解析几何基础与练习
- 格式:doc
- 大小:757.50 KB
- 文档页数:17
2.6 直线与圆、圆与圆的位置关系2.6.1 直线与圆的位置关系A级必备知识基础练1.(2022江苏盐城伍佑中学高二月考)点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,|PA|=1,则点P的轨迹方程是()A.(x-1)2+y2=4B.(x-1)2+y2=2C.x2+y2=2xD.x2+y2=-2x2.圆x2+y2=1与直线y=kx-3有公共点的充要条件是()A.k≤-2或k≥2B.k≤-2C.k≥2D.k≤-2或k>23.(2022山东高二学情联考)过点P(1,-2)的直线与圆C:(x+2)2+(y-1)2=5相切,则切线长为()A. B.2C.2D.4.(多选题)(2022重庆育才中学高二月考)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法正确的是()A.圆M的圆心为(4,3)B.圆M的半径为5C.圆M被x轴截得的弦长为6D.圆M被y轴截得的弦长为65.圆x2+y2-2x-8y+13=0截直线ax+y-1=0所得的弦长为2,则a=()A.-B.-C. D.26.已知圆C与直线x-y=0及x-y=4都相切,圆心在直线x+y=0上,则圆C的方程为.7.若点P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为.8.已知圆C:x2+y2-6x-8y+21=0,直线l过点A(1,0).(1)求圆C的圆心坐标及半径;(2)若直线l与圆C相切,求直线l的方程;(3)当直线l的斜率存在且与圆C相切于点B时,求|AB|.B级关键能力提升练9.(2020全国Ⅰ,文6)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.410.已知直线l:x-y+m=0与圆x2+y2=4交于A,B两点,O为坐标原点,且=0,则实数m为()A.2B.2C.±2D.±211.(多选题)(2022云南罗平县高二检测)过点(2,2),斜率为k的直线与圆x2+y2-4x=0的位置关系可能是()A.相离B.相切C.相交但不过圆心D.相交且经过圆心12.(多选题)(2022辽宁葫芦岛协作校高二联考)已知直线l:3x+4y=0,圆C:x2-4x+y2=m-5,则()A.m的取值范围为(0,+∞)B.当直线l与圆C相切时,m=C.当1<m<2时,l与圆C相离D.当直线l与圆C相交时,m的取值范围是13.已知k∈R,若直线l:y=kx+1被圆x2-2x+y2-3=0所截,则截得的弦长最短为,此时直线l的方程为.14.如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A交于M,N两点.(1)求圆A的方程;(2)当|MN|=2时,求直线l的方程.C级学科素养创新练15.(2022黑龙江大庆中学高二月考)若圆x2+y2-2x-6y+1=0上恰有三点到直线y=kx的距离为2,则k的值为()A.2B.1C.D.16.若直线l:y=ax-3与圆C:x2+y2=4相交,求a的取值范围.参考答案2.6直线与圆、圆与圆的位置关系2.6.1直线与圆的位置关系1.B∵PA是圆的切线,|PA|=1且圆的半径为r=1,∴点P到圆心的距离恒为.又圆心(1,0),设P(x,y),由两点间的距离公式得(x-1)2+y2=2,即点P的轨迹方程是(x-1)2+y2=2.故选B.2.A若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=≤1,即≥3,∴k2+1≥9,即k2≥8,解得k≤-2或k≥2.∴圆x2+y2=1与直线y=kx-3有公共点的充要条件是k≤-2或k≥2.故选A.3.D由圆C:(x+2)2+(y-1)2=5,可得圆心C(-2,1),半径r=,过点P(1,-2)的直线与圆C:(x+2)2+(y-1)2=5相切,两条切线长相等,只取其中一条切线,设切点为M,则CM⊥PM,由题得|PC|==3,|CM|=r=,所以切线|PM|=.故选D.4.BD将x2+y2-8x+6y=0化为圆的标准方程是(x-4)2+(y+3)2=25,所以圆M的圆心坐标为(4,-3),半径为5,故A错误,B正确;圆心(4,-3)到x轴的距离为3,所以圆M被x轴截得的弦长为2=8,故C错误;对选项D,圆心(4,-3)到y轴的距离为4,所以圆M被y轴截得的弦长为2=6,故D正确.故选BD.5.A将x2+y2-2x-8y+13=0化为(x-1)2+(y-4)2=4,则该圆圆心为(1,4),半径为2.又弦长为2,则圆心到直线距离为=1.根据点到直线距离公式可知d==1,化简可得(a+3)2=a2+1.解得a=-,故选A.6.(x-1)2+(y+1)2=2设圆心为点C(a,-a),由点到直线的距离公式得,解得a=1,所以圆心为(1,-1),且半径为,故圆的方程为(x-1)2+(y+1)2=2.7.x-y-3=0圆心坐标为点C(1,0),由题可得,k PC==-1.又|CP|⊥|AB|,因此k AB=1.因为直线AB过点P,可知直线AB的方程为y+1=x-2,即x-y-3=0.8.解将圆C的方程化成标准式方程得(x-3)2+(y-4)2=22.(1)圆C的圆心坐标是(3,4),半径为2.(2)当直线l的斜率不存在时,直线l的方程是x=1,满足题意;当直线l的斜率存在时,可设直线l的方程是y=k(x-1),即kx-y-k=0.由圆心(3,4)到直线l的距离等于圆C的半径,可得=2,解得k=,故直线l的方程是3x-4y-3=0.综上所述,直线l的方程是x=1或3x-4y-3=0.(3)由(2)可得直线l的方程是3x-4y-3=0.圆C的圆心是点C(3,4),则|AC|==2,所以|AB|==4.9.B圆的方程可化为(x-3)2+y2=9.因为=2<3,所以点(1,2)在圆内.如图所示,设圆心O1(3,0),A(1,2),当弦BC与O1A垂直时弦最短,因为|O1A|==2,|O1B|=3,所以|AB|==1,所以|BC|=2|AB|=2.10.C由=0可知∠AOB=90°.由于圆半径为r=2,则圆心(0,0)到直线l的距离d=,解得|m|=2,即m=±2,故选C.11.BC由题得,圆的标准方程为(x-2)2+y2=4,则圆心为(2,0),半径为2.设过点(2,2),斜率为k的直线为y=k(x-2)+2,即kx-y-2k+2=0,∴圆心到kx-y-2k+2=0的距离d=≤2,∴当d=2时,直线与圆相切;当d<2时,直线与圆相交但直线不过圆心.故B,C正确,A,D错误.故选BC.12.BC圆C的标准方程为(x-2)2+y2=m-1,则圆C的圆心为C(2,0),半径r=,由r=>0,得m>1,故A错误;因为C(2,0)到直线l的距离为,所以当直线l与圆C相切时,r=,解得m=,故B正确; 当1<m<2时,0<r<1<,所以直线l与圆C相离,故C正确;当直线l与圆C相交时,,解得m>,故D错误.故选BC.13.2y=x+1圆x2-2x+y2-3=0的标准方程为(x-1)2+y2=22,所以圆心为O(1,0),半径为r=2.直线l:y=kx+1过定点P(0,1).故|OP|=.当l⊥OP时,截得的弦长最短,则最短弦长为2=2.由题得,k OP=-1,所以k l=1,故直线l的方程为y=x+1.14.解(1)设圆A的半径为r.∵圆A与直线l1:x+2y+7=0相切,∴r==2.故圆A的方程为(x+1)2+(y-2)2=20.(2)①当直线l的斜率不存在时,可得直线l的方程为x=-2,易得|MN|=2,符合题意;②当直线l的斜率存在时,设直线l的方程为y=k(x+2),即kx-y+2k=0.取MN的中点Q,连接AQ,则AQ⊥MN.∵|MN|=2,∴|AQ|==1.∴=1,解得k=.∴直线l的方程为3x-4y+6=0.综上,直线l的方程为x=-2或3x-4y+6=0.15.C将方程x2+y2-2x-6y+1=0化为(x-1)2+(y-3)2=9,则圆心(1,3),半径为3.∵圆上恰有三点到直线y=kx的距离为2,∴圆心(1,3)到直线y=kx的距离为1,即=1,解得k=.故选C.16.解(方法1)圆C:x2+y2=4的圆心C(0,0),r2=4.直线l:y=ax-3可化为ax-y-3=0.圆心C(0,0)到直线l:ax-y-3=0的距离d=.由直线l与圆C相交可得r>d,则r2>d2,即4>,解得a>或a<-.因此a 的取值范围是-∞,-∪,+∞.(方法2)将y=ax-3代入x2+y2=4得到x2+(ax-3)2=4,整理可得(1+a2)x2-6ax+5=0.因为直线与圆相交,则Δ=(-6a)2-4×(1+a2)×5=36a2-20-20a2=16a2-20>0,即a2>,解得a>或a<-,故a 的取值范围是-∞,-∪,+∞.11。
【巩固练习】1.经过点P(2,-1),且在y 轴上的截距等于它在x 轴上的截距的2倍的直线l 的方程是()A.2x+y=2B.2x+y=4C.2x+y=3D.2x+y=3或x+2y=02.已知A(3,2)和B(-1,4)两点到直线mx+y+3=0的距离相等,则m 的值为()A.0或12-B.12或-6C.12-或12D.0或123.直线l 的方程为Ax+By+C=0,若l 过原点和第二、四象限,则有()A.C=0且B>0B.C=0且B>0,A>0C.C=0且A·B<0D.C=0且A·B>04.经过圆2220x x y ++=的圆心C,且与直线x+y=0垂直的直线方程是()A.10x y -+=B.10x y --=C.10x y +-=D.10x y ++=5.若圆心在x C 位于y 轴左侧,且与直线x+2y=0相切,则圆C 的方程是()A.22(5x y +=B.22(5x y +=C.22(5)5x y -+=D.22(5)5x y ++=6.直线x+y=1与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是()1)1-,在1+)C.(11-)1+)7.圆22460x y x y +-+=和圆2260x y x +-=交于A,B 两点,则线段AB 的垂直平分线的方程是()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.x-3y+7=08.由直线y=x+1上的一点向圆(x-3)2+y 2=1引切线,则切线长的最小值为()A.1B.D.39.如果圆(x -a )2+(y -a )2=4上总存在两个点到原点的距离为1,那么实数a 的取值范围是_____.10.过点P (2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为_________.11.若直线x =1与直线2103a x y ⎛⎫-++= ⎪⎝⎭垂直,则a =_________.12.若圆x 2+y 2=4与圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程是__________.13.过点M (0,1)作直线,使它被直线l 1:x -3y +10=0和l 2:2x +y -8=0所截得的线段恰好被M 平分,求此直线方程.14.已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为;③圆心在直线x -3y =0上,求圆C 的方程.15.已知方程x 2+y 2-2x -4y +m =0.(1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M 、N 两点,且OM ⊥O N(O 为坐标原点),求m ;(3)在(2)的条件下,求以M N 为直径的圆的方程.16.已知圆C :x 2+y 2-2x +4y -4=0.是否存在斜率是1的直线l ,使l 被圆C 截得的弦AB ,且以AB 为直径的圆经过原点?若存在,写出直线l 的方程;若不存在,请说明理由.【答案与解析】1.【答案】D 【解析】当直线不过原点时,设直线方程为12x y a a +=,将P 点代入可得32a =,即直线方程为2x+y=3;当直线过原点时直线方程为x+2y=0.2.【答案】B 【解析】若A、B 在直线同侧,则有4213m --=--,解得12m =;若A、B 在直线异侧,可求得其中点(1,3),代入直线方程得m+3+3=0,得m=-6.3.【答案】D【解析】由直线过原点,知C=0,过第二、四象限知0AB-<,即A·B>0.4.【答案】A【解析】设所求直线方程为x-y+m=0,又过(-1,0)点,代入得m=l,故直线方程为10x y -+=.5.【答案】D【解析】设圆心为(a,0)(a<0).因为直线x+2y=0==,解得5a =-.所以圆C 的方程为22(5)5x y ++=.6.【答案】A【解析】由题意知,直线与圆相离,圆心(0,a)到1x y +=的距离a >,解得11a -<<.又0a >,故选A.7.【答案】C【解析】公共弦的垂直平分线为两圆的连心线,两圆心分别为(2,-3),(3,0),可得直线方程为3x-y-9=0.8.【答案】C【解析】设满足条件的点为(a ,a+1),则切线长l ==a=1时,min l =.9.【答案】2222⎛⎫⎫ ⎪⎪⎪⎪⎝⎭⎝⎭10.【答案】=2或3-4-2=0【解析】圆的标准方程为(x -1)2+(y +1)2=1,当切线斜率不存在时,x =2满足条件;当切线斜率存在时,可设直线方程为y -1=k (x -2),利用圆心到直线的距离等于半径,即=1,得k =34,∴切线方程为3x -4y -2=0.11.【答案】23【解析】x =1斜率不存在,若要垂直,则23a x ⎛⎫-⎪⎝⎭+y +1=0的斜率为0.12.【答案】x -y +2=0【解析】由已知得两圆的圆心坐标分别为(0,0)和(-2,2).所以直线l 的斜率为1,并过点(-1,1).所以直线l 的方程是y -1=x +1,即x -y +2=0.13.【解析】解法一:直线斜率不存在时,即过点M 且与x 轴垂直的直线是y 轴,它和两已知直线的交点分别是100,3⎛⎫⎪⎝⎭和(0,8),显然不满足中点是点M (0,1)的条件.故可设所求直线方程为y =kx +1,与已知两直线l 1,l 2分别交于A ,B 两点,联立方程组1,3100,y kx x y =+⎧⎨-+=⎩①1,280,y kx x y =+⎧⎨+-=⎩②由①解得x A =731k -,由②解得x B =72k +.∵点M 平分线段AB ,∴x A +x B =2x M ,即731k -+72k +=0.解得k =-14.故所求直线方程为x +4y -4=0.解法二:设所求直线与已知直线l 1,l 2分别交于A ,B 两点.∵点B 在直线l 2:2x +y -8=0上,故可设B(t ,8-2t ),M (0,1)是AB 的中点.由中点坐标公式,得A (-t ,2t -6).又∵点A 在直线l 1:x -3y +10=0上,∴(-t )-3(2t -6)+10=0,解得t =4.∴B (4,0),A (-4,2).故所求直线方程为x +4y -4=0.14.【解析】设所求圆的方程:222()()x a y b r -+-=,∵所求圆与y 轴相切,∴||a r =①.又圆心在30x y -=上,∴a =3b ,圆心到直线x -y =0的距离||3d a ==②,|3a ==,∴|a |=3,∴a =±3,b =±1,即圆心坐标为(3,1)或(-3,-1),半径r =3,所求圆的方程为22(3)(1)9x y -+-=或22(3)(1)9x y +++=.15.【解析】(1)(x -1)2+(y -2)2=5-m ,∴m <5.(2)设M (x 1,y 1),N (x 2,y 2),则x 1=4-2y 1,x 2=4-2y 2,∴x 1x 2=16-8(y 1+y 2)+4y 1y 2.∵OM ⊥ON ,∴x 1x 2+y 1y 2=0,∴16-8(y 1+y 2)+5y 1y 2=0.①由2242,240x y x y x y m =-⎧⎨+--+=⎩得5y 2-16y +m +8=0,∴y 1+y 2=165,y 1y 2=85m +,代入①得,m =85.(3)以MN 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0,即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.∴所求圆的方程为x 2+y 2-85x -165y =0.16.【解析】假设存在直线l 满足题设条件,且设l 的方程为y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则AB 中点N 是两直线x -y +m =0与y +2=-(x -1)的交点,即N 11,22m m +-⎛⎫-⎪⎝⎭.∵以AB 为直径的圆经过原点,∴|AN |=|O N |.又CN ⊥AB ,|CN∴|AN .又|O N |=由|AN |=|O N |,解得m =-4或m =1.∴存在直线l ,其方程为y =x -4或y =x +1.。
高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
初中数学平面解析几何的点和直线关系练习题解析几何是数学中的一个分支,它主要研究几何图形的性质和变换与代数的关系。
平面解析几何是解析几何的基础,其中点和直线是最基本的要素。
在学习平面解析几何的过程中,我们需掌握点和直线之间的各种关系。
本文将为大家提供一些针对初中数学平面解析几何的点和直线关系的练习题,以帮助大家加深对相关概念的理解。
练习题一:已知直线l的表示方程为2x + 3y - 4 = 0,点A(1, -2)在直线l上,请问点A是否满足直线l的方程。
解答:我们将点A的坐标代入直线l的方程:2(1) + 3(-2) - 4 = 0,化简得2 - 6 - 4 = -8,通过计算我们可以得出结论:点A不满足直线l的方程。
练习题二:已知点A(6, -1)和点B(-2, 5),求点A和点B之间的距离。
解答:根据两点间距离公式,我们可以计算点A和点B之间的距离。
距离公式为√[(x2 - x1)² + (y2 - y1)²],代入点A和点B的坐标可得√[(6 - (-2))²+ ((-1) - 5)²],化简得√[(6 + 2)² + (-6)²],继续计算得√[64 + 36],化简得√100,计算得10。
因此,点A和点B之间的距离为10。
练习题三:已知直线l的斜率为2,且经过点A(3, -4),求直线l的方程。
解答:直线的一般方程为y = kx + b,其中k为斜率,b为截距。
已知斜率为2,点A在该直线上,可代入点A的坐标得到方程-4 = 2(3) + b,化简得-4 = 6 + b,移项得b = -10。
因此,直线l的方程为y = 2x - 10。
练习题四:已知直线l1过点A(2, -3)和点B(4, 5),直线l2过点C(-1, 3)和点D(7, -1),求直线l1和直线l2的交点。
解答:首先,我们需要求得直线l1和直线l2的斜率。
直线的斜率公式为k = (y2 - y1)/(x2 - x1)。
第二章平面解析几何初步测试十平面直角坐标系中的基本公式Ⅰ学习目标理解和掌握数轴上的基本公式,平面上两点间的距离公式,中点坐标公式.Ⅱ基础训练题一、选择题1.点A(-1,2)关于y轴的对称点坐标为( )(A)(-1,-2) (B)(1,2) (C)(1,-2) (D)(2,-1)2.点A(-1,2)关于原点的对称点坐标为( )(A)(-1,-2) (B)(1,2) (C)(1,-2) (D)(2,-1)3.已知数轴上A,B两点的坐标分别是x1,x2,且x1=1,d(A,B)=2,则x2等于( )(A)-1或3 (B)-3或3 (C)-1 (D)34.已知点M(-1,4),N(7,0),x轴上一点P满足|PM|=|PN|,那么P点的坐标为( )(A)(-2,0) (B)(-2,1) (C)(2,0) (D)(2,1)5.已知点P(x,5)关于点Q(1,y)的对称点是M(-1,-2),则x+y等于( )9(A)6 (B)12 (C)-6 (D)2二、填空题6.点A(-1,5),B(3,-3)的中点坐标为______.7.已知A(a,3),B(3,a),|AB|=2,则a=______.8.已知M(-1,-3),N(1,1),P(3,x)三点共线,则x=______.9.设点A(0,1),B(3,5),C(4,y),O为坐标原点.若OC∥AB,则y=______;若OC⊥AB,则y=______.10.设点P,Q分别是x轴和y轴上的点,且中点M(1,-2),则|PQ|等于______.三、解答题11.已知△ABC的顶点坐标为A(1,-1),B(-1,3),C(3,0).(1)求证:△ABC是直角三角形;(2)求AB边上的中线CM的长.12.已知矩形ABCD相邻两个顶点A(-1,3),B(-2,4),若矩形对角线交点在x轴上,求另两个顶点C和D的坐标.13.已知AD是△ABC底边的中线,用解析法证明:|AB|2+|AC|2=2(|AD|2+|DC|2).Ⅲ拓展训练题14.利用两点间距离公式求出满足下列条件的实数x的集合:(1)|x-1|+|x-2|=3;(2)|x-1|+|x-2|>3;(3)|x-1|+|x-2|≤3.测试十一 直线的方程Ⅰ 学习目标1.理解直线斜率和倾斜角的概念,掌握两点连线的斜率公式.2.掌握直线方程的点斜式、斜截式及一般式.Ⅱ 基础训练题一、选择题1.已知直线AB 的斜率为21,若点A (m ,-2),B (3,0),则m 的值为( ) (A )1 (B )-1 (C )-7(D )7 2.如图所示,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )(A )k 1<k 2<k 3(B )k 3<k 1<k 2 (C )k 3<k 2<k 1 (D )k 1<k 3<k 23.直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )(A )k sin α>0 (B )k cos α>0 (C )k sin α=0 (D )k cos α符号不定4.一条光线从点M (5,3)射出,遇x 轴后反射,反射光线过点N (2,6),则反射光线所在直线方程是( )(A )3x -y -12=0 (B )3x +y +12=0(C )3x -y +12=0 (D )3x +y -12=05.直线x -2y +2k =0与两坐标轴围成的三角形面积不小于1,那么k 的取值范围是( )(A )k ≥-1 (B )k ≤1 (C )|k |≤1 (D )|k |≥1二、填空题6.斜率为-2且在x 轴上截距为-1的直线方程是______.7.y 轴上一点M 与点N (-3,1)所在直线的倾斜角为120°,则M 点坐标为______.8.已知直线3a x -2y -4a =0(a ≠0)在x 轴上的截距是它在y 轴上的截距的3倍,则a =______.9.已知直线l 过点A (-2,1)且与线段BC 相交,设B (-1,0),C (1,0),则直线l 的斜率k 的取值范围是______.10.如果直线l 沿x 轴负方向平移3个单位,接着再沿y 轴正方向平移1个单位后又回到原来的位置,则直线l 的斜率为______.三、解答题11.直线l 过原点且平分平行四边形ABCD 的面积.若平行四边形两个相对顶点为B (1,4),D (5,0),求直线l 的方程.12.直线l与直线y=1,x-y-7=0分别交于P、Q两点,线段PQ的中点为(1,-1).求直线l的方程.Ⅲ拓展训练题13.设A(0,3),B(3,3),C(2,0),直线x=a将△ABC分割成面积相等的两部分,求a 的值.14.一条直线l过点P(2,3),并且分别满足下列条件,求直线l的方程.(1)倾斜角是直线x-4y+3=0的倾斜角的两倍;(2)与x轴、y轴的正半轴交于A、B两点,且△AOB的面积最小;(3)|P A|²|PB|为最小(A、B分别为直线与x轴、y轴的正半轴的交点).测试十二 两条直线的位置关系(一)Ⅰ 学习目标掌握两条直线平行、垂直的条件,会利用两条直线平行、垂直的条件解决相关的问题.Ⅱ 基础训练题一、选择题1.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么a 等于( )(A )-3 (B )-6 (C )-23 (D )32 2.如果直线ax +2y +2=0与直线3x -y -2=0垂直,那么a 等于( ) (A )-3 (B )-6 (C )-23 (D )32 3.若两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直,则( )(A )A 1A 2+B 1B 2=0 (B )A 1A 2-B 1B 2=0(C )2121B B A A =-1 (D )2121A A B B =1 4.设A ,B 是x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程为( )(A )x +y -5=0 (B )2x -y -1=0(C )2y -x -4=0 (D )x +y -7=05.已知直线y =kx +2k +1与y =-21x +2的交点在第一象限,则k 的取值范围是( ). (A )-6<k <2(B )-21<k <21 (C )-61<k <21 (D )k <21 二、填空题6.以A (1,3)、B (-1,1)为端点的线段的垂直平分线方程是______.7.若三条直线l 1:2x -y =0,l 2:x +y -3=0,l 3:mx +ny +5=0交于一点,则实数m ,n 满足的关系式是______.8.直线y =2x +3关于点(2,3)对称的直线方程为______.9.直线2x -y +1=0绕着它与y 轴的交点逆时针旋转45°角,此时直线的方程为______.10.若三条直线x +y =2,x -y =0,x +ay =3构成三角形,则a 的取值范围是______.三、解答题11.求经过两条直线l 1:2x +3y +1=0和l 2:x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程.12.平行四边形ABCD 的两边AB ,AD 所在的直线方程分别为x +y -1=0,3x -y +4=0,其对角线的交点坐标为(3,3),求另两边BC ,CD 所在的直线方程.13.已知三角形三条边AB,BC,AC中点分别为D(2,1)、E(5,3)、F(3,-4).求各边所在直线的方程.14.已知两条直线l1:mx+8y+n=0和l2:2x+my-1=0,试确定m,n的值,使l1,l2分别满足下列条件:(1)l1,l2相交于点P(m,-1);(2)l1∥l2;(3)l1与l2重合.测试十三 两条直线的位置关系(二)Ⅰ 学习目标会应用点到直线的距离公式解决相关的问题.Ⅱ 基础训练题一、选择题1.点P (0,2)到直线y =3x 的距离是( )(A )1 (B )510 (C )2 (D )55 2.平行线3x +4y +2=0与3x +4y -12=0之间的距离为( ) (A )2 (B )310 (C )514 (D )33.若直线(2+m )x -y +5-n =0与x 轴平行且与x 轴相距5时,则m +n 等于( )(A )-2或8 (B )-2 (C )8 (D )04.直线l 1:ax -y +b =0与l 2:bx -y +a =0(ab ≠0,a ≠b )在坐标系中的位置可能是( )5.A 、B 、C 为△ABC 的三个内角, 它们的对边分别为a 、b 、c .已知原点到直线x sin A +y sin B +sin C =0的距离大于1,则此三角形形状为( )(A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )不能确定二、填空题6.若直线ax +4y -2=0与直线2x -5y +c =0垂直相交于点(1,m ),则a =____,c =_____,m =______.7.已知定点A (0,1).点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是____.8.两平行直线分别过点(1,0)与(0,5),且距离为5,它们的方程为______.9.若点A (1,1)到直线l :x cos θ+y sin θ=2(θ为实数)的距离为f (θ),则f (θ)的最大值是___.10.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 中点M 到原点距离的最小值是______.三、解答题11.过点P (1,2)的直线l 与两点A (2,3),B (4,-5)的距离相等,求直线l 的方程.12.已知直线l :x +2y -2=0,试求:(1)与直线l 的距离为5的直线的方程;(2)点P (-2,-1)关于直线l 的对称点的坐标.13.已知△ABC的垂心H(5,2),且A(-10,2)、B(6,4),求点C的坐标.Ⅲ拓展训练题14.在△ABC中,点B(1,2),BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,求|BC|.测试十四 圆的方程Ⅰ 学习目标掌握圆的标准方程及一般方程,能根据已知条件求圆的方程.Ⅱ 基础训练题一、选择题1.圆x 2+y 2+ax =0的圆心的横坐标为1,则a 等于( )(A )1 (B )2 (C )-1 (D )-22.与圆C :x 2+y 2-2x -35=0的圆心相同,且面积为圆C 的一半的圆的方程是( )(A )(x -1)2+y 2=3 (B )(x -1)2+y 2=6(C )(x -1)2+y 2=9 (D )(x -1)2+y 2=183.曲线x 2+y 2+22x -22=0关于( )(A )直线x =2轴对称(B )直线y =-x 轴对称 (C )点(-2,2)中心对称 (D )点(-2,0)中心对称4.如果圆x 2+y 2+Dx +Ey +F =0与y 轴相交,且两个交点分别在原点两侧,那么( )(A )D ≠0,F >0 (B )E =0,F >0(C )F <0 (D )D =0,E ≠05.方程x -1=()211--y 所表示的曲线是( ) (A )一个圆 (B )两个圆(C )半个圆 (D )四分之一个圆二、填空题6.过原点的直线将圆x 2+y 2-2x +4y =0的面积平分,则此直线的方程为______.7.已知圆的方程(x -a )2+(y -b )2=r 2(r >0),试根据下列条件,分别写出a ,b ,r 应满足的条件.(1)圆过原点且与y 轴相切:______;(2)原点在圆内:______;(3)圆与x 轴相交:______.8.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是______. 9.P (x ,y )是圆x 2+y 2-2x +4y +1=0上任意一点,则x 2+y 2的最大值是______;点P 到直线3x +4y -15=0的最大距离是______.10.设P (x ,y )是圆(x -3)2+y 2=4上的点,则xy 的最小值是______. 三、解答题11.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,求a 的取值范围.12.求过三个点A (0,0),B (4,0),C (2,2)的圆的方程.13.已知圆C的圆心在直线x+y-1=0上,且A(-1,4)、B(1,2)是圆C上的两点,求圆C的方程.Ⅲ拓展训练题14.已知曲线C:x2+y2-4ax+2ay+20a-20=0.(1)证明:不论a取何实数,曲线C必过定点;(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上.测试十五 直线与圆的位置关系Ⅰ 学习目标1.会用解析法及几何的方法判定直线与圆的位置关系,并会求弦长和切线方程; 2.会用几何的方法判定圆和圆的位置关系.Ⅱ 基础训练题一、选择题1.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) (A )相离 (B )外切 (C )相交 (D )内切2.直线3x +4y +2=0与圆x 2+y 2+4y =0交于A 、B 两点,则线段AB 的垂直平分线的方程是( )(A )4x -3y -2=0 (B )4x -3y -6=0 (C )3x +4y +8=0 (D )3x -4y -8=0 3.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( ) (A )6π(B )4π (C )3π (D )2π 4.若圆x 2+y 2=r 2(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) (A )[4,6] (B )(4,6] (C )(4,6) (D )[4,6) 5.从直线y =3上的点向圆x 2+y 2=1作切线,则切线长的最小值是( ) (A )22(B )7(C )3(D )10二、填空题6.以点(-2,3)为圆心且与y 轴相切的圆的方程是______.7.已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是______.8.设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是______.9.过定点(1,2)可作两直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则k 的取值范围是____. 10.直线x +3y -m =0与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是______. 三、解答题11.圆x 2+y 2=8内有一点P (-1,2),AB 为过点P 且倾斜角为α的弦. (1)当α=4π3时,求AB 的长; (2)当弦AB 被点P 平分时,求直线AB 的方程.12.求经过点P (6,-4)且被圆x 2+y 2=20截得的弦长为62的直线的方程.13.求过点P (4,-1)且与圆x 2+y 2+2x -6y +5=0外切于点M (1,2)的圆的方程.Ⅱ 拓展训练题14.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55. 求该圆的方程.测试十六空间直角坐标系Ⅰ学习目标1.理解空间直角坐标系的概念,能写出满足某些条件的点的坐标.2.会用空间两点间距离公式进行相关的计算.Ⅱ基础训练题一、选择题1.点A(2,0,3)在空间直角坐标系的位置是( )(A)y轴上(B)xOy平面上(C)xOz平面上(D)yOz平面上2.在空间直角坐标系中,点P(-2,-1,3)到原点的距离为( )(A)14(B)5(C)14 (D)53.点A(-1,2,1)在xOy平面上的射影点的坐标是( )(A)(-1,2,0) (B)(-1,-2,0)(C)(-1,0,0) (D)(1,-2,0)4.在空间直角坐标系中,两个点A(2,3,1)、A′(2,-3,1)关于( )对称(A)平面xOy (B)平面yOz(C)平面xOz(D)y轴5.设a是任意实数,则点P(a,1,2)的集合在空间直角坐标系中所表示的图形是( )(A)垂直于平面xOy的一条直线(B)垂直于平面yOz的一条直线(C)垂直于平面xOz的一条直线(D)以上均不正确二、填空题6.点M(4,-3,5)到x轴的距离为______.7.若点P(x,2,1)与Q(1,1,2)、R(2,1,1)的距离相等,则x的值为______.8.已知点A(-2,3,4),在y轴上求一点B,使|AB|=6,则点B的坐标为______.9.已知两点A(2,0,0),B(0,3,0),那么线段AB的中点的坐标是______.10.在空间直角坐标系中,点A(1,2,a)到点B(0,a,1)的距离的最小值为______.三、解答题11.在空间直角坐标系中,设点M的坐标为(1,-2,3),写出点M关于各坐标面对称的点、关于各坐标轴对称的点的坐标.12.在空间直角坐标系中,设点M的坐标为(1,-2,3),写出点M到原点、各坐标轴及各坐标面的距离.13.如图,正方体OABC-A1B1C1D1的棱长为a,|AM|=2|MB|,|B1N|=|NC1|,分别写出点M与点N的坐标.-1)的距离的两倍,求点P的坐标.测试十七 平面解析几何初步全章综合练习Ⅰ 基础训练题一、选择题1.方程y =k (x -2)表示( ) (A )经过点(-2,0)的所有直线 (B )经过点(2,0)的所有直线(C )经过点(2,0)且不垂直于x 轴的所有直线 (D )经过点(2,0)且去掉x 轴的所有直线2.点P (x ,y )在直线x +y -4=0上,O 为坐标原点,则|OP |的最小值为( ) (A )10(B )22(C )6(D )23.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) (A ))3π,6π[(B ))2π,6π((C ))2π,3π((D )]2π,6π[4.若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( ) (A )1或-1 (B )2或-2 (C )1 (D )-15.如果直线l 将圆:x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( ) (A )[0,2](B )[0,1](C )]21,0[(D ))21,0[二、填空题6.经过点P (-2,3)且在x 轴、y 轴上截距相等的直线方程为______.7.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为______. 8.已知圆x 2+(y -1)2=1及圆外一点P (-2,0),过点P 作圆的切线,则两条切线夹角的正切值是______. 9.已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线.A 、B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为______.10.已知两个圆x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为______. 三、解答题11.已知直线l 1:2x -y +3=0与直线l 2关于直线y =-x 对称,求直线l 2的方程.12.圆心在直线x -2y -3=0上,且圆与两坐标轴都相切,求此圆的方程.13.求通过直线2x +y -4=0及圆x 2+y 2+2x -4y +1=0的交点,并且有最小面积的圆的方程.14.在△ABC中,顶点A(2,4)、B(-4,2),一条内角平分线所在直线方程为2x-y=0,求AC边所在的直线方程.Ⅱ拓展训练题15.已知过原点O的一条直线与函数y=log8x的图象交于A、B两点(A在B的右侧),分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.(1)证明:点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.16*.已知圆C:(x-1)2+(y-2)2=25,及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长最短长度及此时的直线方程.参考答案第二章 平面解析几何初步 测试十 平面直角坐标系中的基本公式一、选择题1.B 2.C 3.A 4.C 5.D 提示:1.点(a ,b )关于x 轴、y 轴、坐标原点O 、直线y =x 的对称点坐标为(a ,-b ),(-a ,b ),(-a ,-b ),(b ,a ). 二、填空题6.(1,1); 7.2或4; 8.5; 9.3,316-; 10.52. 提示:9.若AB =(x 1,y 1),CD =(x 2,y 2),则∥⇔x 1y 2-x 2y 1=0(应注意向量平行与直线平行的关系); 则⊥⇔x 1x 2+y 1y 2=0(即⋅=0); 三、解答题11.(1)证明:由已知计算得5||,52)31()11(||22==--++=BC AB5||=AC ,所以,|AB |2+|AC |2=|BC |2,所以△ABC 是直角三角形.另解:由已知=(-2,4),=(2,1), 所以,AB ²AC =-2³2+4³1=0, 所以,AB ⊥AC ,△ABC 是直角三角形. (2)解:由已知,AB 的中点M 的坐标为)231,211(+--,即M (0,1), 所以,.1013||22=+=CM12.设矩形对角线交点为M (x ,0),因为|MA |=|MB |,则22224)2(3)1(++=++x x ,解得x =-5,所以M (-5,0).设C (x 1,y 1),因为M 为AC 中点,所以023,52111=+-=-y x , 解得x 1=-9,y 1=-3,所以,C (-9,-3),同理,D (-8,-4).注:本题也可以利用向量平行、垂直的有关知识来解. 13.提示:通过建立适当的坐标系,利用坐标法来证明.14.(1){x |x =0,x =3};(2){x |x <0或x >3};(3){x |0≤x ≤3}.测试十一 直线的方程一、选择题1 B2 B3 B4 D5 D 提示:3.由题意知,l 的倾斜角α为钝角,cos α<0,k <0,故k cos α>0.4.反射光线过点N (2,6),同时,还经过点M (5,3)关于x 轴的对称点M ′(5,-3),所以,反射光线的斜率为352)3(6-=---,直线方程为3x +y -12=0.要注意,“光线”问题常用对称点的思路去思考问题.5.直线x -2y +2k =0与两坐标轴交点为A (-2k ,0).B (0,k ), 所以,2|||2|21||||21k k k OB OA S AOB =⋅-=⋅=∆,由题意k 2≥1, 得|k |≥1为所求.二、填空题6.2x +y +2=0; 7.(0,-2); 8.a =-2; 9.311-≤≤-k ; 10.⋅-31提示:10.提示:设A (x 0,y 0)为直线l 上一点,根据题意,A 点沿x 轴负方向平移3个单位,接着再沿y 轴正方向平移1个单位后仍应在直线l 上,即点(x 0-3,y 0+1)在直线l 上.所以直线l 的斜率为⋅-=---+31310000x x y y三、解答题11.提示:平分平行四边形面积的直线必过平行四边形的对角线交点,即过BD 的中点(3,2).所以,所求直线方程为2x -3y =0.12.略解:设P (x 1,1),因为PQ 的中点为(1,-1),根据中点坐标公式,可得Q (2-x 1,-3),因为点Q 在直线x -y -7=0上, 所以,(2-x 1)-(-3)-7=0,解得x 1=-2,所以,P (-2,1),Q (4,-3),⋅-=----=3242)3(1/k所以,l :2x +3y +1=0.13.略解:由已知得AB ∥x 轴,作CD ⊥AB 于D ,∵C (2,0),A (0,3),B (3,3).∴S △ADC >S △BDC . ∵x =a 将△ABC 面积平分,∴x =a 在直线CD 左侧,即0<a <2.由题意得)3(2123321p ABC y a S -⋅=⋅⋅=∆,其中y p 表示AC 与x =a 的交点的纵坐标. ∵直线AC 的方程为132=+yx .即3x +2y -6=0.当x =a 时,236,236ay a y p -=∴-=,代入上式,得.3±=a∵a ∈(0,2).3=∴a 为所求.14.(1)设直线l 的倾斜角为α,则所求直线倾斜角为2α,由已知,41tan =α,所以,tan2α=158tan 1tan 22=-αα,所以,所求直线l 方程为)2(1583-=-x y ,即8x -15y +29=0.(2)依题意,设直线l 方程为y -3=k (x -2),k <0,则)0,32(kA -,B (0,3-2k ),S △AOB 1266)292(621=+≥-+-+==kk y x B A ,此时,kk 292-=-,即.23±=k ,因为k <0,所以23-=k ,所求直线l 方程为)2(233--=-x y ,即3x +2y -12=0. (3)依题意,设直线l 方程为y -3=k (x -2),k <0,则)23,0(),0,32(k B kA --,12)1(6||164499||||222≥-+-⨯=+⨯=+⨯+=⋅kk k k k k PB PA , 此时,kk -=-1,即k =±1,因为k <0,所以k =-1, 所求直线l 方程为y -3=-(x -2),即x +y -5=0.测试十二 两条直线的位置关系(一)一、选择题1.B 2.D 3.A 4.A 5.C 提示:5.提示:可以求出两条直线的交点坐标)1216,1242(+++-k k k k ,解不等式组⎪⎪⎩⎪⎪⎨⎧>++>+-0121601242k k k k,可得⋅<<-2161k 另外,注意到直线y =kx +2k +1可变形为y -1=k (x +2),即此直线过定点(-2,1),又,直线221+-=x y 与x 轴、y 轴的交点坐标为(4,0),(0,2).利用数形结合的思路可得结论. 二、填空题6.x +y -2=0; 7.m +2n +5=0; 8.2x -y -5=0; 9.3x +y -1=0; 10.a ∈R ,a ≠±1且a ≠2. 提示:9.设直线2x -y +1=0的倾斜角为α,由已知,所求直线的倾斜角为α+45°,因为tan α=2,所以,345tan tan 145tan tan )45tan(-=-+=+ααα,又直线2x -y +1=0与y 轴的交点为(0,1),所以,所求直线方程为3x +y -1=0.10.直线x +ay =3与另两条直线不平行也不重合,并且三条直线不过同一点. 三、解答题11.4x -3y +9=0.12.CD :x +y -11=0,BC :3x -y -16=0. 13.方法一:用中点.DE 中点)2,27(G ,又G 为BF 的中点,∴B (4,8). 同理,EF 中点).2,6(),21,4(-∴-C HDF 中点).6,0(),23,25(-∴-A M.01227,627:=---=∴y x x y AB BC :y +2=-5(x -6),5x +y -28=0..01832,632:=---=y x x y AC 方法二:用斜率. EF 斜率为)2(271:27-=-∴⋅x y AB ,得7x -2y -12=0. FD 斜率为-5.∴BC :y -3=-5(x -5),得5x +y -28=0. DE 斜率为)3(324:32-=+∴⋅x y AC ,得2x -3y -18=0, 14.解:(1)由⎩⎨⎧=--=+-,012,082m m n m 解得m =1,n =7.(2)易知m ≠0,所以,当182-=/=n m m 时, 即m =4,n ≠-2,或m =-4,n ≠2时l 1∥l 2.(3)结合(2)的结果,当m =4,n =-2,或m =-4,n =2时,l 1与l 2重合.测试十三 两条直线的位置关系(二)一、选择题1.B 2.C 3.A 4.D 5.C 提示: 5.由已知,1sin sin |sin |22>+BA C ,所以,sin 2C >sin 2A +sin 2B .又R CcB b A a 2sin sin sin ===,所以,c 2>a 2+b 2, 由余弦定理,得02cos 222<-+=abc b a C ,所以,C 为钝角,三角形为钝角三角形. 二、填空题6.10,-12,-2; 7.)21,21(-; 8.y =0,y =5或5x -12y -5=0,5x -12y +60=0; 9.22+; 10..23提示:7.当AB 与已知直线垂直时,线段AB 最短. 9.|2)cos 22sin 22(2||2cos sin |cos sin |2cos sin |)(22-+=-+=+-+=θθθθθθθθθf)4πsin(22|2)4πsin(2|+-=-+=θθ,所以,f (θ)的最大值为.22+10.由已知,点M 到两直线l 1,l 2的距离相等.即点M 在直线x +y -6=0上,于是,问题变成“点M 在直线x +y -6=0上运动,求原点到点M 的最小距离”,可利用第7题的思路加以解决. 三、解答题11.提示:满足题目条件的直线l 或者与直线AB 平行,或者经过线段AB 的中点.当直线l 与直线AB 平行时,l :4x +y -6=0;当直线l 经过线段AB 的中点时,l :3x +2y -7=0. 12.解:(1)设所求直线方程为x +2y +c =0,根据题意55|2|=+c ,解得c =3或c =-7, 所以,所求直线方程为x +2y +3=0或x +2y -7=0. (2)设P (-2,-1)关于直线l 的对称点为P ′(x 0,y 0). 则k pp 'k l =-1,且PP ′的中点在直线l 上,即点)21,22(00--y x 在直线l 上. 所以,⎪⎪⎩⎪⎪⎨⎧-=-⋅++=--⨯+-1)21(2102212220000x y y x ,即⎩⎨⎧=+-=-+0320820000y x y x ,解得⋅==519,5200y x 即)519,52('P .13.解:AB 斜率为81,设C 坐标(x 0,y 0). 所以,85200-=--x y ……………………①因为AH 斜率为0,∴BC 斜率不存在,即BC 直线方程为x =6, 所以,x 0=6.…………………………②②代入①,得y 0=-6.∴C 点坐标(6,-6). 14.略解:解⎩⎨⎧==+-,0,012y y x 得A (-1,0),所以AB :x -y +1=0.设C (x 0,y 0),因为BC 与BC 边上的高线垂直,并且C 关于直线y =0(∠A 的平分线)的对称点C ′在直线AB 上.所以,k BC =-2,C ′(x 0,-y 0)在直线AB 上.所以,⎪⎩⎪⎨⎧=++-=--012120000y x x y 解得x 0=5,y 0=-6,即C (5,-6),故|BC |=54.测试十四 圆的方程一、选择题1.D 2.D 3.D 4.C 5.C 提示:4.只需坐标原点在圆内,即原点与圆心的距离小于半径,已知圆圆心为)2,2(ED --,半径为)04(242222>-+-+F E D F E D ,结合44)02()02(2222FE D E D -+<-+-及D 2+E 2-4F >0,可得F <0.5.方程2)1(11--=-y x 可以等价变形为(x -1)2+(y -1)2=1,且x -1≥0,1-(y -1)2≥0.即(x -1)2+(y -1)2=1,且x ≥1,0≤y ≤2.所以,方程2)1(11--=-y x 所表示的曲线是半个圆.二、填空题 6.2x +y =0;7.(1)a 2+b 2=r 2且|a |=r 或b =0,|a |=r ;(2)a 2+b 2<r 2;(3)|b |<r ; 8.21; 9.6,549+; 10.⋅-552 提示:9.x 2+y 2的几何意义是点P (x ,y )到原点距离的平方.利用这个几何意义求解. 10.xy的几何意义是点P (x ,y )与原点连线的斜率.利用这个几何意义求解. 三、解答题11.提示:将方程配方为222431)()2(a a a y a x --=+++,则,04312>--a a 即3a 2+4a -4<0,(3a -2)(a +2)<0,解得,⋅<<-322a12.提示:方法一:设圆的方程为x 2+y 2+D x +Ey +F =0,由已知三个点在圆上,可得⎪⎩⎪⎨⎧=+++=++=082204160F E D F D F 解得D =-4,E =0,F =0,所以,所求圆方程为x 2+y 2-4x =0.方法二:注意到k AC =1,k BC =-1,k AC k BC =-1,所以,三角形ABC 是直角三角形,∠C =90°,所以,所求圆心为AB 边中点,即(2,0)点,可求半径r =2, 所以,所求圆的方程为(x -2)2+y 2=4.13.提示:因为A (-1,4),B (1,2)是圆C 上的两点,所以圆心在线段AB 的中垂线上,因为AB 中点坐标为(0,3),k AB =-1,所以线段AB 的中垂线方程为x -y +3=0,解⎩⎨⎧=-+=+-0103y x y x 得圆心坐标为(-1,2),半径,2)22()11(22=-+--=r所以,圆C 的方程为(x +1)2+(y -2)2=4.14.分析:(1)曲线C 方程可变形为(x 2+y 2-20)+a (-4x +2y +20)=0,由⎩⎨⎧=++-=-+020*******y x y x ,解得⎩⎨⎧-==24y x . 即点(4,-2)满足曲线C 的方程,故曲线C 过定点(4,-2).(2)曲线C 方程(x -2a )2+(y +a )2=5(a -2)2,因为a ≠2,所以曲线C 是圆心为(2a ,-a ),半径为|2|5-a 的圆. 设圆心坐标为(x ,y ),则有⎩⎨⎧-==ay a x 2,消去a 可得x y 21-=,故圆心必在直线x y 21-=. 测试十五 直线与圆的位置关系一、选择题1.C 2.B 3.C 4.C 5.A 提示:5.圆方程x 2+y 2=1,圆心(0,0),半径1,切线长的平方=圆心到直线y =3距离的最小值的平方.22813222==-=-r二、填空题6.(x +2)2+(y -3)2=4; 7.3; 8.x +y -4=0; 9.⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--338,23,338 ; 10..23<<m提示:9.圆方程配方为,4316)1()2(222k y k x -=+++依题意,2224316)12()21(k k ->+++,且,043162>-k解得k <-3或k >2,且338338<<-k ,所以,⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--338,23,338 . 10.结合图形,求出直线与圆在第一象限相切时的m 值为2,求出直线过(0,1)点时的m值为3.进而得出m 值范围. 三、解答题11.提示:(1)方法一:由已知,AB :x +y -1=0,与圆方程联立,解方程组得,2151±=x 则.304πcos||||12=-=x x AB 方法二:圆心到直线AB 的距离,222|1|=-=d 所以.3021822||22=-=-=dr AB(2)当弦AB 被点P 平分时,AB ⊥OP ,又k OP =-2, 所以,.052:,21=+-=y x AB k AB 12.提示:注意到,过点P (6,-4)倾斜角为90°的直线不满足题意,设所求直线为y +4=k (x -6),由弦长为26,圆半径为20,所以圆心O 到所求直线的距离为2, 即21|46|2=++k k ,解得k =-1或177-=k ,所以所求直线方程为x +y -2=0或7x +17y +26=0.13.略解:圆(x +1)2+(y -3)2=5的圆心为(-1,3),设圆心(a ,b ),得⎪⎩⎪⎨⎧---=--++-=-+-,112312)1()4()2()1(2222a b b a b a解得⎩⎨⎧==13b a ,圆心(3,1),半径为5,所以,所求圆方程为(x -3)2+(y -1)2=5.14.分析:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |,|a |.由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为r 2, 故r 2=2b 2.又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1,从而有2b 2-a 2=1. 又点P (a ,b )到直线x -2y =0的距离555|2|=-=b a d ,所以|a -2b |=1, 解⎩⎨⎧=-=-121|2|22a b b a ,得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a . 由于r 2=2b 2,知2=r ,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2.测试十六 空间直角坐标系一、选择题1.C 2.A 3.A 4.C 5.B 二、填空题6.34; 7.1; 8.(0,-1,0),(0,7,0); 9.)0,23,1(; 10.26.三、解答题11.答:点M 关于平面xOy 的对称点为(1,-2,-3);点M 关于平面yOz 的对称点为(-1,-2,3); 点M 关于平面xOz 的对称点为(1,2,3); 点M 关于x 轴的对称点为(1,2,-3);点M 关于y 轴的对称点为(-1,-2,-3);点M 关于z 轴的对称点为(-1,2,3). 12.答:点M 到原点的距离为14;点M 到平面xOy 的距离为3;点M 到平面yOz 的距离为1;点M 到平面xOz 的距离为2; 点M 到x 轴的距离为13;点M 到y 轴的距离为10; 点M 到z 轴的距离为5. 13.答:).,,21(),0,32,(a a a N a a M 14.答:(1,0,0)或(-1,0,0).测试十七 平面解析几何初步全章综合练习一、选择题1.C 2.B 3.B 4.D 5.A 提示:3.直线3:-=kx y l 过定点)3,0(-,直线2x +3y -6=0与x 轴、y 轴交点坐标为(3,0)、(0,2),作图分析可得答案. 二、填空题6.x +y -1=0,3x +2y =0; 7.0<m 2+n 2<3; 8.34; 9.22; 10.两圆(x -a )2+(y -b )2=r 2与(x -c )2+(y -d )2=r 2的对称轴的方程为2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0. 提示: 9.r PA S PACB ||212⨯=(r 是圆的半径),由已知r =1,所以,即求|P A |的最小值,又|P A |=12-PC ,而|PC |的最小值为C 到直线3x +4y +8=0的距离,即343|843|22=+++,所以,所求最小值为.22||212=⨯=r PA S PACB 三、解答题11.提示:直线l 1与l 2的交点坐标为(-1,1),直线l 1与y 轴交点坐标为(0,3),且(0,3)点关于直线y =-x 对称点坐标为(-3,0),所以,直线l 2过点(-3,0)和(-1,1),l 2:x -2y +3=0.12.提示:设圆心为(a ,b ),由已知|a |=|b |=r ,又a -2b -3=0,解⎩⎨⎧==--b a b a 032及⎩⎨⎧-==--b a b a 032得⎩⎨⎧-=-=33b a 或⎩⎨⎧-==11b a ,所以,所求圆方程为(x +3)2+(y +3)2=9或(x -1)2+(y +1)2=1.13.提示:所求圆即为以已知直线和已知圆相交的弦为直径的圆.解⎩⎨⎧=-+=+-++,042014222y x y x y x 得⎩⎨⎧==21y x 或⎪⎪⎩⎪⎪⎨⎧==51851y x .即直线与圆的交点坐标为)518,51(),2,1(,弦长为554, 所以圆心为)514,53(,半径为552, 所求圆方程为54)514()53(22=-+-y x . 14.提示:注意到点A (2,4)在直线2x -y =0上,所以,已知直线为∠A 的平分线l ,过B作与l 垂直的直线m :x +2y =0,l 与m 的交点为(0,0),B (-4,2)关于(0,0)的对称点为B ′(4,-2),AB ′所在直线即为AC 边所在的直线,所以AC 边所在的直线方程为3x +y -10=0.15.(1)证明:设A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1、x 2>1,点A (x 1,log 8x 1),B (x 2,log 8x 2). 因为A 、B 在过点O 的直线上,⋅=∴228118log log x x x x又点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于,log 32log log log ,log 32log log log 28828221881812x x x x x x ====所以OC 的斜率和OD 的斜率分别为:228222118112log 3log ,log 3log x x x xk x x x x k OD OC ====由此得k OC =k OD ,即点O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有log 2x 1=log 8x 2,解得x 2=31x .将其代入228118log log x x x x =,得1811831log 3log x x x x =. 由x 1>1,知log 8x 1≠0,故31x =3x 1,即31=x ,于是点A 的坐标为).3log ,3(816.分析:(1)直线l 的方程可化为x +y -4+m (2x +y -7)=0,则l 是过定点(3,1)的直线束.又(3-1)2+(1-2)2=5<25,∴点(3,1)在圆内部,因此不论m 为何实数,直线l 与圆恒相交.(2)由(1)可知,直线l 过点M (3,1),则过此点的直线l 与圆O 的半径垂直且M 为AB 中点时,l 被圆所截得的弦长|AB |最短.)542|(|22=-=OM r AB .此时212311=---=-=OMl k k , 直线方程为y -1=2(x -3),即2x -y -5=0.。
2024年数学九年级上册解析几何基础练习题(含答案)试题部分一、选择题:1. 在平面直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)2. 已知点P在第二象限,且到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A. (3, 4)B. (3, 4)C. (4, 3)D. (4, 3)3. 直线y=2x+1的斜率是()A. 1B. 2C. 1D. 24. 下列函数中,哪一个是一次函数?()A. y=x^2B. y=2xC. y=x^3D. y=1/x5. 在平面直角坐标系中,点A(1, 2)和点B(2, 4)所在的直线方程是()A. y=2x+4B. y=2x+4C. y=x+3D. y=x+36. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是()A. k>0, b>0B. k<0, b>0C. k>0, b<0D. k<0, b<07. 下列各点中,哪一个点不在直线y=x+3上?()A. (1, 2)B. (2, 1)C. (1, 4)D. (2, 5)8. 已知直线y=2x+1与y轴的交点坐标是(0, a),则a的值为()A. 0B. 1C. 2D. 19. 在平面直角坐标系中,两条平行线的斜率分别是2和2,则这两条直线()A. 相交B. 平行C. 重合D. 垂直10. 已知一次函数y=kx+b的图象与y轴交于点(0, 3),且过点(1,5),则该函数的解析式为()A. y=2x+3B. y=3x+3C. y=2x+3D. y=3x+3二、判断题:1. 一次函数的图象是一条直线。
()2. 两条平行线的斜率一定相等。
()3. 一次函数y=kx+b中,当k>0时,直线必经过第一象限。
()4. 点(0, 0)是所有直线上的点。
()5. 直线y=2x+1的斜率为2,说明直线与x轴的夹角为60度。
2023年华师大版数学解析几何入门练习题及答案本文为2023年华师大版数学解析几何入门练习题及答案,旨在帮助同学们更好地掌握解析几何的基础知识和解题技巧。
以下是一些典型的解析几何练习题及其详细解答。
题目一:已知点A(1,2)和点B(3,5),求线段AB的长度。
解析及答案:使用两点之间的距离公式可以求得线段AB的长度。
设点A和点B 的坐标分别为A(x1,y1)和B(x2,y2),则线段AB的长度AB=√((x2-x1)^2+(y2-y1)^2)。
代入题目中的坐标,可以得出线段AB的长度为AB=√((3-1)^2+(5-2)^2)=√(4+9)=√13。
题目二:已知直线L过点A(2,3),斜率为k。
求过点A且与直线L垂直的直线方程。
解析及答案:由于题目中已知直线L过点A(2,3),我们可以通过求出直线L的斜率k,然后求出与k垂直的斜率k',再根据点斜式来确定过点A且与直线L垂直的直线方程。
设直线L的斜率为k,则直线L的斜率表示为k=(y-3)/(x-2)。
根据两直线垂直的性质,k与k'的乘积为-1,即k*(-1)=k'。
解得k'=-1/k。
由点斜式可知,直线L'的方程为y-3=-1/k*(x-2)。
题目三:已知直线L1的方程为2x-3y+5=0,直线L2垂直于直线L1过点P(4,7),求直线L2的方程。
解析及答案:由于直线L2垂直于直线L1过点P(4,7),我们可以通过求直线L1的斜率k,然后求出与k垂直的斜率k',再根据点斜式来确定直线L2的方程。
将直线L1的方程转化为斜截式方程,得y=(2/3)x+5/3。
直线L1的斜率为k=2/3。
由于直线L1和直线L2垂直,所以k与k'的乘积为-1,即k*(-1)=k'。
解得k'=-3/2。
由点斜式可知,直线L2的方程为y-7=(-3/2)*(x-4)。
通过上述三个题目的讲解,我们可以看到解析几何的基本原理和解题思路。
解析几何(尤承业)前四章部分习题答案第一章:平面几何基础1.证明:若两条直线的斜率相等,则它们平行。
证明:设直线l1的斜率为k1,直线l2的斜率为k2。
若k1=k2,则有k1x+b1=k2x+b2,即(k1-k2)x=b2-b1。
由于k1-k2=0,所以方程化简为0x=b2-b1。
由于任何实数乘以0都等于0,所以此方程有解,即二者平行。
2.已知直线l1的斜率为k1,直线l2经过点A(a,b)且与l1垂直,求直线l2的方程。
解:由直线l1的斜率为k1,可知l1的斜率为k1的直线上任意一点(x1,y1)与原点(0,0)的斜率为k1,即有y1/x1=k1,即y1=k1x1。
由于直线l2经过点A(a,b)且与l1垂直,所以直线l2的斜率为-1/k1。
设直线l2的方程为y=-1/k1 x + c,代入点A(a,b)可得b=-1/k1*a+c,即c=b+a/k1。
所以直线l2的方程为y=-1/k1 x + b+a/k1。
3.已知直线l1过点A(a,b)和点B(c,d),求直线l1的方程。
解:由于直线l1过点A(a,b)和点B(c,d),所以直线l1的斜率为直线AB的斜率。
设直线l1的方程为y=kx+m,代入点A(a,b)和点B(c,d)可得方程组: b=ka+m d=kc+m将第一个方程乘以k,得到bk=ka^2+km,再用第二个方程减去这个等式,可得d-b = kc-ka^2+km-km,即d-b=k(c-a)。
所以直线l1的方程为y=(d-b)/(c-a)x + (ad-bc)/(c-a)。
第二章:直线与圆1.已知直线l的方程为y=ax+b,圆C的圆心为O(h,k),半径为r,求直线l与圆C的交点坐标。
解:设直线l与圆C的交点为点P(x,y),代入直线l的方程可得y=ax+b。
将这个方程代入圆C的方程(x-h)^2+(y-k)^2=r^2中,得到(x-h)^2+(ax+b-k)^2=r^2。
展开后整理得到一个二次方程,即x^2+(a^2+1)x-2ah+(b-k)^2-r^2=0。
数学高考《平面解析几何》试题含答案一、选择题1.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .43C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值. 【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =, 根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=, 所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==, 故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.2.已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( )A .8B .11C .13D .16【答案】C 【解析】 【分析】设点A 、B 的坐标,利用线段AB 中点纵坐标公式和抛物线的定义,求得12y y +的值,即可得结果; 【详解】抛物线2:6C x y =中p =3, 设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3, 又线段AB 中点M 的横坐标为122y y +=5, ∴12y y +=10, ∴|AF |+|BF |=13; 故选:C . 【点睛】本题考查了抛物线的定义的应用及中点坐标公式,是中档题.3.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限,∴240 21610 21kkkk-⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k-<<.故选:D.【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.4.已知椭圆C:2212xy+=的右焦点为F,直线l:2x=,点∈A l,线段AF交椭圆C于点B,若3FA FB=u u u v u u u v,则AFu u u v=()A.2B.2C.3D.3【答案】A【解析】【分析】设点()2,A n,()00,B x y,易知F(1,0),根据3FA FB=u u u v u u u v,得43x=,13y n=,根据点B在椭圆上,求得n=1,进而可求得2AF=u u u v【详解】根据题意作图:设点()2,A n,()00,B x y.由椭圆C:2212xy+=,知22a=,21b=,21c=,即1c=,所以右焦点F(1,0).由3FA FB=u u u v u u u v,得()()001,31,n x y=-.所以()131x=-,且3n y=.所以43x=,13y n=.将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.5.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点, ∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.6.设D 为椭圆2215y x +=上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD|=|BD|,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20 D .x 2+(y +2)2=5 【答案】C 【解析】 【分析】由题意得PA PD DA DB DA =+=+=,从而得到点P 的轨迹是以点A 为圆心,半径为 【详解】由题意得PA PD DA DB DA =+=+,又点D 为椭圆2215y x +=上任意一点,且()()0,2,0,2A B -为椭圆的两个焦点,∴DB DA +=,∴PA =∴点P 的轨迹是以点A 为圆心,半径为 ∴点P 的轨迹方程为()22220x y ++=. 故选C . 【点睛】本题考查圆的方程的求法和椭圆的定义,解题的关键是根据椭圆的定义得到PA =然后再根据圆的定义得到所求轨迹,进而求出其方程.考查对基础知识的理解和运用,属于基础题.7.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, AF BF +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵AF BF +=,AB ≥∴213mn AB ≤,在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn AB AFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.8.已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y轴于点C ,交另一条渐近线于点A ,并且满足点C 位于A ,B 之间.已知O 为原点,且53OA a =,则||||FB FC =( ) A .45B .23C .34D .13【答案】A 【解析】 【分析】设出直线AB 的方程,联立直线AB 方程和渐近线方程,由此求得,A B 两点的坐标,以及求得C 点的坐标,根据53OA a =列方程,求得,,a b c 的关系,由此求得||||FB FC 的值.【详解】由于双曲线渐近线为b y x a =±,不妨设直线AB 的斜率为ab-,故直线AB 的方程为()a y x c b =--.令0x =,得0,ac C b ⎛⎫ ⎪⎝⎭.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=⎪⎩解得2,a ab B c c ⎛⎫ ⎪⎝⎭,.由()a y x c bb y xa ⎧=--⎪⎪⎨⎪=-⎪⎩解得22222,a c abc A a b a b ⎛⎫- ⎪--⎝⎭,由53OA a =得22222222259a c abc a a b a b ⎛⎫-⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,化简得()()2222440a b a b --=,解得12b a =或2b a =.由于C 位于,A B 之间,故12b a =舍去,所以2b a=,即2b a =.故22222222||44||45B C aby FB b b a c ac FC y c a b a a b======++. 故选:A.【点睛】本小题主要考查双曲线的渐近线方程,考查直线和直线相交所得交点坐标的求法,考查双曲线的几何性质,考查运算求解能力,考查数形结合的数学思想方法,属于中档题.9.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是A.-1 B.1 C.1020-D.102【答案】A【解析】双曲线223mx my-=3的标准方程为22113x ym m-=,∵焦点在y轴上,∴134m m+=,且0m<,∴ 1.m=-故选A.10.已知P是双曲线C上一点,12,F F分别是C的左、右焦点,若12PF F∆是一个三边长成等差数列的直角三角形,则双曲线C的离心率的最小值为()A.2 B.3C.4 D.5【答案】A【解析】【分析】设直角三角形三边分别为3,4,5x x x,分23c x=,24c x=和25c x=三种情况考虑,即可算得双曲线离心率的最小值.【详解】如图,易知该直角三角形三边可设为3,4,5x x x.①若23c x=,则254a x x x=-=,得232cea==;②若24c x=,则2532a x x x=-=,得222cea==;③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.11.已知P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =,则“4a =”是“217PF =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】化简得到229PF a =+或292PF a =-,故当4a =时,217PF =或21PF =;当217PF =时,4a =,得到答案.【详解】P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =, 则229PF a =+或292PF a =-,当4a =时,217PF =或21PF =;当217PF =时,4a =. 故“4a =”是“217PF =”的必要不充分条件. 故选:B . 【点睛】本题考查了必要不充分条件,意在考查学生的推断能力.12.已知椭圆221259x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个焦点的距离等于( ) A .1 B .3 C .6 D .10 【答案】C 【解析】由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C .13.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B C .2-D 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.14.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点, 则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.15.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.16.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.17.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( )A .6B .8C .10D .12【答案】C 【解析】 【分析】先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值. 【详解】由已知()2,0A ,()0,2B -则AB ==,又点M=所以最大面积为1102⨯=. 故选:C. 【点睛】本题考查圆上一点到直线的最大距离问题,是基础题.18.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( ) ABC.7D【答案】D【解析】 【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果. 【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-,由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=, 125e ∴=. 故选:D . 【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.19.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C.3217,3⎛⎫±⎪⎝⎭D.()45,162±【答案】B【解析】【分析】设由船P到B台和到A台的距离差确定的双曲线方程为()22221x yx aa b-=≥,根据双曲线的定义得出15a=,再得出由船P到B台和到A台的距离差所确定的双曲线为()2211522564x yx-=>,与双曲线()222713664x y--=联立,即可得出点P坐标.【详解】设由船P到B台和到A台的距离差确定的双曲线方程为()22221x yx aa b-=≥由于船P到B台和到A台的距离差为30海里,故15a=,又=17c,故8b=故由船P到B台和到A台的距离差所确定的双曲线为()2211522564x yx-=>联立()()()222227121366411522564x yxx yx⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135322,77P⎛⎫±⎪⎪⎝⎭故选:B【点睛】本题主要考查了双曲线的应用,属于中档题.20.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y=+恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于4π;④方程()223221)60(x y x y xy+=<表示的曲线C在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.。
7.1 直线的方程1.直线的方向——斜率公式①已知倾斜角α,则k= ;(α≠90°) ②已知方向向量v =(v 1,v 2),则k= ;(v 1≠0) ③已知法向量n =(A ,B ),则k= ;(B ≠0)④已知直线过点1122(,),(,)A x y B x y ,则k = ;(x 1≠x 2) 2.直线的方程(1)点向式方程:若直线经过点P(x 0,y 0),方向向量v =(v 1,v 2),则直线的方程为 ;特别的,当v 1=0时,直线平行 轴,方程为 ;当v 2=0时,直线平行 轴,方程为 ;(2)点法式方程:若直线经过点P(x 0,y 0),法向量为n =(A ,B ),则直线的方程为 ; (3)点斜式方程:若直线经过点P (x 0,y 0),斜率为k ,则直线的方程为 ; (4)斜截式方程:若直线的斜率为k ,且过点P(0,b ), 则直线的方程为 ; (5)一般式方程:把二元一次方程Ax+By+C=0称为直线的一般式方程.其中 是直线的一个法向量, 或 是直线的一个方向向量, 是直线的斜率,当x=0时,y=C B -是直线在y 轴的截距,当y=0时,x =CA-是直线在x 轴的截距. 3.两条直线的位置关系直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0. (1)当 时,l 1与l 2相交; (2)当 时,l 1与l 2平行; (3)当 时,l 1与l 2重合; (4)当 时,l 1与l 2垂直;若直线l :Ax +By +C =0,则与l 平行的直线l 1可设为 ;与l 垂直的直线l 2可设为 .4.点到直线的距离:(1)点P(x 0,y 0)到直线Ax +By +C =0的距离为 ;(2)两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0的距离为 .基础练习1.已知直线l 的一个法向量n =(2,-3),则直线l 的斜率是( ) A .32 B .-32 C .23 D .-232.经过两点A (2,0),B (5,-3)两点的直线的斜率k 等于( ) A .1 B .-1 C .15 D .15-330y -+=的倾斜角为( ) A .30° B .60° C .120° D .150°4.已知直线l 的方程为5x -2y -6=0,则直线l 在y 轴上的截距为( ) A .2 B .-2 C .3 D .-3 5.直线2x -y -3=0的一个方向向量是( )A .(1,2)B .(1,-2)C .(2,-1)D .(2,1) 6 .直线2x -3=0的一个法向量是( )A .(2,3)B .(-3, 2)C .(2,0)D .(0,2) 7.直线l :ax +y -2=0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1 8.过点P (2,-1),且平行于向量v =(3,2)的直线方程为( )A .3x +2y -4=0B .3x -2y -8=0C . 2x +3y -1=0D .2x -3y -7=0 9. 过点P (1,-3),且与向量n =(-4, 3)垂直的直线方程为( )A .4x -3y -13=0B .4x -3y +13=0C .3x -4y -15=0D .3x -4y +13=0 10. 过点P (1,2)且与直线x +3y -1=0垂直的直线方程为( ).A .3x -y +5=0B .3x -y -1=0C .x +3y +5=0D .x -3y +5=0 11. 过点P (-1,2)且与直线x +3y -1=0平行的直线方程是( ).A .3x -y +5=0B .3x -y -5=0C .x +3y +5=0D .x -3y +5=012.直线4x - y - 8=0与x 轴、y 轴所围成的三角形面积是( ).A .2B .4C .8D .1613.已知直线 l 1:x +a y =2a +2,直线 l 2:ax +y =a +1平行(不重合),则a 的值是( ) A .a =0 B .a =1 C .a =-1 D .a =-1或a =1 14.已知点P (2,a )是第一象限的点且到直线4x -3y +2=0的距离等于4,则a 的值等于( ) A .4 B .6 C .8 D . 1015.直线4x -2y +c=0与直线2x -y +2=0c 的值为( )A .-6B .14C .-6或14D .6或1416. 已知直线2x +3y +1=0平行于向量v =(m ,-1),则m= .17. 直线ax +2y -3=0与x +(a -1)y +2=0平行,则a 的值为___________.18. 已知三点 A (1,-2),B (-1,m ),C (4,1)在同一条直线上,则实数 m 的值是 .探究与提高1.已知直线经过两点(,0)A B m 、,且直线的倾斜角为30°,则m 的值为( ).A .-2B .0C .2D .42.已知直线ax +(1-a )y +1=0的倾斜角是直线2x +y +1=0的倾斜角的2倍,则a 的值为( )A .-3B .3C .-4D .4 3.已知直线过P (-5, -4),倾斜角的正弦为45,则直线的方程为( ) A .3x +4y +8=0 B .4x +3y +16=0C .4x +3y +32=0D .4x 3y +8=0或4x +3y +32=04.两直线l 1:xcos α-ysin α+1=0与l 1:xsin α+ycos α-1=0的位置关系是( )A .平行B .垂直C .重合D .相交的不垂直 5.过抛物线y 2=4x 的焦点,且与直线2x -3y=4=0平行的直线方程是 ( ) A .2x -3y -2=0B .2x -3y -4=0C .3x +2y -3=0D .3x +2y -2=06.已知直线l 的法向量n =(-3,2),且与x 轴、y 轴围成的三角形的面积为12,则直线的方程l 为 .7.2 简单的线性规划1.线性规划(1)线性规划问题.一般地,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题.(2)线性约束条件:由关于x ,y 的不等式(或方程)组成的不等式组称为x , y 的约束条件.关于x , y 的一次不等式(或方程)组成的不等式组称为x , y 的线性约束条件. (3)线性目标函数:需求最大(小)值的函数称为目标函数;当目标函数是关于变量x , y 的一次解析式时,又称为线性目标函数. 2.二元一次不等式表示的区域直线l :Ax +By +C =0将直角坐标平面内不在l 上的点分为两部分,直线l 的一个法向量...(A ,B )指向的那一侧半平面内所有点的坐标都满足不等式 ;而在直线l 的另一侧...,所有点的坐标都满足不等式 (非严格不等式表示的区域包含直线l 上的点).基础训练1.已知点P 1(0,0),P 2(1,1),P 3(12 ,34 ),则在不等式2x -3y +1≤0表示的平面区域内的点是( )A.P 1、P 3 B.P 2 C.P 2、P 3 D.P 3 2.不等式x +2y -5<0表示的平面区域在直线x +2y -5=0的( ) A.右下方 B.右上方 C.左上方 D.左下方 3.表示图中阴影区域的不等式为( ) A.x +y -5≤0 B.x -y +5≤0 C.x +y -5≥0 D.x -y +5≥04. 下面阴影区域表示 3 x -y -3>0的是( ).A .B .C .D .5. 如图所示,表示阴影部分的二元一次不等式组是 ( )A .232600y x y x ≥-⎧⎪-+>⎨⎪<⎩B .232600y x y x >-⎧⎪-+≥⎨⎪≤⎩C .232600y x y x >-⎧⎪-+>⎨⎪≤⎩D .232600y x y x >-⎧⎪-+<⎨⎪<⎩6. 在△ABC 中,三顶点坐标为A (2 ,4),B (-1,2),C (1 ,0 ), 点P (x ,y )在△ABC内部及边界运动,则 z= x – y 的最大值和最小值分别是 ( ) A .3,1B .-1,-3C .1,-3D .3,-17.变量x ,y 满足的约束条件⎩⎪⎨⎪⎧x +y -5≤04x -y ≥0y ≥0 ,表示的可行域如图所示,则目标函数z =-2x +y 的 最大值是( ). A .1B .2C .3D .48.已知变量x ,y 满足的线性约束条件是⎩⎪⎨⎪⎧x ≤4y ≤4x +y -4≥0,则目标函数z =2x +3y 的最大值等于( ).A .20B .24C .16D .189.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -6≤0,x -3y +2≤0,x ≥1,则z =2x +3y 的最小值为( )A .17B .14C .5D .310.某电脑用户计划使用不超过500元的资金购买单价为60元、70元的样片软件和盒装磁带,根据需要软件至少买3片,磁带至少买2盒,则不同的选购方式共有( ) A .5种B .6种C .7种D .8种11. 点M (2,3)在不等式 a x +y -3≥0所表示的区域内,则a 的取值范围是 . 12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≤0, x - y ≤0,y ≥0,则z =2x +y 的最大值为 .13. 青岛某公司计划2014年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?探究与提高1. 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2]2.已知点A (3, -3),B (-1,5)在直线x -y +a =0的两侧,则a 的取值范围( ) A .a <-6或a >6 B .-6<a <6 C .-6≤a ≤6 D .a =-6或a =6 3.不等式组⎩⎪⎨⎪⎧2x +y -6≤0x +y -3≥0y ≤2 表示的平面区域的面积是( )A .1B .4C .5D .无穷大7.3 圆1.圆的定义和方程(1)圆的定义:平面内到一定点的距离等于定长的点的轨迹是圆,定点是___,定长是____. (2)圆的标准方程: ,其中,圆心为 ,半径为 . 特别地,圆心为(0,0),半径为r 的圆的标准方程为 . (3)圆的一般方程:x 2+y 2+Dx+Ey+F=0( ),用配方法可以将圆的一般方程化为标准方程为 ,它的圆心坐标是 ,半径是 . 2.点与圆的位置关系:设点到圆心的距离为d ,圆的半径为r ,则点在圆外时,d r ;当点在圆上时,d r ;当点在圆内时,d r . 3.直线与圆的位置关系:相切、相交、相离 直线与圆的位置关系的判断方法有两种:(1)直线与圆的方程联立方程组,得到关于x 或y 的一元二次方程,由判别式△判断: 当△=0时,直线与圆 ;当△<0时,直线与圆 ;当△>0时,直线与圆 ; (2)由圆心到直线的距离d 和圆的半径r 的大小关系判断:当d=r 时,直线与圆 ;当d<r 时,直线与圆 ;当d>r 时,直线与圆 ; 4.直线与圆的位置关系经常解决的问题: (1)切线方程——过圆上一点的切线若M (x 0,y 0)是圆上一点,圆心为C(a ,b ),则切线过点M (x 0,y 0)且与向量CM 垂直,可根据点法式方程求确定切线方程;特别地,若圆的方程为x 2+y 2=r 2,则过圆上一点M (x 0,y 0)的切线方程为 . (2)切线长——由半径、点到圆心的距离和切线长构成直角三角形,根据勾股定理求解. (2)弦长——根据垂径定理,由半弦、半径和弦心距构成直角三角形,根据勾股定理求解.(3)圆上的点到直线的最小(大)距离——等于圆心到直线的距离减(加)半径.基础训练1.圆的方程为22(2)(1)2x y -++=,则其圆心和半径分别为( )A .(-B . (2,-C .(2,1),2-D .(2,1),2- 2. 经过点A(5,2),B(3,2),圆心在直线2x -y -3=0上的圆的方程为( ) A . (x -4)2+(y-5)2=10 B .(x+4)2+(y -5)2=10 C .(x -4)2+(y+5)2=10 D .(x+4)2+(y+5)2=103.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A . 16)4()3(22=++-y xB . 16)4()3(22=-++y xC . 9)4()3(22=++-y xD . 9)4()3(22=-++y x4.方程x 2+y 2+4mx -2y+5m=0表示圆的充要条件是( ) A .14 <m<1 B .m>1 C .m<14 D .m<14或m>15.圆2240x y Dx Ey +++-=的圆心为(-1,2),则圆的半径为( ) A .6 B .9 C .3 D .26.圆的方程是x 2+y 2=3,则过圆上一点M 与圆相切的直线方程为( )A .x+2y=3B 3y -=C 3y +=D .x+y=3 7.经过原点且与圆2212270x y y +-+=相切的直线方程为( )A .x y 3±=B .x y 33±= C .x y 2±= D .x y 22±= 8. 由点P(1, 3)引圆x 2+y 2=9的切线的长是 ( ) A .2 B .19 C .1 D .49.直线x+2y+1=0被圆x 2+y 2-4x -2y -20=0所截得的弦长为( ) A .3 5 B .4 5 C .5 5 D .1010.直线y=x -1上的点到圆x 2+y 2+4x -2y+4=0的最近距离为( ) A . 22 B .12- C . 122- D .111.若直线3x+4y+k=0与圆x 2+y 2-6x +5=0相切,则k= . 12.过点P(0,4)向圆x 2+y 2-4x -2y -5=0所引得圆的切线长为 .探究与提高1.已知点M (a ,b )在圆x 2+y 2=1外,则直线ax + by = 1与圆O 的位置关系是( ). A .相交B .相切C .相离D .不确定2.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( ).A .22(1)(1)2x y ++-=B .22(1)(1)2x y -++=C .22(1)(1)2x y -+-=D .22(1)(1)2x y +++=3.已知过点P (-2,2)且垂直于向量n =(3,4)的直线与圆 22220x ax a y a -+-=+相切,则实数a 的值为( ) A .4B .14C .4或19D .-1或144.过圆x 2+y 2-4x+my=0上一点P(1,1)的圆的切线方程为( )A .2x+y -3=0B . 2x -y -1=0C . x -2y -1=0D . x -2y+1=05.直线l 过点(3,2)且与圆(x -2)2+(y -1)2=16相交且弦长最大,则直线l 的方程为( ) A .x -y -2=0 B .x +y -1=0 C .x -y -1=0 D .x +y -5=07.4 椭圆1.椭圆的定义:平面内到两个定点的距离 为定值(大于两定点的距离)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点..,两焦点之间的距离叫做焦距... 2.椭圆的标准方程和几何性质:长轴长A 1A 2= ;短轴长B 1B 2= ;焦距F 1F 2=P 为椭圆上一点 PF 1 + PF 2 = 2a基础训练1.已知椭圆长轴和短轴的长分别为6和4,则椭圆的标准方程是( ) A . x 236 + y 216=1B . x 29 + y 24=1C . x 236 + y 216=1或 y 236 + x 216=1D . x 29 + y 24=1或 x 24 + y 29=12.已知椭圆的长轴长为4,焦距为2,焦点在y 轴上的椭圆标准方程是( )F a1A . x 24 + y 23=1B . x 23 + y 24=1C . x 2+ y 24=1 D . x 24 +y 2=13.过椭圆x 225 + y 216=1的左焦点F 1的直线交椭圆与M ,N 两点,且|MN |=6,F 2是右焦点,则|MF 2|+|NF 2|=( ) A .10 B .14 C .16 D .20 4.若点P 在椭圆x 22 +y 2=1上,F 1,F 2分别是椭圆的两个焦点,且∠F 1PF 2=90°,则△F 1PF 2的面积是( ) A . 1 B . 2 C . 12 D . 325.椭圆x 24 +y 2=1的两个焦点为F 1,F 2,过F 1垂直于x 轴的直线交椭圆于P 点,则|PF 2|等于( ) A . 3B .3 2 C . 72D . 4 6.过点(3,-2),且与x 29 + y 24=1有相同焦点的椭圆的标准方程是( )A . x 215 + y 210=1B . x 2225 + y 2100=1C . x 210 + y 215=1D . x 2100 + y 2225=17.焦距为4,离心率为方程2x 2-5x+2=0的一个根,且焦点在x 轴上的椭圆的方程为( ) A . x 216 + y 212=1B . x 212 + y 216=1C . x 29 + y 24=1D . x 24 + y 29=18.椭圆的标准方程为x 225 + y 29=1,则其离心率为( )A . 34 B . 53 C . 45 D . 359.椭圆x 2m 2 + y 24=1过点(2,- 3 ),则其焦距为( )A . 2 3B . 2 5C . 4 3D . 4 510.若椭圆x 2a 2 + y 2b 2=1的一个焦点和短轴的两个端点构成一个等边三角形,则该椭圆的离心率为( ) A . 12B .3 2 C . 22D . 2 11.过椭圆x 216 + y 2m =1(0<m<16)的左焦点F 1的直线交椭圆于A ,B 两点,则△ABF 2的周长为 .12. 已知椭圆C :x 2a2+y 2b2=1(a >b >0)的一个顶点为A (2,0)方程是 .13.当m= 时,椭圆x 2m + y 23=1的离心率为 12.14.已知F 1,F 2是椭圆x 29+y 27=1的两个焦点,P 是椭圆上任一点,且F 1PF 2=23,求F 1PF 2的面积.15. 已知椭圆中心在原点,焦点在x 轴上,一个顶点为A (0,-1),且其右焦点到直线 x - y+2 2 =0的距离为3.求椭圆的标准方程.探究与提高1.(2012年春季高考题)已知椭圆1202522=+y x 的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么||:||21PF PF 等于( ) A .2:3 B .3:2 C .1:9 D .9:12.椭圆x 2+ky 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则k 的值是( ) A . 12B . 14C . 2D . 43.椭圆x 225 + y 29=1上一点M 到左焦点F 1的距离为2,A 是MF 1的中点,则|OA |等于( )A . 32B . 2C . 4D . 87.5 双曲线1.双曲线的定义:平面内到两个定点的距离 (小于两定点的距离且不为零............)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点..,两焦点之间的距离叫做焦距... 2.双曲线的标准方程和几何性质:实轴长 A 1A 2 = ;虚轴长 B 1B 2 = ;焦距F 1F 2=P 为双曲线上一点PF 1 - PF 2 =2a基础训练1.实轴长为4,焦点为F 1(-3,0),F 2(3,0)的双曲线的标准方程是( ) A . x 216 - y 29=1 B . x 24 - y 25=1C . y 216 - x 29=1D . y 24 - y 29=12.过点M ( 5 ,1)的等轴双曲线的标准方程是( ) A . x 24 + y 24=1B . x 24 - y 25=1C . x 24 - y 24=1D . y 24 -y 25=13. 以x y 3±=为渐近线,一个焦点是F (0,2)的双曲线方程为 ( )A .2213y x -= B .1322=-y x C .13222-=-y x D .13222=-y x 4.已知F 1,F 2是双曲线x 225 - y 224=1的两焦点,点P (0,-1)是其对称轴上一点,则△PF 1F 2的面积为( ) A .5 B .7 C .10 D .20 5. 双曲线22916144x y -=为的离心率( ) A .34 B .43 C .35 D .45 6. 双曲线12222=-by a x 的实轴长,虚轴长,焦距成等差数列则双曲线的离心率是( )A . 2B . 3C . 34D . 357. 设双曲线)0,0(12222>>=-b a b y a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( )A .x y 2±= B .x y 2±= C .x y 22±= D .x y 21±= 8. 双曲线3x 2-y 2=3的渐近线方程是( ) A .y =±3xB .y =±31x C .y =±3x D .y =±33x 9. 双曲线191622=-y x ,F 1,F 2是它的两个焦点,过F 1的直线与双曲线有两个交点A 、B ,若|AB |=10,则△AB F 2的周长为 .10. 若椭圆2214x y +=与双曲线()222102x y a a -=>具有相同的焦点,则a = . 11.已知方程22141x y k k -=--表示双曲线,则k 的取值范围是 .12. 已知双曲线与椭圆1244922=+y x 共焦点,且以x y 34±=为渐近线,求双曲线方程.13. F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,求三角形△F 1MF 2的面积.探究与提高1.下列双曲线方程中,以y =12x 为渐近线的是( ) A . x 24-y 216=1B . y 24-x 216=1C .x 22-y 24=1D . y 24-x 22=12.椭圆()222210x y a b a b +=>>的离心率为12,则双曲线22221x y a b -=的离心率为( )A .54BCD3.双曲线2213x y k+=的离心率是方程221150x x -+=的一个根,则实数k 的值是( ). A .-72 B .-9 C .-4 D .944.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( ) A .3 B .26 C .36 D .33 5.(2013年春季高考题)如图所示,点P 是等轴双曲线上除顶点以外的一点,12A A 、是双曲线的顶点,则直线1PA 和2PA 的斜率之积为( )A . 1B . 1-C . 2D . 2-7.6 抛物线1.抛物线的定义:平面上到一个定点..F 的距离和一条不过F 的定直线...l 的距离的点的轨迹叫做抛物线.定点F 叫做抛物线的 ,定直线l 叫做抛物线的 . 2.抛物线的标准方程和几何性质(1)焦点F 到准线l 的距离为p ;(2)顶点到焦点的距离与顶点到准线的距离都是 p2; (3)P 为抛物线上一点点P 到焦点的距离等于点P 到准线的距离.基础训练1.抛物线y 2=-2x 的焦点坐标是( ) A . (- 12,0)B . (12 ,0)C . (0,- 12 )D . (0,12)2. 抛物线y =- 18 x 2 的准线方程为 ( )A . y =132 B .y=2 C .y=14D .y=4 3.抛物线y 2=4x 上一点到焦点的距离为4,则它的横坐标为( ) A .5 B .-5 C .3 D .-3 4. 顶点在原点,准线为y =4的抛物线方程为( ) A .y 2=16xB .y 2=-16xC . x 2= -16 yD .x 2=16 y5. 顶点在原点,对称轴为y 轴,且过点(2,-2)的抛物线为( )A .y 2=2xB .y 2=-2xC .x 2=2yD .x 2=-2y6. 方程x 2-3x +2=0的两根,可以分别为( ) A .一抛物线和一双曲线的离心率B .两抛物线的离心率C .一抛物线和一椭圆的离心率D .两椭圆的离心率7. 抛物线y 2=8x 上一点A 到y 轴的距离为10,则点A 到焦点的距离为( ) A .11 B .12 C .13 D .148.顶点在原点,焦点与圆x 2+y 2-2y=0的圆心重合的抛物线的标准方程为 . 9.已知抛物线的对称轴是x 轴,焦点在直线3x+4y -12=0上,则抛物线的标准方程为 .10. 已知抛物线y 2=8x 上一点P 到准线的距离为5,则点P 的横坐标为 .探究与提高1. 焦点为F 的抛物线y 2=4x 内有一点A (2,1),P 为抛物线上一点,则|P A |+|PF |的最小值为( ) A .1B . 2C . 3D . 42.已知抛物线的顶点在原点,它的准线过12222=-by a x 的左焦点,而且与x 轴垂直.又抛物线与此双曲线交于点)6,23(,求抛物线和双曲线的方程.7.7 直线与圆锥曲线1. 直线与圆锥曲线的位置及判断方法:直线Ax +By +C =0的方程与圆锥曲线的方程联立方程组,消元后,得到关于x 或y 的一元二次方程,根据判别式△的取值范围判断. (1)相交⇔ ; (2)相切⇔ ; (3)相离 ⇔ ;2.线段AB 的长度|AB |、中点C (x ,y)坐标、∙如果点A(x 1,y 1),B(x 2,y 2),则A B 的中点C (x ,y),x= ;y = ; |AB |= ;=∙OB OA .基础训练1.直线y=x 与椭圆x 24+y 2=1相交于A 、B 两点,则|AB |等于( )A .2B .4 5 5C .410 5D .810 52.过抛物线y 2=4x 的焦点F 作直线l 交抛物线于P (x 1,y 1) Q(x 2,y 2),两点,若x 1 +x 2=6,则| PQ|的长为( )A .5B . 6C .8D .103.点A (4,2)是直线l 被椭圆x 236+y 29=1截得线段的中点,则直线l 的方程为( )A .x -2y=0B . x +2y -4=0C . 2x +3y+4=0D . x+2y -8=0 4.抛物线y 2 = -8x 中,以(-1,1)为中点的弦的直线方程为( ). A . x -4y -3 = 0 B . x +4y +3 = 0 C . 4x +y -3 = 0D . 4x +y +3 = 0 5.如图,双曲线 x 2a 2-y2b2=1(a >0,b >0),两个焦点分别是 F 1,F 2,离心率 e =3,且焦点到渐近线的距离是2.(1) 求双曲线的标准方程;(2) 若平行于向量 v =(1,2)的直线 l 与该双曲线相交于A ,B 两点,且 OA ⊥ OB (O 是坐标原点).求直线 l6. 过双曲线x 23 - y 2=1的右焦点,倾斜角为3π4 的直线与双曲线交于A 、B 两点,求|AB |的长.探究与提高1.(2011年春季高考题)已知椭圆中心在原点,焦点在x 轴上,离心率为32,椭圆上一点P 到左右两焦点的距离之和为8. (1)求椭圆的标准方程;(2)若直线y =x +n 与椭圆交与A ,B 两个不同的点,且弦AB 的中点M 恰好在圆x 2+y 2=1725上,求实数 n 的值.2. (2012年春季高考题)如图所示:已知双曲线的中心在坐标原点O ,焦点分别是F 1(-2,0),F 2(2,0),且双曲线经过点P (2,3), (1)求双曲线的标准方程;(2)设点A 是双曲线的右顶点,若直线l 平行直线AP两点,4||=+AN AM ,试求直线l 的方程。