3.1.1一元一次方程(2)
- 格式:doc
- 大小:62.50 KB
- 文档页数:1
3.1一元一次方程及其解法七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个图形中,通过旋转和平移能够全等图形的是()A.③和④B.②和③C.②和④D.①②④【答案】D【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案【详解】、②和④都可通过平移或旋转完全重合.故选D.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.2.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】m+(1-2m)=0,解得m=1,所以点P的坐标为(1,-1).故选D.3.用加减法解方程组87208516x yx y+=-⎧⎨-=⎩①②解题步骤如下:(1)①﹣②,得12y=﹣36,y=﹣3;(2)①×5+②×7,得96x=12,x=18,下列说法正确的是()A.步骤(1),(2)都不对B.步骤(1),(2)都对C.此题不适宜用加减法D.加减法不能用两次【答案】B【解析】先观察方程组中两方程的特点,结合加减法可用排除法求出答案.【详解】解:因为在解方程组时并不限制加减消元法使用的次数,所以D显然错误;由于两方程中x的系数相等,故适合用加减法,故C错误;①﹣②,得12y=﹣36,y=﹣3,步骤(1)正确,故A错误;故选:B.【点睛】本题考查加减消元法解二元一次方程组,用加法消元的条件:未知数的绝对值相等,符号相反.用减法消元的条件:未知数的绝对值相等,符号相同.4.下列长度的木棒可以组成三角形的是()A.1,2,3 B.3,4,5 C.2,3,6 D.2,2,4【答案】B【解析】根据三角形任意两边的和大于第三边进行判断.+=,不能组成三角形,不符合题意;【详解】A、123+>,能构成三角形,符合题意;B、345+<,不能组成三角形,不符合题意;C、236+=,不能组成三角形,不符合题意;D、224故选B.【点睛】本题考查三角形的三边关系,一般用两条较短的线段相加,如果大于最长那条线段就能够组成三角形.5.某商品的进价是1000元,售价为1500元,为促销商店决定降价出售,在保证利润率不低于5%的前提下,商店最多可降( )A.400元B.450元C.550元D.600元【答案】B【解析】分析:根据题意列出不等式进行解答即可.详解:设商店最多可降价x元,根据题意可得:--≥⨯,x1500100010005%x≤,解得:450∴该商店最多降价450元.故选B.点睛:读懂题意,知道:“利润=售价-进价-降价的金额,利润=进价×利润率”是解答本题的关键.6.若m3,则估计m值的所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5【答案】C【解析】根据被开方数越大算术平方根越大以及不等式的性质,可得答案.【详解】解:∵36<42<49∴67∴3<42﹣3<4即3<m <4故选:C .【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出6<42<7是解题关键. 7.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克【答案】C 【解析】利用科学计数法即可解答.【详解】解:已知1克拉为100分,已知1克拉=0.2克,则一分=0.01克拉=0.002克= 2×10-3克, 故选C.【点睛】本题考查科学计数法,掌握计算方法是解题关键.8.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .等腰三角形的两个底角相等C .顶角相等的两个等腰三角形全等D .等腰三角形一边不可以是另一边的2倍【答案】B【解析】根据等腰三角形的性质和判定以及全等三角形的判定方法即可一一判断.【详解】解:A 、等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;故本选项错误; B 、等腰三角形的两个底角相等,故本选项正确;C 、腰不一定相等,所以不一定是全等三角形,故本选项错误;D、腰可以是底的两倍,故本选项错误。
七年级数学上册3.1.1一元一次方程一.选择1.下列各式中,不是方程的是 ( )A.2x+3y=1B.-x+y=4C.3π+4≠5D.x=82.下列各式中:①2x-1=5;②4+8= 12;③5y+8;④2x+3y=0;⑤2x ²+x=1;⑥2x ²- 5x -1;⑦lxl+1=2;⑧y 6=6y-9.是方程的是 ( )A.①②④⑤⑧B.①②⑤⑦⑧C.①④⑤⑦⑧D.8个都是3.下列各式中,是一元一次方程的是( )A.3x-2y=5B.8x-5C.4x ²=9D.3x+8=24.已知关于x 的方程(m-2)x 1m --3=0是一元一次方程,则m 的值是( )A.2B.0C.1D .0或25.小邱解了一道方程,其解为x=2,他解的方程是 ( )A.x+2=0B.2+3x=8C.3x-1=2D.4-2x=16.小华想找一个解是x=2的方程,那么他会选择( )A .3x+6=0B .2x 32=C .5-3x=1D.3(x-1)= x+17.若关于x 的方程2x-a =x-2的解为x=3,则字母a 的值为 ( )A .-5B .5C .-7D .78.若(m-1)x 3m 2-=6是关于x 的一元一次方程,则m 等于 ( )A.1B.2C.1或2D.任何数9.下列方程是一元一次方程的是 ( )A .2x+5= x 1B .3x-2y=6C .2x=5 -xD.x ²+2x=010.下列方程的解是x=2的是 ( )A.4x+8 =0B .032x 31=+- C.2x 32=D.1-3x= 511.已知关于x 的一元一次方程2(x-1)+3a=3的解为4,则a 的值是 ( )A.-1B.1C.-2D.-312.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%,设把并公顷沙漠改造为绿洲,则可列方程为 ( )A.54+x= 80%×108B.54+x= 80%(108-x)C.54-x= 80%(108+x)D.108 -x= 80%(54+x)二.填空1.已知mx ²+( m+1)²=1是关于x 的一元一次方程,则m=____.2.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少.设到瑞金的人数为x ,请列出满足题意的一元一次方程:___________.3.3年前,父亲的年龄是儿子年龄的4倍,3年后,父亲的年龄是儿子年龄的3倍,求父亲和儿子今年各多少岁.设3年前,儿子的年龄为x 岁,则可列方程为___________.4.某次世界杯足球赛前,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元,其中小组赛球票每张550元,淘汰赛球票每张700元,设小李预定了小组赛球票x 张,根据题意列方程为____________________________________________.5.已知关于x 的方程2x+a-5=0的解是x=2,则a 的值为_________________.6.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之?意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意可列方程为____.三.按要求做题1.下列方程后面括号内的哪个数是方程的解?为什么? (1); (2).2.根据下列题干设未知数并列方程,然后判断它是不是一元一次方程.(1)从60 cm 长的木条上截去两段同样长的木条,还剩下10 cm 长的木条,截下的每段木条的长为多少厘米?(2)小红对小敏说:“我是6月份出生的,我的年龄的2倍加上10,正好是我出生的那个月的总天数,你猜我几岁?”3.若方程(lml-2)x ²-(m+2)x-6=0是关于x 的一元一次方程.(1)求m 的值:(2)判断x=3,23x -=,23x =是不是方程的解. 4.请你先阅读下面的对话,再解决后面的问题,小红说:“我手里有四张卡片,分别写有8,3x+2,3x 21-,x 1.”小丽说:“我用等号将这四张卡片中的任意两张卡片上的数或式子连接起来,就会得到等式.”(1)小丽一共能写出几个等式?(2)在她写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.5.某通讯公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费0.10元.两种方式不足1分钟均按1分钟计算.(1)如果一个月通话x 分钟,那么用甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎样的方程?它是一元一次方程吗?答案:一.1.C 含有未知数的等式是方程,C 选项中,可不是未知数,式子也不是等式.2.C 根据方程的概念判断,①④⑤⑦⑧是方程.3.D 选项A 中含有2个未知数,故选项A 不符合题意;选项B 不是等式,故选项B 不符合题意;选项C 巾未知数的最高次数是2次,故选项C 不符合题意.选D .4.B 根据一元一次方程的定义,得Im-1I =1且m-2≠0,解得m=0.故选B .5.B 把x=2代入各选项中的方程检验,可知只有B 选项中的方程符合题意,故选B .6.D 把x=2代入各方程中,只有选项D 中方程等号的左右两边相等,故选D7.B 将x=3代入方程2x-a=x-2,得2x3-a= 3-2,即6-a=1,解得a=5.8.B ∵(m-1)X 3m 2-=6是关于x 的一元一次方程.∴I2m-3I= l,m-1≠0.解得m=2.故选B . 9.C 选项A ,分母中含有未知数,故A 小是一无一次方程;选项B 中含有两个未知数,故B 不是一元一次方程;选项D 中未知数的最高次数是2,故D 不是一元一次方程,故选C .10.B11.A 将x=4代入原方程,得2x (4-1)+3a=3,解得a= -1.故选A .12.B 根据题意,x 公顷的沙漠改造为绿洲后,沙漠面积是(108-x)公顷,绿洲面积是(54+x)公顷,再根据“绿洲面积占沙漠面积的80%”列方程为54+x= 80%(108-x ).二.1.答案0解析因为mx ²+(m+1)x=1是关于x 的一元一次方程,所以m=0且m+1≠0,所以m=0.2.答案x+2x+1= 34解析根据“到井冈山的人数是到瑞金的人数的2倍多1人”可知到井山的人数是2x+1,根据“到井冈山的人数+到瑞金的人数= 34”可列方程为x+2x+1= 34.3.答案4x+6=3(x+6)解析 ∵3年前父亲的年龄是儿子年龄的4倍,3年前儿子的年龄为x 岁,∴3年前父亲的年龄为4x 岁,又∵3年后父亲的年龄是儿子年龄的3倍.∴3年后父亲的年龄为3(x+6)岁,∴可列方程为4x+6=3(x+6).4.答案550x+700( 10-x)=5 800 解析因为小李预定了小组赛球票x 张,所以预定了淘汰赛球票(10-x )张,根据题意列方程为550x+700( 10-x)=5 800.5.答案1解析将x=2代入方程,得4+a -5=0,所以a=1.6.答案240x =150x+12x150解析根据题意可列方程为240x= 150x+12x150.三.1.解析(1)x=-2是方程的解.理由:当x=-2时,2x-1= 2x (-2)-1=-5,211x 21=-×(-2)-4=-5,这时方程等号左右两边相等,(2)x=-12是方程的解,理由:当x= - 12时,6)12(21x 21-=-⨯=,62)12(322x 32-=+-⨯=+,这时方程等号左右两边相等.2.解析 (1)设截下的每段木条的长为x cm ,由题意得60- 2x=10,是一元一次方程.(2)设小红x 岁,由题意得2x+10= 30,是一元一次方程3.解析 (1)由题意可知Iml-2=0且m+2≠0,所以m=2.(2)由(1)可知方程为-4x-6=0,把一=3代人方程,因为左边=-4x3-6=-18,右边=0,所以左边≠右边,所以x=3不是方程的解.把23x -=代入方程,因为左边06234=--⨯-=)(,右边=0,所以左边:右边,所以23x -=足方程的解.把x=÷代人方程,因为左边126234-=-⨯-=,右边=0,所以左边≠右边,所以23x =不是方程的解. 4.解析(1)6个.(2)有3个一元一次方程,分别是3x+2=8,x 21-3=8,3x+2=x 21-3.5.解析(1)甲种方式应付话费0.15x 元,乙种方式应付话费(1 8+0. 10x )元.(2)0.15x=18+0.10x (x 代表所求通话分钟数),是一元一次方程.。
一元一次方程授课类型:新授课教材:人民教育出版社七年级上册,第三章一元一次方程 3.1.1小节一、教材分析(一)本节课在教材中的地位与作用本节课是人教版七年级上册第三章第一节从算式到方程中第一课时内容.整节共计2课时,本课时侧重理解方程,一元一次方程的含义,以及从实际问题中抽象出一元一次方程.小学阶段,已学习了用算术方法解应用题还学习了最简单的方程,前一章“整式”也为这一节做了充分的准备.通过方程的学习,学生慢慢体验到未知数参与运算的好处,用方程分析问题、解决问题(即培养学生建模的思想),进而激发学生学习方程的心理需求,为以后学习二元一次方程、一元二次方程垫基础.方程是应用广泛的数学工具,它在义务教育阶段的数学课程中占重要地位.(二)重、难点分析教学重点:1.理解方程、一元一次方程的概念;2.能够通过分析实际问题,利用其中的相等关系列出方程.教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程.二、学情分析在知识方面,学生在小学阶段已经学习了用算式方法解应用题,还学习了最简单的方程,新知教学有较好的基础;在技能方面,学生已接触过用方程解应用题,感受到算式解应用题和方程解应用题的不同,并对画示意图、用字母表示数有初步的了解.而且初一学生,已经有初步的概括能力,并具有一定的综合知识;在情感方面,求知的欲望强烈,喜欢探求真知,具有积极的情感态度.三、目标分析(一)知识与技能1.通过本节的学习,掌握方程、一元一次方程的概念,了解什么是方程的解,并能够从实际问题抽象出数学等量关系;2.体会字母表示数的好处、画示意图有利于分析问题、找相等关系是列方程的关键一步,感受从算式到方程(未知数可以参与运算)的优越性.(二)过程与方法1.会将实际问题抽象数学问题,分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;2.认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系的符号化方法.(三)情感、态度与价值观1.通过本节课的学习,学生经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识;2.学习中品尝成功的喜悦,增强应用数学的意识,培养学好数学、用好数学的信心,激发学习数学的热情,并进一步培养学生运用所学知识,解决实际问题的能力.四、教法学法分析(一)教法分析本课分三大部分,其中第二部分“怎么学”是本节课的重点.在第二部分,设计三个不同形式的实际生活问题,学生通过思考这三个问题归纳总结出一元一次方程的概念,以及特征.在例题讲解部分,运用问题驱动学生积极思考、讨论,并发现利用方程解决应用题的常规思路.学什么怎么学效果怎样(复习引入)(通过实例分析,进行方法特征归纳)(学生练习与小结作业) (二)学法分析本课时主要难点在于学生通过分析实际问题中的数量关系,利用其中的相等关系列出方程.面对这一难点,本节课采用师生合作的学习方式,由教师通过设置问题分解难度,再由全体学生通过动手、观察、分析等方法进一步学习,体现师生的“双主体”地位.(三)教学手段本课主要采用以powerpoint 为操作平台,界面活泼,操作简单,在需要的情况下,能有效支持多种其它技术.五、教学过程分析(一)复习引入——学什么(4min)问题1:x的2倍加上5等于21,可列出方程_______________;问题2:y的3倍等于y与7的差,可列出方程______________;问题3:长方形的宽为x,长比宽多3,如果长方形周长为22,则可列出关于x的方程_____________.提问:请你根据题目提供的等量关系,列出相应的方程.【设计意图】以小学知识为基础,学生可以很快得到上述三个问题的答案,学生 从这三个问题中回忆小学所学方程的概念.先渗透给学生利用条件列等式的想法,分散本节课难点.(二)新课讲授——怎样学(20min)【环节一(8min)】 根据下列问题设未知数,并列方程(1)用一根长为24cm 的铁丝围成一个正方形,正方形的边长为多少? (思路:4×边长=24 边长=24÷4;边长未知可设为x ,则可得4x =24)(2)一台电脑已经使用1700h ,预计每个月再使用150h ,经过多少个月这台电脑的使用时间达到规定的检修时间2450h ?(3)我校女生人数占全体学生数的52%,比男生多80人,我校有多少学生? (学生在解决该题时可能会遇到困难,教师提醒(或帮助)学生画示意图来帮助分析,初步渗透数形结合思想.)抽象出一元一次方程的概念:像上述方程一样,只含有一个未知数(元),且未知数的次数为1的方程叫做一元一次方程.方程与一元一次方程的对比:【设计意图】通过三道简单应用题,学生归纳总结出一元一次方程的概念,进而发现其特点.并通过方程与一元一次方程的对比,正确区分开两者.(简单练习)下列式子是一元一次方程吗?①83-x ②1254=+y ③1=+y x ④0=x ⑤x x 212=-⑥42-=+-x x ⑦723=+a ⑧52=+b a【环节二 例题讲解(8min)】汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米.王家庄到翠湖的路程有多远?【设计意图】通过画示意图,帮助学生理解问题,也向学生初步渗透数形结合思想(数 形).(思考1)从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。