2
临界点为: u 及 u
2
2
.
12
3. 两类错误
拒绝H0要承担一定的风险,有可能将正确的假设 误认为是错误的,在统计中称这种“以真为假”的错 误为第一类错误(弃真),犯第一类错误的概率显然是 显著水平α;
不拒绝H0同样要承担风险,这时,可能将错误的 假设误认为是正确的,这种“以假为真”的错误称 为第二类错误(取伪), 犯第二类错误的概率是:
.
3
第一节 假设检验的基本原理与方法 一、假设检验的基本原理 二、假设检验的相关概念 三、假设检验的一般步骤 四、小结
.
4
一、假设检验的基本原理
假设检验问题是统计推断的另一类重要问题.
在总体的分布函数完全未知或只知其形式、但 不知其参数的情况下, 为了推断总体的某些性质, 提出某些关于总体的假设.
对于给定的检验水平
01 由P
U
u
2
得拒绝域为 W {u u }
2
这种利用U统计量来检验的方法称为U检验法.
.
17
(2)检验假设 H 0:0,H 1:0
选择统 U计 X/n量 ~N(0,1)
当H0成立时,P( X u0
/ n
u )
P(Xuuu0
/ n
u)
P(X/unu0/unu)P(X/un u)
第八章
假设检验
第一节 参数假设检验的问题与方法
第二节 第三节
单总体参数的检验 两总体参数检验
第四节 非参数检验
.
1
[本章要求]
1. 理解假设检验的基本思想; 2. 熟练掌握假设检验的基本步骤; 3. 熟练掌握单个正态总体均值与方差的假设检验方法; 4. 掌握双正态总体均值差与方差比的假设检验方法.