定理专题复习(经典一对一学案)
- 格式:doc
- 大小:431.50 KB
- 文档页数:12
《勾股定理》复习学案★知识汇总1.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:设直角三角形的两直角边和斜边长由短到长分别为a,b,c 方法一:如图,S △AFD = EF= S 正方形EFGH = S 正方形ABCD = = 化简过程为:方法二:如图,S △= S 大正方形= S 小正方形= = 化简过程为:方法三:如图,S △AED = S △BEC = S △AEB = S 梯形ABCD = = , 化简过程为:2.面积问题:⑴如图1,以直角三角形的三边长作正方形,则三个正方形的面积之间存在关系是 ⑵如图2,以直角三角形的三边长为直径作半圆,则三个半圆的面积之间存在关系是 ⑶如图3,以直角三角形的三边长为斜边作等腰直角三角形,则三个三角形的面积之间存在关系 是 小练习:1.如图1,①若S 1=9 S 2=16,则S 3= ,BC= ;②若AB=2,S 3=10,则S 2= ; ③若S 3=10,则S 1+S 2+S 3= ;④若S 1+S 2=5,则S 1+S 2+S 3= 。
2.如图2,①若S 1=2π S 3=258π,则S 2= ;②若S 1=3π,S 2=32π,则S 3= ,BC= ; ③若BC=10,则S 1+S 2= 。
3.如图3,BC=6,则S 1+S 2+S 3= 。
4.如图4,以直角三角形的三边长为直径作半圆,若AB=12,AC =5,则S 阴影= 。
5.如图5,所有的四边形都是正方形,所有的三角形都是直角三角形,①若最大的正方形的边长为7㎝,则正方形A 、B 、C 、D 的面积之和为 ;②若最大的正方形的边长为10㎝,正方形A 的边长为6㎝,B 的边长为5㎝,C 的边长也为5㎝,则正方形D 的边长为 。
- 1 -18.1 勾股定理(一) (一)课前预习 1.直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若∠B=30°,则∠B 的对边和斜边:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
(二)、勾股定理的证明勾股定理的证明方法很多,你能否利用右图:赵爽弦图证明呢?1.已知:在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a 、b 、c 。
求证: 222a b c +=勾股定理的内容是: 。
(三)学以致用 在Rt△ABC 中,已知两边求第三边-------简称“知二求一” 1.在Rt△ABC 中,90C ∠=︒ , ⑴如果a =6,b =8,求c 的值; ⑵如果a =5,b =12,求c 的值; ⑶如果a =9,c =41,求b 的值; 练习 1.若一个直角三角形的两直角边分别为9和12,则第三边的长为( ) A.13 B. 13 C. 5 D.15 2.若一个直角三角形的斜边长为26,一条直角边长为24,则另一直角边长为( ) A.8 B.10 C.50 D.36 3.在Rt △ABC 中,∠C=90°,若a ︰b =3︰4,c=10,求a ,b 的值。
注意:⑴只有在直角三角形中,才能用勾股定理;⑵在用勾股定理求第三边时,要分清直角三角形的斜边和直角边; (四)当堂检测:1.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.2.在Rt△ABC,∠C=90°;⑴ 已知a =b =5,求c ;⑵已知c =17,b =8,求a ;⑶ 已知a ∶b =1∶2,c=5,求a ; ⑷已知b=15,∠A=30°,求a ,c 。
3.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,求斜边的长?4.一个直角三角形的两边长分别为3cm 和4cm ,求第三边的长?5.已知,如图在正ΔABC 中,AB=BC=CA=2cm .求ΔABC 的面积.BDbaD C C A- 2 -EFDCBA18.1 勾股定理(二)(一)回顾复习:1.勾股定理:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
勾股定理 复习学案一、知识点:1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。
数学式子:∠C=900⇒222a b c +=2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.数学式子:222a b c +=⇒∠C=900满足a 2+b 2=c 2三个数a 、b 、c 叫做勾股数。
二、举例:例1:⑴一个直角三角形的两条直角边分别为3和4,求斜边的长度⑵一个直角三角形一条直角边为6,斜边为10,求另一条直角边例2:在△ABC 中,AB=13,AC=15,BC=14,。
求BC 边上的高AD 。
例3:在△ABC 中,AB=15,AC=20,BC 边上的高AD=12,试求BC 的长.(两解)例4:如图,在△ABC 中,AC=AB ,D 是BC 上的一点,AD ⊥AB ,AD=9cm ,BD=15cm ,求AC 的长.A a D CB A DC BA例5:一轮船在大海中航行,它先向正北方向航行8 km ,接着,它又掉头向正东方向航行15千米.⑴ 此时轮船离开出发点多少km? ⑵ 若轮船每航行1km ,需耗油0.4升,那么在此过程中轮船共耗油多少升?例6:如图,有一块直角三角形纸片,两直角边AC =6cm , BC =8cm ,现将直角边AC 沿直线折叠,使它落在斜边AB 上,且点C 落到E 点,则CD 的长是多少?例7:如图,四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD的面积。
例8:有一根70cm 的木棒,要放在50cm ,40cm ,30cm 的木箱中,试问能放进去吗?例9:甲、乙两人在沙漠进行探险,某日早晨8∶00甲先出发,他以6千米/时速度向东南方向行走,1小时后乙出发,他以5千米/时速度向西南方向行走,上午10∶00时,甲、乙两人相距多远?E D C B A B ACD例10:如图,由5个小正方形组成的十字形纸板,现在要把它剪开,使剪成的若干块能够拼成一个大正方形。
1.1 探索勾股定理(1)一、课前预习1、正方形面积的计算公式,边长为5时,面积为多少?2、三角形两边分别是2,5第三边是c ,求第三边的取值范围.3、直角三角形两直角边为3、4求则第三边斜边的取值范围,斜边与这两条直角边的长度之间还有什么关系?二、新课学习 1、观察下面两幅图:2、填表:A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的? 【小结】求面积常用方法: ____________________________(4)你能发现各图中三个正方形的面积之间有何关系吗?【结论】:以_______三角形两_______边为边长的小正方形的面积的和,等于以______边为边长的正方形的面积.AB CC BA思考:(1)若直角三角形两直角边长分别为a 、b ,斜边长为c ,则你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?★【勾股定理】如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么_________________ 即_______三角形两_____边的______和等于斜边的_______. 几何语言:∵在△ABC 中,∠____=900∴____2+____2=____2三、典型例题及练习:例1、如图所示,一棵大树在一次强烈台风中于离地面9m 处折断倒下,树顶落在离树根12m 处. 大树在折断之前高多少? 解:∵在△ABC 中,∠____ =900 ∴____2+____2=____2 即92 +122=AB 2∴AB 2=____ ∴AB =____∴大树在折断之前高 。
【跟踪练习】:1、如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.弦股勾ACBabc2、求图形中未知正方形的面积:3、若△ABC 中,∠C =90°,(1)若a =5,b =12,则c =________;(2)若a =6,c =10,则b =________;(3)若a ∶b =3∶4,c =10,则a =________,b =________.4.如图,阴影部分是一个半圆,则阴影部分的面积为多少?5.底边长6cm ,底边上的高为4cm 的等腰三角形的腰长为多少?6.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是_________cm 2.1.1 探索勾股定理(2)一、课前复习:1、勾股定理:直角三角形_________________________ 几何语言:在△ABC 中,∵∠____ =900∴____2+____2=____22、在直角三角形ABC 中, ∠C =900,BC =12,CA =5,AB = ______.3、 如果直角三角形的一条直角边长为40,斜边长为41,那么另一条直角边的长为______.?2251002572577cmDACB二、典型例题:例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?例2、受台风麦莎影响,一棵高18m 的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?(提示:方程思想)三、课堂练习:1.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为多少?2.我方侦查员小王在距离东西向公路400米处侦察,发现一辆敌方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?6米5000m4000mC B A500m400m C B A“路”4m3m3、一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?4.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ). A .30cm 2 B .130cm 2 C .120cm 2 D .60cm 25、轮船从海中岛A 出发,先向北航行9km ,又往西航行9km ,由于遇到冰山,只好又向南航行4km ,再向西航行6km ,再折向北航行2km ,最后又向西航行9km ,到达目的地B ,求AB 两地间的距离.6、如图学校有一块长方形花铺,有极少数人为了避开 拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅 少走了 步路(假设2步为1米),却踩伤了花 草.7、一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?A BOCD3米9km AB9km 4km6km9km 2km8、△ABC中,∠C=900,AC=6,BC=8,沿AD折叠,使C点与AB边上的E点重合,求CD的长。
勾股定理复习学案一.复习回顾 1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有:————————————.这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据. 2.勾股定理的作用:(1)已知直角三角形的两边,求第三边; (2)在数轴上作出表示n (n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想. 考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为______. 2.已知直角三角形的两边长为3、2,则另一条边长是________________. 3.在数轴上作出表示10的点.考点二、利用列方程求线段的长1.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?考点三、判别一个三角形是否是直角三角形1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17 (4)4、5、6,其中能够成直角三角形的有2..如图1,在△ABC 中,AD 是高,且CD BD AD 2⋅=,求证:△ABC 为直角三角形。
考点四、灵活变通1.在Rt △ABC 中, a ,b ,c 分别是三条边,∠B=90°,已知a=6,b=10,则边长c=2.直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_________2cm .3.如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm 4.如图:带阴影部分的半圆的面积是 (π取3)5. 如图一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 么它所爬行的最短路线的长是6.如图:在一个高6米,长10米的楼梯表面铺地毯, 则该地毯的长度至少是 米。
最新勾股定理复习学案一、重点:1、明确勾股定理及其逆定理的内容2、能利用勾股定理解决实际问题二、知识小管家:通过本章的学习你都学到了三、练习:考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________.2.已知直角三角形的两边长为3、2,则另一条边长是________________.3.在数轴上作出表示10的点.4.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长;②ΔABC 的面积.考点二、利用列方程求线段的长5.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?6.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.考点三、判别一个三角形是否是直角三角形7、分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有-----------8、若三角形的三别是a 2+b 2,2ab,a 2-b 2(a>b>0),则这个三角形是---------------.9、如图,在我国沿海有一艘不明国际的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。
已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西400.那么甲巡逻艇的航向是怎样的?A D EB C四、灵活变通10、直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_________2cm .11、如图一个圆柱,底圆周长6cm,高4cm ,一只蚂蚁沿外 壁爬行,要从A 点爬到B 点,则最少要爬行 cm12、.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.613、如图:带阴影部分的半圆的面积是-----------(π取3) 14、若一个三角形的周长123c m,一边长为33c m,其他两边之差为3c m,则这个三角形是______________________.五、能力提升15、已知:如图,△ABC 中,AB >AC ,AD 是BC 边上的高.求证:AB 2-AC 2=BC(BD-DC).16、如图,四边形ABCD 中,F 为DC 的中点,E 为BC 上一点,且BC CE 41=.你能说明∠AFE 是直角吗?复习第一步::勾股定理的有关计算例1: (2006年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为 .析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6勾股定理解实际问题例2.(2004年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm ). 其中矩形ABCD 是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm .在无风的天气里,彩旗自然下垂,如图②. 求彩旗下垂时最低处离地面的最小高度h .析解:彩旗自然下垂的长度就是矩形DCEF的对角线DE 的长度,连接DE ,在Rt △DEF 中,根据勾股定理,得DE=150901202222=+=+EF DF A Bh=220-150=70(cm)所以彩旗下垂时的最低处离地面的最小高度h 为70cm与展开图有关的计算例3、(2005年青岛市中考试题)如图,在棱长为1的正方体ABCD —A’B’C’D’的表面上,求从顶点A 到顶点C’的最短距离.析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A 到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A 到顶点C’的最短距离就是在图2中线段AC’的长度.在矩形ACC’A’中,因为AC=2,CC’=1所以由勾股定理得AC’= .∴从顶点A 到顶点C’的最短距离为复习第二步:1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.例4:在Rt △ABC 中, a ,b ,c 分别是三条边,∠B=90°,已知a=6,b=10,求边长c .错解:因为a=6,b=10,根据勾股定理得c=3421062222=+=+b a剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c 当成了斜边.正解:因为a=6,b=10,根据勾股定理得,c=86102222=-=-a b 温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2例5:已知一个Rt △ABC 的两边长分别为3和4,则第三边长的平方是错解:因为Rt △ABC 的两边长分别为3和4,根据勾股定理得: 第三边长的平方是32+42=25剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.例6:已知a ,b ,c 为⊿ABC 三边,a=6,b=8,b<c ,且c 为整数,则c= .错解:由勾股定理得c=108622=+ 剖析:此题并没有告诉你⊿ABC 为直角三角形,因此不能乱用勾股定理. 正解:由b<c ,结合三角形三边关系得8<c<6+8,即8<c<14,又因c 为整数,故c 边长为9、10、11、12、13. 温馨提示:只有在直角三角形中,才能用勾股定理,因此解题时一定注意已知条件中是否为直角三角形. 2.思想方法:本节主要思想方法有数形结合的思想、方程的思想、化归的思想及分类的思想; 例7:如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 析解:因两直角边AC=6cm ,BC=8cm ,所以由勾股定理求得AB=10 cm ,设CD=x ,由题意知则DE=x ,AE=AC=6,BE=10-6=4,BD=8-x .在Rt △BDE 由勾股定理得:42+x2=(8-x)2,解得x=3,故CD 的长能求出且为3. 运用中的质疑点:(1)使用勾股定理的前提是直角三角形;(2)在求解问题的过程中,常列方程或方程组来求解;(3)已知直角三角形中两边长,求第三边长,要弄清哪条边是斜边,哪条边是直角边,不能确定时,要分类讨论.复习第三步:选择题1.已知△ABC 中,∠A= ∠B= ∠C ,则它的三条边之比为( ).A .1:1:B .1: :2C .1: :D .1:4:12.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ).A .B .3C .D .3.下列各组线段中,能够组成直角三角形的是( ).A .6,7,8B .5,6,7C .4,5,6D .3,4,54.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等5.若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ).A . cm2B .2 cm2C .3 cm2D .4cm26.在Rt △ABC 中,已知其两直角边长a=1,b=3,那么斜边c 的长为( ).7.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cmD .1360cm8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm9、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.10.一座桥横跨一江,桥长12m ,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m ,则小船实际行驶___m .11.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是___.12.在Rt △ABC 中,∠C =90°,中线BE =13,另一条中线AD2=331,则AB =___.13.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.14.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m 处,已知旗杆原长16m ,你能求出旗杆在离底部什么位置断裂的吗?请你试一试.15.如图4所示,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m .现将梯子的底端A 向外移动到A′,使梯子的底端A′到墙根O 的距离为3m ,同时梯子的顶端B 下降到B′,那么BB′也等于1m 吗?16.在△ABC 中,三条边的长分别为a ,b ,c ,a =n2-1,b =2n ,c =n2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角?与同伴一起研究.15、参考在Rt △ABO 中,梯子AB2=AO2+BO2=22+72=53.在Rt △A′B′O 中,梯子A′B′2=53=A′O2+B′O2=32+B′O2,>2×3=6.所以BB′=OB -OB′<1.16、参考.因为a2=n4-2n2+1,b2=4n ,c2=n4+2n2+1,a2+b2=c2,所以△ABC 是直角三角形,∠C 为直角. 复习小结通过教学,我们知道勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。
《3.1探索勾股定理(第1课时)》学案学习目标:1.经历探索勾股定理的过程,了解我国勾股定理发展史,培养推理意识、主动探究习惯;2.掌握勾股定理,并能用勾股定理解决一些简单问题;3.体会分类讨论的思想方法,发展几何直观、模型观念.学习重点:掌握勾股定理,并能用勾股定理解决一些简单问题.学习难点:探索勾股定理.学习过程:一溯源求本二探究求真(一)初识1.在方格纸上分别画出直角边为以下数值的直角三角形并度量斜边长.(1)3cm和4cm (2)6cm和8cm(3)1cm和3cm将数据填入下表,这三边的平方之间有怎样的关系?直角边的平方 直角边的平方 斜边的平方(二)生惑独立思考1分钟后,小组合作交流3分钟,并解决下列问题: 1..________,____,===C B A S S S 2.表示三个正方形面积之间的关系. 3.描述Rt △DEF 三边的关系.(三)又惑任意一个直角三角形的三边关系是否都满足上面的猜想呢? (四)验证(五)终获勾股定理:直角三角形两直角边的 等于斜边的平方.如果 用a ,b 和c 分别表示直角三角形的两直角边和斜边长,那么 . 符号语言:三 应用 求实例1求下图中字母所代表的正方形的面积.例2在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)a =6,b =8,求c . (2)b =40,c =41, 求a . 四 变式 求深在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . 1.若a =3,b =4,则c = . 2.若c =5,b =4,则a = .变式一:其中两边长为3、4,则第三边的平方为 .abcac ba中国的“青朱出入图”青出青入朱入朱出青入青出cb青方朱方a225400A81225B变式二:a :b =3:4,c =25,则a= ,b = .五 小结 求远六 测评 求同1.在Rt △ABC 中,∠C =90°,BC =9,AC =12,则斜边AB 的长为 .2.求右图中字母B 所代表的正方形的面积 .3.下列说法中,正确的是( )A. 已知a ,b ,c 是三角形的三边,则a 2+b 2=c 2B. 在直角三角形中两边和的平方等于第三边的平方.C. 在Rt △ABC 中,∠C =90°,则a 2+b 2=c 2D. 在Rt △ABC 中,∠B =90°,则a 2+b 2=c 2 . 七 作业 求效基础作业:课本68页习题3.1第1、2、3题.提升作业:如图,在Rt △ABC 中,∠C =90°,BC =3,AC =4. (1)CD 为斜边上的高,求CD 的长.变式:如图,在Rt △ABC 中,∠C=90°,BC =3,AC =4. (2)E 为斜边上一动点,求CE 的最小值.实践作业:用四个全等的直角三角形拼凑法、证明勾股定理.附:自我评价量表通过学习,能基本了解我国勾股定理发展简史,增强文化自信.☆能熟练说出勾股定理内容. ☆☆ 会用勾股定理进行简单计算. ☆☆☆ 会用割补法计算正方形面积.☆☆☆☆ 4DCA4CAE。
勾股定理辅助线一、本章概述本章共分为勾股定理与几何计算、勾股定理与几何证明和勾股弦图三部分,都是勾股定理的重难点内容二、知识回顾1.勾股定理(1)直角三角形两直角边的平方和等于斜边c的平方和。
(即:)2.勾股定理的逆定理(2)如果三角形的三边长:。
满足关系,那么这个三角形是直角三角形。
3.勾股定理的证明:(3)勾股定理的证明方法很多,常见的是拼图方法,用拼图的方法验证勾股定理的思路是:①图形进行割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
(4)常见方法如下:方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积。
方法三:美国第二十任总统伽菲尔德的“总统证法”.1. 勾股定理与几何计算一、本节概述本节主要讲解勾股定理常见的三个辅助线模型,将斜三角形问题,转化为直角三角形问题。
当遇到三角形内的几何计算,特别是长度计算时,可以考虑用勾股定理解决。
在没有直角三角形时,我们就构造直角三角形,方法就是作高。
要尽量作与题中条件有关系的高,总有一条适合你的,比如特殊角所对的高。
二、典例精析知识点:勾股定理与几何计算【例1】如图,已知AC=2,思路分析:标记条件,题目中给出三角形的两个角和一条边,符合“AAS”,故三角形形状固定,可通过作高转化为勾股定理来解决,作高的时候,要充分利用特殊角。
作AB角形问题。
解:,先从右边已知一边和一角的直角三角形入手,这是个()的特殊直角三角形。
得到CD后,再看左边已知一边和一角的直角三角形,这是个()的特殊直角三角形。
方法总结这是利用勾股定理时常见的辅助线做法之一:三角形给出的条件满足“AAS”,作高的时候要充分利用特殊角,使分割后得到的直角三角形可求解即可,此例题是垂线在三角形内,并获得特殊直角三角形的例子。
【例2】思路分析:标记条件,给出的三角形符合“SAS”,故形状固定,可通过作高解决,作高时要充分利用特殊三角形,因为给出的特殊角是钝角,故可利用它的补角。
⑤④③②①EDB AC B AA BC DE a bca bc2.1勾股定理(2)学习、巩固案班级 姓名 学号一、复习:1.请说出勾股定理: 。
2.△ABC 中,∠A=90°,根据以下条件,求第三边和长 (1)a=15,b=12;(2)b=10,c=24;(3)c=7,a=25.二、实验、探究1.将P 43章头图中的①②③④⑤剪开 拼成大正方形ABDE 。
2.早在公元3世纪,我国数学家赵爽说用 4个直角三角形拼成如图所示的图形, 证明了勾股定理,这个图形称为“弦图”。
赵爽是怎样用“弦图”说明勾股定理的呢?3.如图,把火柴盒放倒,在这个过程中也能验证勾股定理 分析:请考虑用不同的方法计算梯形ACDE 的面积。
勾股定理的证明方法:有记载的就有几百种三、思考锐角三角形、钝角三角形三边之间也有这样的等量关系吗? 不是直角三角形没有这个结论。
看过动画演示后,你有什么结论?A B CD C B A四、再探索(1)用4张直角三角形纸片拼成如图形状,图中的3个正方形的面积之间有何关系?请用a 、b 、c 将所得的关系表示出来。
(2)用8个直角三角形纸片拼成如图形状,图中的3个正方形的面积之间有何关系?请用a 、b 、c 将所得的关系表示出来。
(1) (2)五、应用 如图,在△ABC 中,∠C=90°,AC=12, 边BC 上的中线AD 长为13,求边BC 的长。
六、反馈练习:P 46 练习七、拓展延伸2002年8月在北京召开了国际数学大会,其会标取材于我国古代数学家赵爽的“弦”图,此图是由4个斜边为c 的全等直角三角形和1个小正方形拼成的大正方形,如果大正方形的面积是13,小正方形的面积为2,且直角三角形两直角边分别为a 、b ,求(a+b )2的值。
a bbaa bc cbaabb abbaa ab ccbacc EDC BAGF 7DC B A 八、巩固练习1.如图,小方格的面积为1,画出图中以格点 为端点且长度为5的线段。
专题复习一 勾股定理
第一课时
本章常用知识点:
1、勾股定理:直角三角形两直角边的 等于斜边的 。
如果用字母a,b ,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。
2、勾股数:满足a2+b 2=c 2的三个 ,称为勾股数。
常见勾股数如下:
3121112=; 144122=; 169132=; 196142=; 225152=;256162=
289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=
专题归类:
专题一、勾股定理与面积
1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则R t▲ABC 的面积S
= 。
2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。
3、直线l上有三个正方形a 、b 、c,若a 和c 的面积分别为5和11,则b的面积为
4、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别
是1、2、3,正放置的四个正方形的面积依次是S 1、S2、S3、S 4, 则S 1+S 2+S 3+S 4等于 。
3
5、三条边分别是5,12,13的三角形的面积是 。
6、如果一个三角形的三边长分别为a ,b,c 且满足:a 2+b2+c 2+50=6a+8b+10c,则这个三角形的面积为 。
7、如图1,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?
7、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm,B C=15cm ,P 是到∆AB C三边距离相等的点,求点P 到∆ABC 三边的距离。
8、有一块土地形状如图3所示,︒=∠=∠90D B ,AB=20米,B C=15米,CD =7
米,请计算这块土地的面积。
(添加辅助线构造直角三角形)
9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形AB CD 的面积。
A
B
C
P
10、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落
在C′的位置上,已知AB=•3,BC=7,求:重合部分△EBD
的面积
11、如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3.
(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)
(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;
(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.
专题二、勾股定理与折叠
第二课时
D
C
B
A
1、如图4,矩形纸片A BC D的边AB =10cm,BC=6cm,E 为BC上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
2、有一个直角三角形纸片,两直角边的长AC =6cm,BC=8cm,现将直角边AC 沿AD 对折,使它落在斜边AB 上,且与A E重合,求C D的长?
3、如图6,在矩形纸片ABCD 中,AB =33,B C=6,沿EF 折叠后,点C落在AB 边上的点P 处,点D落在Q 点处,AD 与PQ 相交于点H,∠BPE=︒30
(1) 求BE 、QF 的长
(2) 求四边形Q EFH 的面积。
E
B
C D
A
专题三、利用股沟定理列方程求线段的长度
第三课时
1、如图7,铁路上A、B 两站相距25千米,C 、D 为两村庄,DA ⊥AB 于A 点,CB ⊥AB于点B,D A=15千米,CB=10千米,现在要在铁路上建设一个土特产收购站E,使得C 、D两村庄到收购站的距离相等,则收购站E 应建在距离A 站多远的距离?
2、一架长为5米的梯子,斜立在一竖直的墙上,这时梯子的底端B 距离底C 为3米,如果梯子的顶端A沿墙下滑1米到D 处,梯子的底端在水平方向沿一条直线也将下滑动1米到E 处吗?请给出证明。
3、 △ABC 中,AB =AC=20,B C=32,D 是BC 上
一点,且AD ⊥AC,求BD 的长.
专题四、勾股数的应用
第四课时
图7
E D
C
B A
1、下列是勾股数的一组是( )
A 4,5,6,
B 5,7,12
C 12,13,15
D 14 ,48,50
2、一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是 。
3、下列是勾股数的一组是( )
A 2,3,4,
B 5,6,7,
C 9,40,41
D 10 24 25 4、观察下面表格中所给出的三个数a,b,c,其中a,b ,c 为正整数,且a<b <c
(1):试找给他们的共同点,并证明你的结论 (2):当a=21时,求b ,c的值
专题五、勾股定理及逆定理有关的几何证明
第五课时
1、 在四边形ABC D中,∠C 是直角,AB=13,B C=3,CD=4,AD =12 证明:AD ⊥BD
2、CD 是▲ABC 中AB 边上的高,且CD 2=AD •DB ,试说明∠ACB=︒90
3、在正方形ABCD 中,E 是BC 的中点,F 为C D上一点 且C F=
4
1
CD 试说明▲AEF 是直角三角形。
4、▲ABC 三边的长为a,b , c,根据下列条件判断▲AB C的形状
(1):a2
+b 2
+c2
+200=12a+16b +20c ; (2):a 3
-a 2
b+ab 2
-ac 2
+bc 2
-b 3
=0
5、试判断,三边长分别为2n 2+2n,2n +1,2n 2+2n+1(n 为正整数)•的三角形是否是直角三角形?
6、如图2-12,△AB C中,∠C=90°,M 是BC 的中点,MD ⊥AB 于D.
求证:A D2=AC 2
+BD 2.
7、在▲ABC 中,BC=a,AC =b,AB=c,若∠C=︒90,如下图(1)根据勾股定理可
以得出:a 2+b2=c2,若▲ABC不是直角三角形,如图(2)与图(3),请你类比勾股定理猜想a 2+b2与c 2的关系,并且证明你的结论。
8、如图ABC ∆中,P AC AB BAC ,,90=︒=∠为BC 上任意一点,求证:
2222AP CP BP =+.
图(1)
B
B
B
A
A
A
C
C
C
图(2)
图(3)
A
专题六、勾股定理与旋转
第六课时
1、在等腰Rt▲ABC中,∠CAB=︒
90,P是三角形内一点,且PA=1,PB=3,PC=7
求:∠CPA的大小?
2、如图,在等腰△ABC中,∠ACB=90°,D、E为斜边AB上的点,
且∠DCE=45°。
求证:DE2=AD2+BE2。
3、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、
F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的
长。
ﻫﻫ
C
B
A
P
E
A
B
4、已知,如图△AB C中,∠ACB=90°,AC =BC,P 是△ABC 内一点,且PA=3,P B=1,PC=2,求∠BPC。
5、如图,在ABC ∆中,090B ∠=,M 为AB 上一点,AM=BC,N 为A B上一点,C N=B M,连接A N、CM 交于点P 。
求APM ∠的大小。
专题七、最短路线问题
第七课时
1、 有一正方体盒子,棱长是10cm ,在A点处有一只蚂蚁它想到B 点处觅食,那么它爬行的
最短路线是多少?
B M
C A
N
B
A
2、有一个长方体盒子。
它的长是70cm,宽和高都是50cm,在A点处有一只蚂蚁它想到B点处觅食,那么它爬行的最短路线是多少?
B
A
3、如图所示,一个二级台阶,每一级的长、宽、高分别为60cm、30cm、10cm,A和B 是这个台阶上两个相对的端点,在A点处有一只蚂蚁它想到B点处觅食,那么它爬行的最短路线是多少?
A
4、如下图、王力的家在高楼15层,一天他去买竹竿,如果电梯的长、宽、高分别为1.2m,
1.2m,1.3m,则他所买的竹竿最大长度是多少?
5、如图,已知圆锥的母线AS=10㎝,侧面展开图的夹角是90°,点C为AS的中点,A处有一只蜗牛想吃到C处的食物,但它不能直接爬到C处,只能沿圆锥曲面爬行,请你画出蜗牛爬行的最短路程的图形并求出最短路程.
B。