带电粒子在有界磁场及复合场中的运动
- 格式:doc
- 大小:489.50 KB
- 文档页数:6
课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
带电粒子在复合场中的运动(2007年全国卷2)25。
(20分)如图所示,在坐标系Oxy 的第一象限中在在沿y 轴正方向的匀强电场,场强大小为E 。
在其它象限中在在匀强磁场,磁场方向垂直于纸面向里,A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 点的距离为l ,一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用。
试求: (1)粒子经过C 点时速度的大小和方向; (2)磁感应强度的大小B 。
(2008年全国卷1)25.(22分)如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120º。
在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。
一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出.粒子射出磁场的速度方向与x 轴的夹角θ=30º,大小为v 。
粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。
粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。
已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:⑴粒子经过A 点时速度的方向和A 点到x 轴的距离; ⑵匀强电场的大小和方向;⑶粒子从第二次离开磁场到再次进入电场时所用的时间.(2009年全国卷2)25。
(18分)如图,在宽度分别为1l 和2l 的Ov ABCyθφ两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。
一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。
压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。
针对性的专题训练,可以提高同学们解决难题、压轴题的信心。
3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。
物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。
带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。
解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。
其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。
涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。
问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。
二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。
高二《磁场》重难点精析及综合能力强化训练高中,物流,高一力学是基础,高二电磁学是根本,高三知识综合用,所以高二部分,往往是高考的难点和重点,应当全面掌握这一块的方法和内容,综合利用。
I. 重难知识点精析一、知识点回顾1、磁场(1)磁场的产生:磁极周围有磁场;电流周围有磁场(奥斯特实验),方向由安培定则(右手螺旋定则)判断(即对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向);变化的电场在周围空间产生磁场(麦克斯韦)。
(2)磁场的基本性质:磁场对放入其中的磁极、电流(安培力)和运动电荷(洛仑兹力)有力的作用(对磁极一定有力的作用;对电流和运动电荷只是可能有力的作用,当电流、电荷的运动方向与磁感线平行时不受磁场力作用)。
2、磁感应强度ILF B =(条件:L ⊥B ,并且是匀强磁场中,或ΔL 很小)磁感应强度B 是矢量。
3、磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线4、安培力——磁场对电流的作用力(1)BIL F =(只适用于B ⊥I ,并且一定有F ⊥B, F ⊥I ,即F 垂直B 和I 确定的平面。
B 、I 不垂直时,对B 分解,取与I 垂直的分量B ⊥)(2)安培力方向的判定:用左手定则。
通电环行导线周围磁场地球磁场 通电直导线周围磁场另:只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
5、洛仑兹力——磁场对运动电荷的作用力,是安培力的微观表现(1)计算公式的推导:如图,整个导线受到的安培力为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
秘籍10 带电粒子在复合场、组合场中的运动问题1、带电粒子在组合场中的匀速圆周运动模型解法Ⅰ组合场:电场与磁场各位于一定的区域内,并不重叠,或在同一区域,电场、磁场交替出现.Ⅱ带电粒子在组合场中运动的分析思路第1步:粒子按照时间顺序进入不同的区域可分成几个不同的阶段.第2步:受力分析和运动分析,主要涉及两种典型运动,如图所示.第3步:用规律2、先电场后磁场模型【运动模型】Ⅰ带电粒子先在匀强电场中做匀加速直线运动,然后垂直进入匀强磁场做匀速圆周运动,如图.Ⅱ带电粒子先在匀强电场中做类平抛运动,然后垂直进入磁场做匀速圆周运动,如图.3、先磁场后电场模型【模型构建】(1)进入电场时粒子速度方向与电场方向相同或相反(如图甲所示).(2)进入电场时粒子速度方向与电场方向垂直(如图乙所示).4、带电粒子在组合场中运动的应用质谱仪模型【模型构建】1.作用测量带电粒子质量和分离同位素的仪器. 2.原理(如图所示) (1)加速电场:qU =12mv 2;(2)偏转磁场:qvB =mv 2r ,l =2r ;由以上两式可得r =1B2mU q ,m =qr 2B 22U ,q m =2UB 2r 2. 5、带电粒子在组合场中运动的应用回旋加速器模型1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源. 2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次. 3.最大动能:由qv m B =mv m 2R 、E km =12mv m 2得E km =q 2B 2R 22m ,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关. 4.总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E kmqU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U.6、带电粒子在叠加场中的运动模型1.叠加场电场、磁场、重力场共存,或其中某两场共存. 2.无约束情况下的运动 (1)洛伦兹力、重力并存①若重力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若重力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、洛伦兹力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、洛伦兹力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.3.有约束情况下的运动带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解.1.(2023•济南三模)如图所示为内径为R的中空圆柱形管,OO′为管的中轴线,管内分布着沿中轴线OO′方向的匀强电场,电场强度大小为E。
带电粒子在有界磁场及复合场中的运动肖井利带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场和复合场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些问题.一、带电粒子在有界磁场中运动带电粒子在“圆形磁场区域”中的运动例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.解析:设粒子在洛仑兹力作用下的轨道半径为R ,由Rv m Bq v 2= 得cm m m Bq mv R 2020.0102.3332.0102.31064.619627==⨯⨯⨯⨯⨯==-- 虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线.由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆直径的A 端射出.如图2,作出磁偏转角ϕ及对应轨道圆心O ',据几何关系得212sin==R r ϕ,得060=ϕ,即α粒子穿过磁场空间的最大偏转角为060. 带电粒子在“长方形磁场区域”中的运动例2、如图3,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件. 解析:如图4,设粒子以速率1v 运动时,粒子正好打在左极板边图3⨯⨯⨯⨯⨯⨯⨯⨯→∙d Lv缘(图4中轨迹1),则其圆轨迹半径为41d R =,又由1211R v m Bqv =得m Bqdv 41=,则粒子入射速率小于1v 时可不打在板上.设粒子以速率2v 运动时,粒子正好打在右极板边缘(图4中轨迹2),由图可得22222)2(d R L R -+=,则其圆轨迹半径为d d L R 44222+=,又由2222R v m Bqv =得md d L Bq v 4)4(222+=,则粒子入射速率大于2v 时可不打在板上.综上,要粒子不打在板上,其入射速率应满足:mBqdv 4<或md d L Bq v 4)4(22+>.带电粒子在“圆环形磁场区域”中的运动例3、据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的“容器”可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图8所示的是一个截面为内径m R 6.01=、外径m R 2.12=的环状区域,区域内有垂直于截面向里的匀强磁场.已知氦核的荷质比kg c mq/108.47⨯=,磁场的磁感应强度T B 4.0=,不计带电粒子重力.(1)实践证明,氦核在磁场区域内沿垂直于磁场方向运动速度v 的大小与它在磁场中运动的轨道半径r 有关,试导出v 与r 的关系式.(2)若氦核沿磁场区域的半径方向平行于截面从A 点射人磁场,画出氦核在磁场中运动而不穿出外边界的最大圆轨道示意图.(3)若氦核在平行于截面从A 点沿各个方向射人磁场都不能穿出磁场外边界,求氦核的最大速度.解析:(1)设氦核质量为m ,电量为q ,以速率v 在磁感强度为B 的匀强磁场中做半径为r 的匀速圆周运动,由洛仑兹力公式和牛顿定律得R v m Bqv 2=,则mBqr v =.(2)所求轨迹示意图如图9所示(要与外圆相切)(3)当氦核以m v 的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以m v 速度沿各方向射入磁场区的氦核都不能穿出磁场图4v2v 图9图10图8外边界,如图10所示.由图知m R R r 3.0212=-=',又由r v m Bqv 2=得Bq mv r =, 在速度为m v 时不穿出磁场外界应满足的条件是r Bqmv m'<, 则s m mr Bq v m /1076.53.0108.44.067⨯=⨯⨯⨯='≤. 带电粒子在“宽度一定的无限长磁场区域”中的运动例4、如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=,A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围.解析:如图12所示,沿PQ方向射出的电子最大轨迹半径由r v mBev 2=可得Bemv r m m =,代入数据解得d m r m 21022=⨯=-. 该电子运动轨迹圆心在A板上H处,恰能击中B板M处.随着电子速度的减少,电子轨迹半径也逐渐减小.击中B板的电子与Q点最远处相切于N点,此时电子的轨迹半径为d ,并恰能落在A板上H处.所以电子能击中B板MN区域和A板PH区域.在∆MFH中,有d dd MF HM FH 3)2(2222-=-=,s m d PF QM /1068.2)32(3-⨯=-==, m d QN 2101-⨯==,m d PH 21022-⨯==.电子能击中B板Q点右侧与Q点相距m m 23101~1068.2--⨯⨯的范围.电子能击中A板P点右侧与P点相距m 2102~0-⨯的范围.(2)如图13所示,要使P点发出的电子能击中Q点,则有Be mv r =,2sin dr =θ. 解得6108sin ⨯=θv .图13Pv 取最大速度s m /102.37⨯时,有41s i n =θ,41arcsinmin =θ;v 取最小速度时有2max πθ=,s m v /1086min ⨯=.所以电子速度与θ之间应满足6108sin ⨯=θv ,且]2,41[a r c s in πθ∈,]/102.3,/108[76s m s m v ⨯⨯∈.二、带电粒子在复合场中的运动 带电粒子在电磁复合场中运动例5.如图所示,在x 轴上方有匀强电场,场强为E ;在x 轴下方有匀强磁场,磁感应强度为B ,方向如图,在x 轴上有一点M ,离O 点距离为L .现有一带电量为十q 的粒子,使其从静止开始释放后能经过M 点.如果把此粒子放在y 轴上,其坐标应满足什么关系?(重力忽略不计)解析 由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O 点4R 处飞越x 轴如图所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R 即 R =L /2n ,(n=1、2、3……)…………… ①设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……) 带电粒子在电场和重力复合场中的运动例6.如图所示,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz (x 轴正方向水平向右,y 轴正方向竖直向上).匀强磁场方向与Oxy 平面平行,且与x 轴的夹角为︒45,重力加速度为g . (1)一质量为m 、电荷量为q +的带电质点沿平行于z 轴正方向以速度v 0做匀速直线运动,求满足条件的电场强度的最小值min E 及对应的磁感应强度B ;(2)在满足(1)的条件下,当带电质点通过y 轴上的点(0,,0)P h 时,撤去匀强磁场,求带电质点落在Oxz 平面内的位置; (3)当带电质点沿平行于z 轴负方向以速度v 0通过y 轴上的点(0,,0)P h 时,改变电场强度大小和方向,同时改变磁感应强度的大小,要使带点质点做匀速圆周运动且能够经过x 轴,问电场强度E 和磁感应强度B 大小满足什么条件? 解析(1)如图所示,带电质点受到重力mg (大小及方向均已知)、洛伦兹力qv 0B (方向已知)、电场图14o cm x /cm y /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯∙zB力qE (大小及方向均未知)的作用做匀速直线运动。
根据力三角形知识分析可知:当电场力方向与磁场方向相同时,场强有最小值min E 。
根据物体的平衡规律有︒=45sin min mg qE ︒=45cos 0mg B qv解得qmgE 22min = 022qv mgB =(2)如图所示,撤去磁场后,带电质点受到重力mg 和电场力qE min 作用,其合力沿PM 方向并与v 0方向垂直,大小等于B 0qv =mg 22,故带电质点在与Oxz 平面成︒45角的平面内作类平抛运动。
由牛顿第二定律 ma B qv =0 解得 g a 22=设经时间t 到达Oxz 平面内的点N (x ,y ,z ),由运动的分解可得沿v 0方向 0z v t =沿PM 方向 212PM at =又 ︒=45sin hPM︒=45an ht x联立解得 h x = ghv z 02=则带电质点落在N (h ,0,ghv 02)点 (或带电质点落在Oxz 平面内,h x =,ghv z 02=的位置)(3)当电场力和重力平衡时,带点质点才能只受洛伦兹力作用做匀速圆周运动 则有:mg Eq = 得:qmgE =要使带点质点经过x 轴,圆周的直径为h 2根据rv m Bqv 200=得qhmv B 02=解决带电粒子在复合场中运动的一般步骤 1看清电场 磁场的方向 粒子的电荷的正负2确定粒子的受几个力方向是什么3确定力的大小4根据牛顿第二定律f=ma 解题运动的问题无非就是弄清初速度大小方向以及加速度的大小和方向。