网格剖分
- 格式:pdf
- 大小:1.46 MB
- 文档页数:23
建筑设计中曲面网格的划分方式及优化策略建筑设计中曲面网格的划分方式及优化策略一、引言建筑设计中,曲面网格的划分是一个关键的步骤,能够影响建筑物外形的流畅性、结构的稳定性以及施工的困难程度。
因此,合理的曲面网格划分方式和优化策略对于建筑设计的成功至关重要。
本文将介绍几种常见的曲面网格划分方式,并讨论一些优化策略。
二、曲面网格划分方式1. 均匀划分均匀划分是一种较为简单直接的划分方式,将曲面分成等大小的小面片。
这种方式适用于形状简单、平面性强的曲面,能够快速构建曲面网格。
然而,在曲面形状复杂或者曲面上存在规律性变化的情况下,均匀划分方式可能无法充分利用网格点,导致网格精度不高。
2. 均匀切割划分均匀切割划分是一种常见的曲面网格划分方式,通过将曲面切割成若干个小块,并在各个小块上采用均匀网格的方式,实现整体的曲面网格。
这种方式提供了更高的网格精度和平滑性,适用于较复杂的曲面形状。
3. 自适应划分自适应划分方式根据曲面上的变化程度来调整网格的密度,以使网格更好地适应曲面的复杂性。
例如,在曲面上的锐角和平面区域附近使用较密的网格,而在曲面上的平滑区域则采用较稀疏的网格。
自适应划分方式能够在保证网格精度的同时,减少网格数量,提高计算效率。
三、曲面网格优化策略1. 网格平滑曲面网格划分后,常常存在网格点之间的不平滑现象。
为了提高网格的平滑性,可以通过一些优化策略进行调整。
例如,使用曲线插值或者曲面拟合等方法,对网格进行局部调整,以消除不平滑部分。
2. 网格剖分在某些需要高精度曲面表达的区域,可以通过网格剖分策略进行优化。
网格剖分是指在曲面局部区域进行重复划分,以提高局部区域的曲面精度。
这种策略常用于建筑物的装饰部分,例如外墙砖面贴装等。
3. 网格调整在曲面网格划分中,边界网格的位置和精度往往是关键问题。
因此,在曲面网格优化中,需要特别关注边界网格的调整。
通过一些算法和方法,可以对边界网格进行调整,以满足设计要求。
仅作探讨,欢迎拍砖!曾经看到师兄一篇大作,将ANSYS和ANSOFT做过南慕容北乔峰的类比,真是崇拜得五体投地,一塌糊涂,屁滚尿流,接二连三,不三不四。
个人比较欣赏乔峰大侠,遂,改投ANSOFT门下。
想当年ANSYS的APDL用得忒熟无比,想想就此放弃,于心不忍,于是重操APDL。
近日,在论坛上看到有人对MAXWELL的网格剖分大发牢骚,甚至还恶言相向,GG我实在看不下去了,于是有此文。
就从网格剖分谈开去。
开篇之前,对比下面两幅图。
图1ANSYS映射网格剖分(APDL如下)/clear/filname,joe_yan,1/prep7et,1,solid117block,0,10,0,10,0,10mshkey,1mshape,0,3Daesize,all,1vmesh,allsave图2ANSOFT MAXWELL网格剖分(自适应剖分)对比图1、2明眼人一看就知道显然是图1的网格划分优良。
于是乎,俗人皆言:“MAXWELL 网格剖分垃圾~~!!”掌嘴!!我要说。
先声明,本人不是MAXWELL的死忠!个人更偏向于ANSYS的APDL,一看到那黑乎乎一块的经典界面,我就澎湃。
即便如此,本人还是坚持MAXWELL的网格剖分很强大。
MAXWELL有两种网格剖分形式,其一,如上图2所示的自适应剖分;其二,手动剖分。
其中手动剖分又分为二,其一,选择剖分;其二,内部剖分。
其中,选择剖分又分为二,其一,基于长度;其二,基于表层深度。
为何一个网格剖分要纠结如斯?我要说,因为MAXWELL 人性化。
比如说,为何手动剖分又要分为表层剖分和内部剖分,因为,表层剖分主要是针对集肤效应而言,大家都知道,集肤效应主要集中在导磁体表面,可是如何做到从内到外将网格剖分从疏到密的剖分呢?我们可以采用MAXWELL提供的表层剖分功能。
至此有人又要叫嚣了:“诶,你看,明明ANSYS网格剖分要比ANSOFT网格剖分来的均匀而细致。
”我要说,对!!爸特!!!针对不同分析,网格也呈现出不一样的规律性。
有限元网格剖分有限元计算的本质在于可以将连续的场域问题转变为离散的场域问题进行求解,而在这个由连续场域向离散场域转变的过程的核心在于有限元模型的网格划分。
进行有限元计算的主要过程体现在:首先确定出能和边值问题相对应的泛函数及可以相互等价的变分问题,进行有限元网格划分,将连续的场域离散成离散场域,在有限单元上利用一个已知的函数,例如线性的或者二次的,将有限单元上的未知连续函数近似的表示出来,求解泛函数的极值,得到一系列的方程组,进行方程组的求解,求解结束后将计算的结果进行显示,如果需要其它的一些场量时需要进行后处理等。
在上述的有限元求解的过程中,有限元模型的网格划分其中最为关键的一个环节,有限元模型的网格划分直接决定了有限元法在解决实际问题中所体现的能力,更是直接决定了有限元计算软件的计算精度。
一个有限元计算软件如果前处理的程序性能不够强大,则它的通用性就不会太强。
有限元模型的网格划分模块时有限元计算软件的前处理部分的主要模块。
有限元模型单元的大小和疏密度的合理设置,是保证计算精确性的重要保障,而有限元网格的合理性是建立在网格自动剖分程序所形成的初步网格的基础之上的,需要进一步的细分网格环节来实现合理的网格划分。
而有限元软件的自适应网格细分不需要依靠计算机用户的网格划分经验,仅仅凭借着有限元软件自带的功能就可以实现有限元网格的合理细化。
当前随着计算机的快速发展,网格剖分的算法已经得到了更大程度上的完善和发展,一些更为发展的求解域都可以进行网格的合理剖分。
有限元网格的自适应剖分软件能够利用软件自身的功能属性自动决定出网格在哪一个地方需要进行网格的进一步细化,细化的具体程度是多少,进而得到一个较为合理的网格划分,并且在该模型上可以获得较为准确的计算结果。
有限元网格的进一步细分的目的在于能够使得软件根据计算场域的特征和计算场量的分布情况合理的设置网格,使得模型中的每一个单元的计算精确性基本相同。
网格剖分的自适应软件彻底的改变了以往网格划分计算人员剖分经验的依赖性,而且还能够在数量较小的节点单元的情况下获取较高的计算求解精度。
有限元网格剖分与网格质量判定指标有限元网格剖分与网格质量判定指标一、引言有限元法是一种常用的数值分析方法,广泛应用于工程、力学等领域。
在有限元方法中,对于复杂的几何体,需要将其分割成多个简单的几何单元,称为有限元。
而有限元的形状和尺寸对计算结果的精度和稳定性有重要影响。
因此,有限元网格剖分和网格质量判定指标的选择和优化是提高有限元方法计算精度和效率的关键。
二、有限元网格剖分的基本原则和方法有限元网格剖分的基本原则是要确保网格足够细密,以捕捉几何体的细节和特征。
一般来说,有限元网格剖分可以分为以下几个步骤:1. 几何体建模:根据实际问题建立几何体模型,可以使用CAD软件进行建模。
2. 离散化:将几何体分割成简单的几何单元,如三角形、四边形或六面体等。
3. 网格生成:根据几何单元的尺寸和形状要求生成网格。
一般可采用三角形剖分算法或四边形剖分算法进行网格生成。
4. 网格平滑:对生成的网格进行平滑处理,以提高网格的质量。
三、网格质量判定指标网格质量判定指标是用来评价和衡量网格质量好坏的指标。
一个好的网格是指网格单元形状较正、网格单元之间大小相近、网格单元的边界规则等。
常用的网格质量判定指标包括:1. 网格单元形状度:用于评价网格单元的形状正交性和变形。
常用的形状度指标有内角度、调和平均内角度和狄利克雷三角形剖分等。
2. 网格单元尺寸误差:用于评价网格单元尺寸与理想尺寸之间的差异。
常用的尺寸误差指标有网格单元长度标准差、最大和最小网格单元尺寸比等。
3. 网格单元的四边形度:用于评价四边形网格的形状规则性。
常用的四边形度指标有圆度、直角度和Skewness等。
四、网格质量优化方法为了改善有限元网格质量,可以采用以下方法:1. 网格加密:通过将大尺寸网格单元划分为小尺寸网格单元,提高网格的细密度。
2. 网格平滑:通过对矩阵约束或拉普拉斯平滑等方法对网格进行平滑处理,改善网格单元的形状。
3. 网格优化:通过对网格单元的拓扑结构和形状进行优化,提高网格的质量。
网格算法优化技巧提升数据处理效率的实用方法在大数据时代的到来,数据处理效率成为了一个亟待解决的问题。
为了提高数据处理的效率,人们发展了各种各样的算法和技巧。
其中,网格算法被广泛应用于数据处理领域,具有出色的优化能力。
本文将介绍一些实用的网格算法优化技巧,帮助读者提升数据处理效率。
1. 引言数据处理是指对大量数据进行分析、提取、管理的过程。
在数据处理中,为了快速准确地处理数据,算法的效率是至关重要的。
网格算法是一种基于网格结构的数据处理方法,通过将数据分割成网格单元,实现高效的数据处理。
下面将介绍几种常用的网格算法优化技巧。
2. 网格剖分网格剖分是将数据区域划分成多个网格单元的过程。
常见的网格剖分方法包括正交网格剖分和非结构网格剖分。
正交网格剖分适用于规则的数据集,可以快速计算数据在网格单元中的位置。
非结构网格剖分适用于复杂的数据集,可以灵活地剖分数据区域。
3. 网格索引网格索引是对网格单元进行编码,方便数据的查找和访问。
常用的网格索引方法有哈希编码和四叉树编码。
哈希编码使用哈希函数将网格单元映射到一个唯一的索引值,实现快速的数据查找。
四叉树编码将网格单元划分成四个子网格,通过递归地划分,实现数据的高效存储和访问。
4. 网格聚合网格聚合是将相邻的网格单元合并成一个大的网格单元,减少数据处理过程中的计算量。
网格聚合可以基于网格索引进行,根据网格单元的相似度将其合并。
网格聚合在数据处理中起到了关键的作用,大大提升了运算效率。
5. 网格筛选网格筛选是根据特定的条件在网格单元中选择数据的过程。
通过对网格单元的属性进行筛选,可以快速准确地选择需要的数据。
网格筛选可以基于网格索引进行,根据网格单元的特征进行筛选,节省了大量的计算资源。
6. 网格优化网格优化是通过优化网格结构来提高数据处理效率。
常见的网格优化方法有网格重构和网格平滑。
网格重构可以根据数据的特征重新划分网格单元,使得数据在网格中更加均匀地分布。
网格平滑可以通过插值等技术,消除网格中的噪声和不规则性,提高数据的质量和准确性。
“第一款真正的任意多物理场直接耦合分析软件”COMSOL Multiphysics V4.x操作手册丛书网格剖分用户指南中仿科技公司(CnTech Co., Ltd.)2010年10月前言COMSOL Multiphysics是一款大型的高级数值仿真软件,由瑞典的COMSOL公司开发,广泛应用于各个领域的科学研究以及工程计算,被当今世界科学家誉为“第一款真正的任意多物理场直接耦合分析软件”,适用于模拟科学和工程领域的各种物理过程。
作为一款大型的高级数值仿真软件,COMSOL Multiphysics以有限元法为基础,通过求解偏微分方程(单场)或偏微分方程组(多场)来实现真实物理现象的仿真。
COMSOL Multiphysics以高效的计算性能和杰出的多场直接耦合分析能力实现了任意多物理场的高度精确的数值仿真,在全球领先的数值仿真领域里广泛应用于声学、生物科学、化学反应、电磁学、流体动力学、燃料电池、地球科学、热传导、微系统、微波工程、光学、光子学、多孔介质、量子力学、射频、半导体、结构力学、传动现象、波的传播等领域得到了广泛的应用。
在全球各著名高校,COMSOL Multiphysics已经成为讲授有限元方法以及多物理场耦合分析的标准工具;在全球500强企业中,COMSOL Multiphysics被视作提升核心竞争力,增强创新能力,加速研发的重要工具。
COMSOL Multiphysics多次被NASA技术杂志选为“本年度最佳上榜产品”,NASA技术杂志主编点评到,“当选为NASA科学家所选出的年度最佳CAE产品的优胜者,表明COMSOL Multiphysics是对工程领域最有价值和意义的产品”。
COMSOL Multiphysics 提供大量预定义的物理应用模式,涵盖声学、化工、流体流动、热传导、结构力学、电磁分析等多种物理场,模型中的材料属性、源项、以及边界条件等都可以是常数、任意变量的函数、逻辑表达式、或者直接是一个代表实测数据的插值函数等。
有限元网格剖分原理: 1. 引言有限元法是求解复杂工程问题的一种近似数值解法,现已广泛应用到力学、热学、电磁学等各个学科,主要分析工作环境下物体的线性和非线性静动态特性等性能。
有限元法求解问题的基本过程主要包括:分析对象的离散化?有限元求解?计算结果的处理三部分。
曾经有人做过统计:三个阶段所用的时间分别占总时间的40%~50%、5%及50%~55%。
也就是说,当利用有限元分析对象时,主要时间是用于对象的离散及结果的处理。
如果采用人工方法离散对象和处理计算结果,势必费力、费时且极易出错,尤其当分析模型复杂时,采用人工方法甚至很难进行,这将严重影响高级有限元分析程序的推广和使用。
因此,开展自动离散对象及结果的计算机可视化显示的研究是一项重要而紧迫的任务。
可喜的是,随着计算机及计算技术的飞速发展,出现了开发对象的自动离散及有限元分析结果的计算机可视化显示的热潮,使有限元分析的“瓶颈”现象得以逐步解决,对象的离散从手工到半自动到全自动,从简单对象的单维单一网格到复杂对象的多维多种网格单元,从单材料到多种材料,从单纯的离散到自适应离散,从对象的性能校核到自动自适应动态设计/分析,这些重大发展使有限元分析摆脱了仅为性能校核工具的原始阶段,计算结果的计算机可视化显示从简单的应力、位移和温度等场的静动态显示、彩色调色显示一跃成为对受载对象可能出现缺陷(裂纹等)的位置、形状、大小及其可能波及区域的显示等,这种从抽象数据到计算机形象化显示的飞跃是现在甚至将来计算机集成设计/分析的重要组成部分。
2. 有限元分析对网格剖分的要求有限元网格生成就是将工作环境下的物体离散成简单单元的过程,常用的简单单元包括:一维杆元及集中质量元、二维三角形、四边形元和三维四面体元、五面体元和六面体元。
他们的边界形状主要有直线型、曲线型和曲面型。
对于边界为曲线(面)型的单元,有限元分析要求各边或面上有若干点,这样,既可保证单元的形状,同时,又可提高求解精度、准确性及加快收敛速度。
《有限元网格剖分与网格质量判定指标》篇一一、引言有限元法是一种广泛应用于工程和科学计算中的数值分析方法。
其核心步骤之一是进行网格剖分,即将求解域划分为一系列小的、相互连接的子域或元素。
网格的质量直接影响到有限元分析的准确性和效率。
因此,本文将重点讨论有限元网格剖分的方法以及网格质量的判定指标。
二、有限元网格剖分1. 网格剖分的基本原则有限元网格剖分应遵循以下基本原则:一是尽可能保持单元的规则性,如六面体单元;二是确保网格的连续性和兼容性;三是考虑网格的适应性,以适应求解域的几何形状和边界条件;四是尽可能减少单元的数量,以节省计算资源。
2. 常见的网格剖分方法(1)自动剖分法:利用计算机程序自动进行网格剖分,如基于Delaunay三角化的剖分方法。
(2)映射法:将求解域映射到参数空间进行剖分,再映射回原空间得到网格。
(3)手动剖分法:根据求解域的几何形状和边界条件,手动进行网格剖分。
三、网格质量判定指标1. 单元形态指标(1)扭曲度(Skewness):用于衡量单元的形状与理想形状的偏差程度,扭曲度越大,单元的形状越不规则,影响计算的精度和效率。
(2)内角分布:单元的内角应尽可能接近标准值(如四边形单元为90度),内角分布的均匀性可以反映单元的规则性。
(3)面积/体积变化率:用于衡量单元尺寸变化对整体网格的影响,变化率越小,网格质量越好。
2. 连接性指标(1)节点连接数:每个节点的连接单元数应适中,过多或过少的连接都可能导致计算误差。
(2)相邻单元的协调性:相邻单元在公共边界上应具有良好的协调性,避免出现不连续或重复的单元边界。
3. 整体性指标(1)网格均匀性:整体网格的尺寸和密度应保持均匀,避免出现过大或过小的单元。
(2)边界拟合度:网格应尽可能贴合求解域的边界,提高边界条件的准确性。
四、结论有限元网格剖分是有限元法的重要步骤之一,而网格质量直接影响到有限元分析的准确性和效率。
本文介绍了有限元网格剖分的基本原则和常见方法,以及网格质量的判定指标。