第八章-假设检验 (1)
- 格式:ppt
- 大小:1.35 MB
- 文档页数:66
概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。
由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。
第八章 假设检验(一)一、选择题:1.假设检验中,显著性水平为α,则 [ B ](A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C) α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ A ](A )t 检验法 (B )2χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ A ](A )2||(99)<t t α (B )2||(100)<t t α (C )2||(99)≥t t α (D )2||(100)≥t t α4.设样本12,,,n X X X 来自正态分布2~(,)X N μσ,在进行假设检验时,采用统计量t =是对于[ C ](A )μ未知,检验220σσ= (B )μ已知,检验220σσ=(C )2σ未知,检验0μμ= (D )2σ已知,检验0μμ= 二、计算题:1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?010.02522: 4.52,: 4.52~(0,1)0.05 1.964.421,0.108|| 2.07 1.96H H x Z N z x Z μμασμ=≠======>提出假设: 选统计量 在给定显著性水平下,取临界值为,由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。
第八章假设检验1、原假设与备选假设一定是对应的关系。
()是: 否: 2、假设检验中犯1类错误的后果比犯2类错误的后果更为严重。
()是: 否: 3、显著性水平越小,犯检验错误的可能性越小。
()是: 否: 4、假设检验一般是针对错误的抽样推断做的。
()是: 否: 5、对总体成数的检验一般采用Z检验法为好。
()是: 否:1、下面有关小概率原则说法中正确的是()。
小概率原则事件就是不可能事件它是指当一个事件的概率不大于充分小的界限α(0<α<1)时,可认为该事件为不可能事件基于”小概率原则”完全可以对某一事件发生与否作出正确判断总体推断中可以不予考虑的事件2、假设检验中的1类错误也叫()。
弃真错误纳伪错误假设错误判断错误3、如果是小样本数据的均值检验,应该采用()。
t 检验z 检验秩符检验以上都不对4、如果检验总体方差的显著性,应采用哪种检验方法?()。
t 检验Z 检验X2检验以上都对、 一个优良的统计量通常要符合( )标准。
无假性一致性有效性完整性随机性2、在统计检验假设中,通常要对原假设作出判断,就有可能会犯错误。
这些错误分别是( )。
1类错误(α类)2类错误(β类)功效错误 系统错误代表性错误3、 科学的抽样估计方法要具备的要素是( )。
合适的统计量抽样方法合理的误差范围可接受的置信度严格遵守随机原则1、用一台自动包装机包装葡萄糖,按规格每袋净重0.5千克。
长期积累的数据资料表明,每袋的实际净重服从正态分布,标准差为0.015千克。
现在从成品中随机抽取9袋,结果其净重分别为0.479,0.5006,0.518,0.511,0.524,0.488,0.515,0.512。
试根据抽样结果说明:(1)标准差有无变化?(2)袋糖的平均净重是否符合规格?(α=0.05)2、环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰,现在取5份水样测定有害物质含量,得到如下数据:0.53‰,0.542‰,0.51‰,0.495‰,0.515‰。