高中立体几何典型500题及解析(九)(401~450题)
- 格式:doc
- 大小:988.50 KB
- 文档页数:22
立体几何基础题题库(360道附详细解析)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,那么〔A 〕∠1+∠2=900〔B 〕∠1+∠2≥900〔C 〕∠1+∠2≤900〔D 〕∠1+∠2<900解析:C分别作两条与二面角的交线垂直的线,那么∠1和∠2分别为直线AB 与平面,αβ所成的角。
依照最小角定理:斜线和平面所成的角,是这条斜线和平面内通过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤o o Q2. 以下各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是PPQQRSSPPPQQRR RSSSPP PQQQR RS SS PP Q QR RRSS〔A 〕 〔B 〕 〔C 〕 〔D 〕 D解析: A 项:PS P 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项: 如图C 项:是个平行四边形D 项:是异面直线。
〔A 〕假设α,β,γ两两相交,那么有三条交线〔B 〕假设α⊥β,α⊥γ,那么β∥γ〔C 〕假设α⊥γ,β∩α=a ,β∩γ=b ,那么a ⊥b 〔D 〕假设α∥β,β∩γ=∅,那么α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。
B 项:如正方体的一个角,三个平面互相垂直,却两两相交。
C 项:如图4.如下图,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,那么动点P 所在曲线的形状为AP A 1B PA 1BPA 1O BP A O ABDP A C 1D 1C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:PCD C'D'BB'AA'P 点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时能够以点B 1B 的中点为原点建立坐标系。
可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。
(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。
2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。
高二数学立体几何试题答案及解析1.如图所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中点,则二面角M-DC-A的大小为()A.B.C.D.【答案】C【解析】∵底面,∴而底面是正方形,∴∴面,则∴就是二面角的平面角在中,∵,是中点∴,即二面角的大小为,故选C2.如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为()【答案】B【解析】略3.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,在四棱锥中,底面为矩形,平面,点在线段上,平面.(1)求证:平面;(2)若,,求二面角的大小.【答案】(1)详见解析;(2)详见解析.【解析】(1)要证线与面垂直,即证垂直于平面内的两条相交直线,根据已知的线与面垂直,得到线性垂直,得证;(2)法一:根据前问所证,平面,易证底面是正方形,所以可以根据三垂线定理做出二面角的平面角,即设的交点为,过点作于点,连,易证为二面角的平面角,在直角三角形内求得角;法二:以为原点建立平面直角坐标系,根据向量法,求两个平面的法向量,利用法向量夹角的余弦值计算二面角的余弦值.试题解析:解:(1)证明:∵,∴.同理由,可证得.又,∴.(2)解法一:设的交点为,过点作于点,连易证为二面角的平面角由(1)知为正方形,在中,,二面角的大小为解法二:分别以射线,,为轴,轴,轴的正半轴建立空间直角坐标系.由(1)知,又,∴.故矩形为正方形,∴.∴.∴.设平面的一个法向量为,则,即,∴,取,得.∵,∴为平面的一个法向量.所以.设二面角的平面角为,由图知,则二面角的大小为【考点】1.线与面垂直的判定;2.二面角的计算;3.几何法与向量法求二面角.4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.(本小题12分)已知三棱柱中,底面,,,分别为的中点.(1)求证://平面;(2)求证:;(3)求三棱锥A-BCB的体积.1【答案】(1)见解析:(2)见解析;(3)【解析】(1)欲证//平面,AB中点G,连DG,CG,只需证明是平行四边形,∥即可;(2)证明面面垂直采用证明线面垂直,通过证明因为底面为等腰三角形,,又因为,所以可证得;(3)转化顶点所求三棱锥的体积为,即可求得试题解析:(I)取AB中点G,连DG,CG,在三棱柱中,底面ABC ,是矩形.∵D,E分别为AB1,CC1的中点,∴,是平行四边形,∥∵GC平面ABC,平面ABC,∴DE//平面ABC .(II)三棱柱中,底面ABC,∴中点,又,∴(III)由(II)得,在,,【考点】1.证明线面平行;2.证明面面垂直;3.求体积6.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离7.已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥;②若∥,则∥;③若⊥,则⊥;④若⊥,则⊥;其中正确结论的个数是( )A.0B.1C.2D.3【答案】A【解析】若两个平面内分别有两条直线平行,则这两个平面不一定平行,所以命题•错误;若两个平面平行,则两个平面内的直线可能平行或异面,所以命题‚错误;若两个平面内分别有两条直线垂直,则这两个平面不一定垂直,所以命题ƒ错误;若两个平面垂直,则两个平面内的直线可能平行、垂直或异面,所以命题④错误;【考点】直线与直线、平面与平面的平行与垂直的命题判断.8.已知,,则的最小值.【答案】【解析】,因此当时取最小值【考点】空间向量模9.截一个几何体,各个截面都是圆面,则这个几何体一定是A.圆柱B.圆锥C.球D.圆台【答案】C【解析】圆柱的截面可以是矩形,圆锥的截面可以是三角形,圆台的截面可以是梯形,值有球的截面都是圆,故选C.【考点】几何体的截面图形.10.一个正方体的展开图如图所示,为原正方体的顶点,则在原来的正方体中()A.B.C.与所成的角为D.与相交【答案】C【解析】把展开图还原为立体图形,如下图正方体,可见与是异面直线,它们甩成的角为60°.【考点】多面体的展开图,两直线的位置关系.11.在三棱锥中,已知,则三棱锥外接球的表面积为.【答案】【解析】设中点为,由于,则点到点的距离相等,因此是三棱锥外接球的直径,由题意,是等边三角形,,所以,.【考点】几何体与外接球,球的表面积.【名师】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.12.如图,在体积为2的三棱锥侧棱AB、AC、AD上分别取点E、F、G使,记O为三平面BCG、CDE、DBF的交点,则三棱锥的体积等于()A. B. C. D.【答案】D【解析】为了便于解析,可设三棱锥为正三棱锥,为正三棱锥的高;为正三棱锥有高,因为底面相同,则它们的体积比为高之比,已知三棱锥的体积为2,所以三棱锥的体积为:(1),由题意可知,且,所以由平行得到,所以,(面BCG所在的平面图如左下角简图),同理,,则,所以,那么,亦即,设,那么,则,而,所以,则,所以,所以,又,所以,(2),且,所以:(3),由(2)×(3)得到:代入到(1)得到:三棱锥的体积就是.【考点】1.简单几何体体积;2.三角形相似比的应用.【方法点晴】此题主要考查三角形相似比在求简单几何体体积中应用方面的内容,属于中高档题.根据题意可借助正三棱锥(或正四面体)模型来帮助思考,值得注意的是所求三棱锥体积的高与原三棱锥的高往往是不在同一直线上的,当然这两个高的比值也是解决此问题的关键点,需要借助这两高与垂线之间的比值进行转换,在此过程中多次使用了相似三角形的相似比,从而问题可得解决.13.如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.【答案】(1)见解析;(2)450(3)【解析】(1)要证明BD⊥平面PAC,只需证BD垂直于平面PAC两条相交直线即可,由ABCD为正方形,可得BD⊥AC,易得PA⊥平面ABCD,可得BD⊥PA ,结论得证.(2)由PA⊥面ABCD可得AD为PD在平面ABCD的射影,又CD⊥AD,由三垂线定理的逆定理可得 CD⊥PD,可得∠PDA为二面角P—CD—B的平面角.易得∠PDA=450.(3)由,求得点C到平面PBD的距离试题解析:(1)在Rt△BAD中,AD=2,BD=,∴AB=2,ABCD为正方形,因此BD⊥AC.∵PA⊥平面ABCD,BDÌ平面ABCD,∴BD⊥PA .又∵PA∩AC=A∴BD⊥平面PAC.(2)由PA⊥面ABCD,知AD为PD在平面ABCD的射影,又CD⊥AD,∴CD⊥PD,知∠PDA为二面角P—CD—B的平面角.又∵PA=AD,∴∠PDA=450.(3)∵PA=AB=AD=2,∴PB=PD=BD=,设C到面PBD的距离为d,由,有,即,得【考点】线面垂直,二面角及点到平面的距离.【方法点睛】立体几何解答题的一般模式是首先证明线面位置关系(一般考虑使用综合几何方法进行证明),然后是与空间角有关的问题,综合几何方法和空间向量方法都可以,但使用综合几何方法要作出二面角的平面角,作图中要伴随着相关的证明,对空间想象能力与逻辑推理能力有较高的要求,而使用空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化了,这种方法对运算能力有较高的要求.两种方法各有利弊,在解题中可根据情况灵活选用.14.直三棱柱中,,分别是的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)详见其解析;(2)存在一点,使得平面与平面所成锐二面角的余弦值为.【解析】(1)首先根据线面垂直的判定定理和性质定理可得,然后以为原点建立如图所示的空间直角坐标系,并写出各点的坐标,再由三点共线即可求出点坐标,最后计算并验证其是否为0即可得出所证的答案;(2)首先设出面的法向量为,然后由即可得出,又因为面的法向量,再由公式即可得出的值,进而得出点的坐标,即可得出所求的结果.试题解析:(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则,∵,所以;…6分(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为理由如下:由题可知面的法向量,设面的法向量为,则,∵,∴,即,令,则.∵平面与平面所成锐二面角的余弦值为,∴,即,解得或(舍),所以当为中点时满足要求.【考点】1、线线垂直的判定定理;2、空间向量法求解立体几何问题.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______________.【答案】【解析】设圆锥母线为,底面圆的半径,圆锥侧面积,所以,又半圆面积,所以,,故,所以答案应填:.【考点】1、圆锥侧面展开图面积;2、圆锥轴截面性质.16.已知一个高度不限的直三棱柱,,点是侧棱上一点,过作平面截三棱柱得截面,给出下列结论:①是直角三角形;②是等边三角形;③四面体为在一个顶点处的三条棱两两垂直的四面体.其中有不可能成立的结论的个数是()A.0B.1C.2D.3【答案】B【解析】本题考察在空间点线面的位置关系,在直三棱柱中,数形结合,作图求解,①和②找出一个例子即可证明其存在性,③需分类讨论,利用直三棱柱的性质以及底面三边长AB=4,BC=5,CA=6条件判断.如图,做直三棱柱ABC-A1B1C1,AB=4,BC=5,CA=6,(1)不妨取AD=6,AE=10,DE=8,则△ADE是直角三角形,①可能成立;(2)不妨令AD=AE=DE=a(a>6),则△ADE是等边三角形,②可能成立;(3)假设四面体APDE为在一个顶点处的三条棱两两垂直的四面体,当A为直角顶点时,在直三棱柱ABC-A1B1C1中,PA⊥底面ABC,则 E,D分别与C,B重合,此时,∠EAD不是直角,与假设矛盾,假设不成立,当P为直角顶点时,可得PD∥AB,PE∥AC,由等角定理知则∠EPD不可能是直角,与假设矛盾,假设不成立,当E或D点为直角顶点时,不妨选E为直角顶点,则DE⊥EP,DE⊥EA,EP∩EA═A,EP⊂平面,EA⊂平面,则平面与平面垂直,则直三棱柱中,可证∠ACB为二面角的平面角,∠ACB═90°,与题意矛盾,假设不成立.综上③错误.故选:C.【考点】命题的真假判断17.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.18.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.19.在直三棱柱中,,,则直线与平面所成角的正弦值为()A.B.C.D.【答案】C【解析】在直三棱柱中,,可以证得,因此直线与平面所成角为,在中,,因此【考点】直线与平面所成的角;20.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱锥组成的,其直观图如下:所以该几何体的体积为:.故选A.【考点】1.三视图;2.几何体的体积.21.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在直线()A.垂直B.异面C.平行D.相交【答案】A【解析】由题意得可以分两种情况讨论:①当直尺所在直线与地面垂直时,则地面上的所有直线都与直尺垂直,则底面上存在直线与直尺所在直线垂直;②当直尺所在直线若与地面不垂直时,则直尺所在的直线必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直,则得到地面上总有直线与直尺所在的直线垂直.∴教室内有一直尺,无论怎样放置,在地面总有这样的直线与直尺所在直线垂直. 【考点】空间中直线与直线之间的位置关系22. (2015秋•淮南期末)已知正方体的棱长为1,则正方体的外接球的体积为 . 【答案】.【解析】正方体的外接球的直径是正方体的体对角线,由此能求出正方体的外接球的体积. 解:∵正方体棱长为1, ∴正方体的外接球的半径R=, ∴正方体的外接球的体积V=()3=.故答案为:.【考点】球的体积和表面积.23. 在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于 ( ) A .B .C .D .【答案】B 【解析】取的中点,连接,,那么异面直线所成角就是,根据勾股定理,,,所以,故选B .【考点】异面直线所成角24. 如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1. 【答案】见解析【解析】(1)利用ABC ﹣A 1B 1C 1为直三棱柱,证明CC 1⊥AC ,利用AB 2=AC 2+BC 2,说明AC ⊥CB ,证明AC ⊥平面C 1CB 1B ,推出AC ⊥BC 1.(2)设CB 1∩BC 1=E ,说明E 为C 1B 的中点,说明AC 1∥DE ,然后证明AC 1∥平面CDB 1. 解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱, ∴CC 1⊥平面ABC ,AC ⊂平面ABC , ∴CC 1⊥AC∵AC=3,BC=4,AB=5, ∴AB 2=AC 2+BC 2,∴AC ⊥CB 又C 1C∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B , ∴AC ⊥BC 1(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点又D为AB中点,∴AC1∥DEDE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.25.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.26.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.【答案】,【解析】由两两垂直,分别以所在的直线为轴建立如图所示的空间直角坐标系,设,则,所以,其中平面的一个法向量为,所以与平面所成角的正弦值为,所以;又向量与所成角的余弦值为,又,所以异面直线与所成角的余弦值是.【考点】空间向量的运算及空间角的求解.27.平行六面体中,底面是边长为1的正方形,侧棱的长为2,且,则的长为 .【答案】【解析】由题意得,在平行六面体中,因为,,,且,所以,所以.【考点】空间向量的运算.28.在长方体ABCD﹣A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为()A.B.C.D.【答案】A【解析】试题分析:设长方体的高为1,根据B1C和C1D与底面所成的角分别为600和450,分别求出各线段的长,将C1D平移到B1A,根据异面直线所成角的定义可知∠AB1C为异面直线B1C和DC1所成角,利用余弦定理求出此角即可.解:设长方体的高为1,连接B1A、B1C、AC∵B1C和C1D与底面所成的角分别为600和450,∴∠B1CB=60°,∠C1DC=45°∴C1D=,B1C=,BC=,CD=1则AC=∵C1D∥B1A∴∠AB1C为异面直线B1C和DC1所成角由余弦定理可得cos∠AB1C=故选A【考点】异面直线及其所成的角.29.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为 .【答案】【解析】设圆锥的底面半径为,,解得,根据勾股定理,圆锥的高等于,所以圆锥的体积.【考点】旋转体的体积30.已知A、B、C三点不共线,若点M与A、B、C四点共面, 对平面ABC外一点O,给出下列表达式:其中x,y是实数,则【答案】【解析】A、B、C三点不共线,点M与A、B、C四点共面,则对平面ABC外一点O,满足,所以,所以【考点】空间向量的基本定理及其意义31.在正方体中,、分别是、的中点。
高中立体几何典型500题及解析(九)(401~450题)401. 如图,在ΔABC 中,∠ACB =90°,BC =a,AC =b,D 是斜边AB 上的点,以CD 为棱把它折成直二面角A —CD —B 后,D 在怎样的位置时,AB 为最小,最小值是多少?解析: 设∠ACD =θ,则∠BCD =90°-θ,作AM ⊥CD 于M ,BN ⊥CD 于N ,于是AM =bsin θ,CN =asin θ.∴MN =|asin θ-bcos θ|,因为A —CD —B 是直二面角,AM ⊥CD ,BN ⊥CD ,∴AM 与BN 成90°的角,于是AB =22222)cos sin (cos sin θθθθb a a b -++=θ222sin ab b a -+≥ab b a -+22.∴当θ=45°即CD 是∠ACB 的平分线时,AB 有最小值,最小值为ab b a -+22.402.自二面角内一点分别向两个面引垂线,求证:它们所成的角与二面角的平面角互补. 已知:从二面角α—AB —β内一点P ,向面α和β分别引垂线PC 和PD ,它们的垂足是C 和D.求证:∠CPD 和二面角的平面角互补.证:设过PC 和PD 的平面PCD 与棱AB 交于点E ,∵PC ⊥α,PD ⊥β∴PC ⊥AB ,PD ⊥AB∴CE ⊥AB ,DE ⊥AB又∵CE ⊂α,DE ⊂β,∴∠CED 是二面角α—AB —β的平面角.在四边形PCED 内:∠C =90°,∠D =90°∴∠CPD 和二面角α—AB —β的平面∠CBD 互补.403.求证:在已知二面角,从二面角的棱出发的一个半平面内的任意一点,到二面角两个面的距离的比是一个常数.已知:二面角α—ED —β,平面γ过ED ,A ∈γ,AB ⊥α,垂足是B.AC ⊥β,垂足是C. 求证:AB ∶AC =k(k 为常数)证明:过AB 、AC 的平面与棱DE 交于点F ,连结AF 、BF 、CF.∵AB ⊥α,AC ⊥β.∴AB ⊥DE ,AC ⊥DE.∴DE ⊥平面ABC.∴BF ⊥DE ,AF ⊥DE ,CF ⊥DE.∠BFA ,∠AFC 分别为二面角α—DE —γ,γ—DE —β的平面角,它们为定值.在Rt ΔABF 中,AB =AF ·sin ∠AFB.在Rt ΔAFC 中,AC =AF ·sin ∠AFC ,得:AC AB =AFCAF AFB AF ∠∠sin sin =定值.404. 如果直线l 、m 与平面α、β、γ满足l =β∩γ,l ∥α,m ⊂α和m ⊥γ.那么必有( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ解析:∵m ⊂α,m ⊥γ. ∴α⊥γ.又∵m ⊥γ,β∩γ=l. ∴m ⊥l.∴应选A.说明 本题考查线面垂直、面面垂直及综合应用推理判断能力及空间想象能力.405. 如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a,AD =3a,且∠ADC =arcsin 55,又PA ⊥平面ABCD ,AP =a.求:(1)二面角P —CD —A 的大小(用反三角函数表示);(2)点A 到平面PBC 的距离.解析:(1)作CD ′⊥AD 于D ′,∴ABCD ′为矩形,CD ′=AB =a ,在Rt ΔCD ′D 中.∵∠ADC =arcsin 55,即⊥D ′DC =arcsin 55, ∴sin ∠CDD ′=CD D C '=55 ∴CD =5a ∴D ′D =2a∵AD =3a,∴AD ′=a =BC又在Rt ΔABC 中,AC =22BC AB +=2a,∵PA ⊥平面ABCD ,∴PA ⊥AC ,PA ⊥AD ,PA ⊥AB.在Rt ΔPAB 中,可得PB =2a.在Rt ΔPAC 中,可得PC =22AC PA +=3a.在Rt ΔPAD 中,PD =22)3(a a +=10a.∵PC 2+CD 2=(3a)2+(5a)=8a 2<(10a)2∴cos ∠PCD <0,则∠PCD >90°∴作PE ⊥CD 于E ,E 在DC 延长线上,连AE ,由三垂线定理的逆定理得AE ⊥CD ,∠AEP 为二面角P —CD —A 的平面角.在Rt ΔAED 中∠ADE =arcsin 55,AD =3a. ∴AE =AD ·sin ∠ADE =3a ·55=553 a. 在Rt ΔPAE 中,tan ∠PEA =AE PA =a a 553=35. ∴∠AEP =arctan 35,即二面角P —CD —A 的大小为arctan 35. (2)∵AD ⊥PA ,AD ⊥AB ,∴AD ⊥平面PAB.∵BC ∥AD ,∴BC ⊥平面PAB.∴平面PBC ⊥平面PAB ,作AH ⊥PB 于H ,∴AH ⊥平面PBC.AH 为点A 到平面PBC 的距离.在Rt ΔPAB 中,AH =PB AB PA ⋅=aa a 2⋅=22a. 即A 到平面PBC 的距离为22a. 说明 (1)中辅助线AE 的具体位置可以不确定在DC 延长线上,而直接作AE ⊥CD 于E ,得PE⊥CD ,从而∠PEA 为所求,同样可得结果,避免过多的推算.(2)中距离的计算,在学习几何体之后可用“等体积法”求.406. 如图,在二面角α—l —β中,A 、B ∈α,C 、D ∈l ,ABCD 为矩形,P ∈β,PA ⊥α,且PA =AD ,M 、N 依次是AB 、PC 的中点.(1)求二面角α—l —β的大小;(2)求证:MN ⊥AB ;(3)求异面直线PA 与MN 所成角的大小.解析:(1)连PD ,∵ABCD 为矩形,∴AD ⊥DC ,即AD ⊥l.又PA ⊥l ,∴PD ⊥l.∵P 、D ∈β,则∠PDA 为二面角α—l —β的平面角.∵PA ⊥AD ,PA =AD ,∴ΔPAD 是等腰直角三角形,∴∠PDA =45°,即二面角α—l —β的大小为45°.(2)过M 作ME ∥AD ,交CD 于E ,连结NE ,则ME ⊥CD ,NE ⊥CD ,因此,CD ⊥平面MNE ,∴CD ⊥MN.∵AB ∥CD ,∴MN ⊥AB(3)过N 作NF ∥CD ,交PD 于F ,则F 为PD 的中点.连结AF ,则AF 为∠PAD 的角平线,∴∠FAD =45°,而AF ∥MN ,∴异面直线PA 与MN 所成的45°角.407. 如图,在三棱柱ABC —A ′B ′C ′中,四边形A ′ABB ′是菱形,四边形BCC ′B ′是矩形,C ′B ′⊥AB.(1)求证:平面CA ′B ⊥平面A ′AB ;(2)若C ′B ′=2,AB =4,∠ABB ′=60°,求AC ′与平面BCC ′B ′所成角的大小.(用反三角函数表示)解析:(1)∵在三棱柱ABC —A ′B ′C 中,C ′B ′∥CB ,∴CB ⊥AB.∵CB ⊥BB ′,AB ∩BB ′=B ,∴CB ⊥平面A ′AB.∵CB 平面CA ′B ,∴平面CA ′B ⊥平面A ′AB(2)由四边形A ′ABB ′是菱形,∠ABB ′=60°,连AB ′,可知ΔABB ′是正三角形.取 BB ′中点H ,连结AH ,则AH ⊥BB ′.又由C ′B ′⊥平面A ′AB ,得平面A ′ABB ′⊥平面 C ′B ′BC ,而AH 垂直于两平面交线BB ′,∴AH ⊥平面C ′B ′BC.连结C ′H ,则∠AC ′H 为 AC ′与平面BCC ′B ′所成的角,AB ′=4,AH =23,于是直角三角形C ′B ′A 中,A ′C =5,在Rt ΔAHC ′中,sin ∠AC ′H =532∴∠AC ′H =arcsin 523,∴直线AC ′与平面BCC ′B ′所成的角是arcsin 523.408. 已知四棱锥P —ABCD ,它的底面是边长为a 的菱形,且∠ABC =120°,PC ⊥平面ABCD ,又PC =a ,E 为PA 的中点.(1)求证:平面EBD ⊥平面ABCD ;(2)求点E 到平面PBC 的距离;(3)求二面角A —BE —D 的大小.(1)证明: 在四棱锥P —ABCD 中,底面是菱形,连结AC 、BD ,交于F ,则F 为AC 的中点. 又E 为AD 的中点,∴EF ∥PC又∵PC ⊥平面ABCD ,∴EF ⊥平面ABCD.EF ⊂平面EBD.∴平面EBD ⊥平面ABCD.(2)∵EF ∥PC ,∴EF ∥平面PBC∴E 到平面PBC 的距离即是EF 到平面PBC 的距离过F 作FH ⊥BC 交BC 于H ,∵PC ⊥平面ABCD ,FH ⊂平面ABCD∴PC ⊥FH.又BC ⊥FH ,∴FH ⊥平面PBC ,则FH 是F 到平面PBC 的距离,也是E 到平面PBC 的距离. ∵∠FCH =30°,CF =23a. ∴FH =21CF =43a. (3)取BE 的中点G ,连接FG 、AG 由(1)的结论,平面BDE ⊥平面ABCD ,AF ⊥BD , ∴AF ⊥平面BDC.∵BF =EF =2a ,∴FG ⊥BE ,由三垂线定理得,AG ⊥BE , ∴∠FGA 为二面角D —BE —A 的平面角.FG =2a ×22=42a,AF =23a. ∴tg ∠FGA =FGAF =6,∠FAG =arctg 6 即二面角A —BE —D 的大小为arctg 6409. 若ΔABC 所在的平面和ΔA 1B 1C 1所在平面相交,并且直线AA 1、BB 1、CC 1相交于一点O ,求证:(1)AB 和A 1B 1、BC 和B 1C 1、AC 和A 1C 1分别在同一平面内;(2)如果AB 和A 1B 1、BC 和B 1C 1、AC 和A 1C 1分别相交,那么交点在同一直线上(如图).(1)证明:∵AA1∩BB1=O,∴AA1、BB1确定平面BAO,∵A、A1、B、B1都在平面ABO内,∴AB⊂平面ABO;A1B1⊂平面ABO.同理可证,BC和B1C1、AC和A1C1分别在同一平面内.(2)分析:欲证两直线的交点在一条直线上,可根据公理2,证明这两条直线分别在两个相交平面内,那么,它们的交点就在这两个平面的交线上.证明:如图,设AB∩A1B1=P;AC∩A1C1=R;∴面ABC∩面A1B1C1=PR.∵ BC⊂面ABC;B1C1⊂面A1B1C1,且 BC∩B1C1=Q ∴ Q∈PR,即 P、R、Q在同一直线上.410. 点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR∩BD=Y.求证:X、Y、Z三点共线.解析:证明点共线的基本方法是利用公理2,证明这些点是两个平面的公共点.证明∵P、Q、R三点不共线,∴P、Q、R三点可以确定一个平面α.∵ X∈PQ,PQ⊂α,∴X∈α,又X∈BC,BC⊂面BCD,∴X∈平面BCD.∴点X是平面α和平面BCD的公共点.同理可证,点Y、Z都是这两个平面的公共点,即点X、Y、Z都在平面α和平面BCD的交线上.411. 直线m、n分别和平行直线a、b、c都相交,交点为A、B、C、D、E、F,如图,求证:直线a、b、c、m、n共面.解析:证明若干条直线共面的方法有两类:一是先确定一个平面,证明其余的直线在这个平面里;二是分别确定几个平面,然后证明这些平面重合.证明∵a∥b,∴过a、b可以确定一个平面α.∵A∈a,a⊂α,∴A∈α,同理B∈a.又∵A∈m,B∈m,∴m⊂α.同理可证n⊂α.∵b∥c,∴过b,c可以确定平面β,同理可证m⊂β.∵平面α、β都经过相交直线b、m,∴平面α和平面β重合,即直线a、b、c、m、n共面.412. 证明两两相交而不共点的四条直线在同一平面内.已知:如图,直线l1,l2,l3,l4两两相交,且不共点.求证:直线l1,l2,l3,l4在同一平面内解析:证明几条直线共面的依据是公理3及推论和公理1.先证某两线确定平面α,然后证其它直线也在α内.证明:图①中,l1∩l2=P,∴ l1,l2确定平面α.又 l1∩l3=A,l2∩l3=C, ∴ C,A∈α.故 l3⊂α.同理 l4⊂α.∴ l1,l2,l3,l4共面.图②中,l1,l2,l3,l4的位置关系,同理可证l1,l2,l3,l4共面.所以结论成立.413. 证明推论3成立.(如图)已知:a∥b,求证:经过a,b的平面有且只有一个.证明:(存在性)∵a∥b,由平行线的定义知:a、b共面,所以经过a、b的平面有一个. (唯一性),在a上取两点A、B,在b上取一点C.∵a∥b,∴A、B、C三点不共线,由公理3知过A、B、C三点的平面只有一个,从而过a,b 两直线的平面也是惟一的.414.一条直线过平面内一点与平面外一点,它和这个平面有几个公共点?为什么?解析:只有一个,假设有两个公共点,由公理1知该直线上所有点都在这个平面内,这和直线过平面外一点矛盾.415.过已知直线外一点与这条直线上的三点分别画三条直线,证明:这三条直线在同一平面内.解答:已知:A a,如图,B、C、D∈a,证明:AB、AC、AD共面.证明:∵A a,∴A,a确定平面α,∵B、C、D∈a,a⊂α.∴B、C、D∈α又A∈α.∴AB、AC、AD⊂α.即AB、AC、AD共面.416. 空间可以确定一个平面的条件是( )A.两条直线B.一点和一直线C.一个三角形D.三个点解析:由推论2和推论3知两条相交直线或者两条平行直线才确定一个平面,两条直线还有位置关系异面.故排除A,由推论1知点必在线外才合适,排除B.由公理3知不共线三点可确定一个平面,D中三个点不一定不共线,排除D.公理3结合公理1,知选C.417. 下列命题正确的是( )A.经过两条直线有且只有一个平面B.经过一条直线和一个点有且只有一个平面C.如果平面α与β有三个公共点,则两个平面一定是重合平面D.两个平面α、β有一个公共点,那么它们有且只有一条通过这个点的公共直线解析:根据公理2、公理3知选D.418. 已知四点,无三点共线,则可以确定( )A.1个平面B.4个平面C.1个或4个平面D.无法确定解析:因为无三点共线,所以任意三个点都可以确定平面α,若第四个点也在α内,四个点确定一个平面,当第四个点在α外,由公理3知可确定4个平面.故选C.419. 已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是( )A.4B.3C.2D.5解析:如图,设球的半径是r,则πBD2=5π,πAC2=8π,∴BD2=5,AC2=8.又AB=1,设OA=x.∴x2+8=r2,(x+1)2+5=r2.解之,得r=3故选B.420. 在桌面上有三个球两两相切,且半径都为1,在桌面与三球间放置一个小球,使它与三个球相切.求此小球半径.解析:如图,球O为放置在桌面上与已知三球相切的半径为r的小球,过O作O1O2O3平面的垂线,垂足为H ,它一定是ΔO 1O 2O 3的中心,连接O 1H ,O 1O ,在Rt ΔO 1OH 中,O 1H =332,OH =1-r,OO 1=1+r,∴OO 12=O 1H 2+OH 2,即(1+r)2=(332)2+(1-r)2,解得r =31.421. 地球半径为R ,在北纬45°圈上有A 、B 两点,它们的经度差为2π,求球面上A 、B 两点间球面距离.解析:本题关键是求出∠AOB 的大小,(如图1)现在我们将这个球的截面问题转化为较为熟悉的长方体问题.如图2,以O 1O ,O 1A ,O 1B 为三条相互垂直的棱,可构造一个长方体,问题转化为长方体截面ABO 内求∠BOA 的问题.解: 如图2,∵∠O 1OA =4π=∠O 1OB ,OA =OB =R ,∴OO 1=O 1A =O 1B =22R ∴AB 2=O 1A 2+O 1B 2=R , ∴ΔAOB 为等边Δ, ∴∠AOB =3π,A 、B 间的球面距离为3πR. 422. 一个圆在平面上的射影图形是( )A.圆B.椭圆C.线段D.圆或椭圆或线段解析:D423. 两面都是凸形的镜中,它的面都是球冠形,球半径分别为10cm 和17cm ,两球心间的距离为21cm ,求此镜面的表面积和体积.解析:轴截面如图,设O 2C =x ,则CO 1=21-x,∵AB ⊥O 1O 2 ∴AO 22-O 2C 2=AO 12-CO 12,即102-x2=172-(21-x)2,解得x =6,CO 1=15,又设左边球缺的高为h 1,右边的球缺高为h 2,则h 1=17-15=2,h 2=10-6=4,∴S 表=2π(17·2+10·4)=148π(cm)2,V =31π[22(3·10-2)+42(3·17-4)]=288π(cm 3).424. 正三棱锥的底面边长是2cm ,侧棱与底面成60°角,求它的外接球的表面积.解析:如图,PD 是三棱锥的高,则D 是ΔABC 的中心,延长PD 交球于E ,则PE 就是外接球的直径,AD =33AB =323,∠PAD =60°,∴PD =AD ·tan60°=2,PA =343,而AP⊥AE ,∴PA 2=PD ·PE =PD PA 2=38,R =34,∴S 球=964π(cm)2. 425. 求证:球的外切正四面体的高是球的直径的2倍.证明: 设球的半径为R ,正四面体的高为h ,侧面积为S ,则有V A —BCD =V O —ABC +V O —ABD +V O —BCD ,如图,即31Sh =4×31SR,∴h =4R.426. 地球半径为R ,A 、B 两地都在北纬45°线上,且A 、B 的球面距离为3R ,求A 、B 两地经度的差.解析:如图,O 为球心,O 1为北纬45°小圆的圆心,知A 、B 的球面距离,就可求得∠AOB的弧度数,进而求得线段AB 的长,在ΔAO 1B 中,∠AO 1B 的大小就是A 、B 两地的经度差. 解: 设O 1是北纬45°圆的中心, ∵A 、B 都在此圆上, ∴O 1A =O 1B =22R. ∵A 、B 的球面距离为3R π, ∴∠AOB =R l =RR3π=3π,ΔAOB 为等边三角形. AB =R ,在ΔAO 1B 中, ∵O 1A 2+O 1B 2=21R 2+21R 2=R 2=AB 2, ∴∠AO 1B =90°.∴A 、B 两地的经度差是90°.评析:注意搞清纬度和经度的问题,球面距离三步骤的运用是非常重要的问题.427. 已知圆锥的母线长为l ,母线对圆锥底面的倾角为θ,在这个圆锥内有一内切球,球内又有一个内接的正方体,求这个内接正方体的体积.解析:设球半径为R ,以内接正方体对角面为轴截面,如图.连接OA ,∠OAD =2θ,R =OD =AD ·tan2θ,VA =l,AD =lcos θ,∴R =lcos θtan 2θ,又设正方体棱长为x ,则3x 2=EG 2=4R 2,x =323R.∴V 正方体=938(lcos θtan 2θ)3.428. 如图,过半径为R 的球面上一点P 作三条两两垂直的弦PA 、PB 、PC ,(1)求证:PA 2+PB 2+PC 2为定值;(2)求三棱锥P —ABC 的体积的最大值.解析:先选其中两条弦PA 、PB ,设其确定的平面截球得⊙O 1,AB 是⊙O 1的直径,连PO 1并延长交⊙O 1于D ,PADB 是矩形,PD 2=AB 2=PA 2+PB 2,然后只要证得PC 和PD 确定是大圆就可以了.解: (1)设过PA 、PB 的平面截球得⊙O 1,∵PA ⊥PB ,∴AB 是⊙O 1的直径,连PO 1并延长交⊙O 1于D ,则PADB 是矩形,PD 2=PA 2+PB 2. 设O 为球心,则OO 1⊥平面⊙O 1, ∵PC ⊥⊙O 1平面,∴OO 1∥PC ,因此过PC 、PD 的平面经过球心O ,截球得大圆,又PC ⊥PD. ∴CD 是球的直径.故 PA 2+PB 2+PC 2=PD 2+PC 2=CD 2=4R 2定值.(2)设PA 、PB 、PC 的长分别为x 、y 、z ,则三棱锥P —ABC 的体积V =61xyz , V 2=361x 2y 2z 2≤361(3222z y x ++)3=361·27646R =5432R 6.∴V ≤2734R 3. 即 V 最大=2734R 3. 评析:定值问题可用特殊情况先“探求”,如本题(1)若先考虑PAB 是大圆,探求得定值4R 2可为(1)的证明指明方向.球面上任一点对球的直径所张的角等于90°,这应记作很重要的性质. 429. 求棱长为a 的正四面体的外接球和内切球的半径.解析:如图,作AH ⊥底面BCD 于H ,则AH =36a ,设内切球的球心为O ,半径为r ,O 点与A 、B 、C 、D 相连,得四个锥体,设底面为S ,则每个侧面积为S ,有4·31·Sr =31S ·AH ,∴r =41AH =126a,设外接球心为O ,半径R ,过A 点作球的半径交底面ΔBCD 于H ,则H 为ΔBCD 的外心,求得BH =32a,AH =36a,由相交弦定理得36a ×(2R-36a)=(33a)2. 解得R =36a.430.求证:球的任意两个大圆互相平分.证明:因为任意两个大圆都过球心O ,所以它们必交于过球心的直径,这条直径也是两个大圆的公共直径,所以任意两个大圆互相平分.2.在球心的同一侧有相距9cm 的两个平行截面,它们的面积各为49πcm 2和400πcm 2.求球的表面积.解: 如图,设球的半径为R ,∵πO 2B 2=49π, ∴O 2B =7 同理 O 1A =20设OO 1=xcm ,则OO 2=(x+9)cm.在Rt ΔOO 1A 中,可得R 2=x 2+202在Rt ΔOO 2B 中,可得R 2=72+(x+9)2∴x 2+202=72+(x+9)2 解方程得 x =15cm R 2=x 2+202=252∴S 球=4π·OA 2=2500π(cm 2)431. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为4π,那么这个球的半径为( )A.43B.23C.2D. 3解析: 设球半径为R ,小圆半径为r ,则2πr =4π,∴r =2.如图,设三点A 、B 、C ,O 为球心,∠AOB =∠BOC =∠COA =3,又∵OA =OB ∴ΔAOB 是等边三角形同理,ΔBOC 、ΔCOA 都是等边三角形,得ΔABC 为等边三角形. 边长等于球半径R ,r 为ΔABC 的外接圆半径.r =33AB =33R R =33r =23 ∴应选B.432. 已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是( ) A.964π B.38π C.4π D.916π 解析: 如图,过ABC 三点的截面圆的圆心是O ′,球心是O ,连结AO ′、OO ′,则OO ′⊥ AO ′.ΔABC 中,AB =BC =CA =2,故ΔABC 为正三角形. ∴AO ′=33×2=332 设球半径为R ,则OA =R ,OO ′=2R在Rt ΔOAO ′中,OA 2=O ′O 2+O ′A 2,即R 2=42R +(323)2∴R =34∴球面面积为4πR 2=964π ∴应选A.说明 因为R =OA >O ′A >21AB =1,所以球面积S =4πR 2>4π.从而选A. 433. 长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是( ) A.202πB.252πC.50πD.200π解析: 正方体的对角线为l ,球的半径为R ,则l =2R.得:l 2=4R 2=32+42+52=50从而 S 球=4πR 2=50π ∴应选C.434. 在球面上有四个点P 、A 、B 、C.如果PA 、PB 、PC 两两互相垂直,且PA =PB =PC =a,那么这个球的表面积是 .解析:由已知可得PA 、PB 、PC 实际上就是球内接正方体中交于一点的三条棱,正方体的对角线长就是球的直径,连结过点C 的一条对角线CD ,则CD 过球心O ,对角线CD =3a.∴S 球表面积=4π·(23a)2=3πa 2. 435. 圆柱形容器的内壁底半径为5cm ,两个直径为5cm 的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器内的水面将下降 cm. 解析:球的体积等于它在容器中排开水的体积.解: 设取出小球后,容器水平面将下降hcm ,两小球体积为V 球=2×34π×52×h,V 1= V 球即 25πh =3125π ∴h =35cm. ∴应填35.436. 空间四边形ABCD 的四条边相等,那么它的两条对角线AC 和BD 的关系是( ). A .相交且垂直 B .相交但不垂直 C .不相交也不垂直 D .不相交但垂直解析:D .取BD 中点O ,则BD ⊥AO ,BD ⊥CO ,故BD ⊥平面ACO ,因此BD ⊥AC . 437. 已知a 、b 是异面直线,那么经过b 的所在平面中( ).A .只有一个平面与a 平行B .有无数个平面与a 平行C .只有一个平面与a 垂直D .有无数个平面与a 垂直 解析:A .过b 上任一点P 作直线a a //',由a '和b 确定的平面与a 平行,这个平面是过b 且平行于a 的唯一一个平面.故排除B .当a 与b 不垂直时,假设存在平面 ,使b ,且a ⊥ ,则a ⊥b ,这与a 、b 不垂直矛盾,所以当a 、b 不垂直时,不存在经过b 且与a 垂直的平面,当a 、b 垂直时,过b 且与a 垂直的平面是唯一的,设a 、b 的公垂线为c ,则由c 和b 所确定的平面与a 垂直,且唯一. 438. 若直线l 与平面所成角为3π,直线a 在平面 内,且与直线l 异面,则直线l 与直线a 所成的角的取值范围是( ).A .⎥⎦⎤⎢⎣⎡π32 0,B .⎥⎦⎤⎢⎣⎡3π 0,C .⎥⎦⎤⎢⎣⎡2π 3π,D .⎥⎦⎤⎢⎣⎡π32 3π,解析:C .因为直线l 是平面的斜线,斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角,故a 与l 所成的角大于或等于3π;又因为异面直线所成的角不大于2π,故选C . 439. 直线a 、b 均在平面 外,若a 、b 在平面上的射影是两条相交直线,则a 和b 的位置关系是( ).A .异面直线B .相交直线C .平行直线D .相交或异面直线 解析:D 440. ABCD 是平面 内的一个四边形,P 是平面 外的一点,则△PAB 、△PBC 、△PCD 、△PDA 中是直角三角形的最多有( ).A .1个B .2个C .3个D .4个 解析:D .作矩形ABCD ,PA ⊥平面AC ,则所有的三角形都是直角三角形 441. 已知直线PG ⊥平面于G ,直线EF,且PF ⊥EF 于F ,那么线段PE 、PF 、PG的关系是( ).A .PE >PG >PFB .PG >PF >PEC .PE >PF >PGD .PF >PE >PG 解析:C .如图答9-17.PG ⊥,EF,PF ⊥EF ,则GF ⊥EF .在Rt △PGF 中,PF 为斜边,PG 为直角边,PF >PG .在Rt △PFE 中,PF 为直角边,PE 为斜边,PE >PF ,所以有PE >PF >PG .442. 下列命题中正确的是( ). A .若a 是平面的斜线,直线b 垂直于a 在平面内的射影为a ',则a ⊥b B .若a 是平面的斜线,平面内的直线b 垂直于a 在平面内的射影为a ',则⊥bC .若a 是平面的斜线,直线b 平行于平面,且b 垂直于a 在平面内的射影a ',则a ⊥bD .若a 是平面的斜线,b 是平面内的直线,且b 垂直于a 在另一个平面内的射影a ',则a ⊥b解析:C .如图答9-18,直线b 垂直于a 在平面内的射影,但不能得出a ⊥b 的结论.排除A .令 是直线a 与其在内的射影a '确定的平面,在 内取垂直于a '的直线为b ,不能得出a ⊥b 的结论.排除B .同理排除D .如图答9-19,在内任取点P ,∵ b P ∉,则过b 与P 确定平面,设b '=αγ ,因为b ∥,则b b '//.∵ a b '⊥,∴ a b '⊥'.∴a b ⊥',∴ b ⊥a .于是C 正确.443. 设正方体1111D C B A ABCD -的棱长为1,则 (1)A 到C B 1的距离等于________; (2)A 到1BD 的距离等于________; (3)A 到平面CD B A 11的距离等于________; (4)AB 到平面CD B A 11的距离等于________.解析:1)连接1AB ,AC ,则AC AB =1,取C B 1的中点E ,连结AE ,则C B AE 1⊥. ∴ AE 为点A 到直线C B 1的距离,在Rt △ACE 中,2=AC ,221211==C B CE , ∴ =2AE 23212)22()2(22=-=-,∴ 26=AE .即A 到1B 、C 的距离等于26. (2)连结1AD .∵ AB ⊥平面11A ADD ,∴ 1AD AB ⊥.在Rt △1ABD 中,AB =1,21=AD ,31=BD ,设A 到1BD 的距离为h ,则112121BD h AD AB ⋅=⋅⋅.即=⨯⨯2121321⋅h ,∴ 3632==h ,即点A 到1BD 的距离为36.(3)连结1AD 交D A 1于F ,则D A AF 1⊥.∵ CD ⊥平面D D AA 11,且AF平面D D AA 11,∴ CD ⊥AF .∵ CD ∩AD =D ,∴ AF ⊥平面CD B A 11.∴ AF 为点A 到平面CD B A 11的距离.∵ 21=AD ,∴ 22211==AD AF . (4)∵ AB ∥CD ,∴ AB ∥平面CD B A 11,∴ AB 到平面CD B A 11的距离等于A 点 到平面CD B A 11的距离,等于22. 444. 已知正方体1111D C B A ABCD -.则(1)1AD 与平面ABCD 所成的角等于________; (2)1AC 与平面ABCD 所成的角的正切值等于________; (3)1AD 与平面C C BB 11所成的角等于________ ; (4)11C D 与平面C C BB 11所成的角等于________; (5)C B 1与平面D D BB 11所成的角等于________.解析:(1)∵ D D 1⊥平面ABCD ,∴ AD D 1∠为1AD 与平面ABCD 所成的角,AD D 1∠ =45°.(2)∵ C C 1⊥平面ABCD ,∴ AC C 1∠为1AC 与平面ABCD 所成的角.设11=CC ,则2=AC ,∴ .2221tan 11===∠AC CC AC C(3)∵ 1AD 平面C C BB 11,11//AD C B ,∴ 1AD ∥平面C C BB 11,∴ 1AD 与平面C C BB 11所成的角为0°.(4)∵ 11C D ⊥平面C C BB 11,∴ 11C D 与平面C C BB 11所成的角为90°. (5)连结AC ,交AD 于H .连结H B 1,∵ B B 1⊥平面ABCD ,CH平面ABCD ,∴ CH B B ⊥1,又∵ CH ⊥BD ,∴ CH ⊥平面D D BB 11.∴ H B 1为C B 1在平面D D BB 11内的射影.∴ H CB 1∠为C B 1与平面D D BB 11所成的角.设正方体棱长为1,则21=C B ,2221==AC CH ,∴ ︒=∠301H CB ,即C B 1与平面D D BB 11所成的角为30°. 445. 如图9-29,PA ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点.求证:MN ⊥AB .图9-29解析:连结AC ,取AC 中点O ,连结OM ,ON .由OM ∥BC ,得OM ⊥A B .又NO ∥PA ,且PA ⊥AB ,故NO ⊥AB .由此可得AB ⊥平面OMN .因此MN ⊥AB .446. 如图9-30,直线a 、b 是异面直线,它们所成角为30°,A A '为a 、b 的公垂线段,cm 4='A A .另有B 在直线a 上,且BA =2cm ,求点B 到直线b 的距离.解析:如图答9-20,过A '作a a //',则a '与b 确定平面 .作a BC '⊥于C ,在平面 内作CD ⊥b 于D ,连结B D .∵ a A A ⊥'∴ a A A '⊥'. ∵ b A A ⊥',A b a '=' ,∴α⊥'A A .∵ A A BC '//,∴ BC ⊥.∵ CD ⊥b ,∴ BD ⊥b (三垂线定理),即BD 为B 点到b 的距离.∵ a a '//,∴ D A C '∠为异面直线a 与b 所成的角,∴ ︒='∠30D A C .∵ 2=='AB C A ,︒='∠90A CD ,∴ CD =1.在Rt △BCD 中,4='=A A BC ,CD =1,∠BCD =90°,∴ 171422222=+=+=CD BC BD ,∴ 17=BD .447. 如图9-31,SA 、SB 、SC 三条直线两两垂直,点H 是S 在平面ABC 上的射影,求证:H 是△ABC 的垂心.解析:∵ SC ⊥SA ,SC ⊥SB ,且SA ∩SB =S ,∴ SC ⊥平面SAB ,∴ AB ⊥SC .∵ H 是S 在平面ABC 上的射影,∴ SH ⊥平面ABC .连结CH ,CH 为SC 在平面ABC 上的射影,∵ AB ⊥SC ,由三垂线定理的逆定理可知CH ⊥AB ,即CH 为AB 的垂线.同理AH ⊥BC ,即AH 为BC 边的垂线.H 为△ABC 两条垂线的交点,∴ H 为△ABC 垂心.448. 如图9-32,△ABD 和△ACD 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:图9-32(1)BD ⊥平面ADC ;(2)若H 是△ABC 的垂心,则H 为D 在平面ABC 内的射影.解析:(1)设AD =BD =CD =a ,则a AC AB 2==.∵ ∠BAC =60°,∴ a BC 2=.由勾股定理可知,∠BDC =90°.即BD ⊥DC ,又∵ BD ⊥AD ,AD ∩DC =D ,∴ BD ⊥平面ADC . (2)如图答9-21,要证H 是D 在平面ABC 上的射影,只需证DH ⊥平面ABD .连结HA 、HB 、HC .∵ H 是△ABC 的垂心,∴ CH ⊥AB .∵ CD ⊥DA ,CD ⊥BD ,∴ CD ⊥平面ABD ,∴ CD ⊥AB .∵ CH ∩CD =C ,∴ AB ⊥平面DCH . ∵ DH平面DCH ,∴ AB ⊥DH ,即DH ⊥AB ,同理DH ⊥BC .∵ AB ∩BC =B ,∴ DH ⊥平面ABC .449. PA 、PB 、PC 是从点P 出发的三条射线,每两条射线的夹角为60°,求直线PC 与平面PAB 所成的角的余弦值.解析:如图答9-22,在PC 上任取一点D ,作DH ⊥平面PAB 于H ,则∠DPH 为PC 与平面PAB 所成的角.作HE ⊥PA 于E ,HF ⊥PB 于F ,连结PH ,DE ,DF .∵ EH 、FH 分别为DE 、DF 在平面PAB 内的射影,由三垂线定理可得DE ⊥PA .DF ⊥PB .∵ ∠DPE =∠DPF ,∴ △DPE ≌△DPF .∴ PE =PF .∴ Rt △HPE ≌Rt △HPF ,∴ HE =HF ,∴ PH 是∠APB 的平分线.设EH =a ,则PH =2EH =2a ,a PE 3=.在Rt △PDE 中,∠DPE =60°,DE ⊥PA ,∴ a PE DP 322==.在Rt △DPH 中,DH ⊥HP ,PH =2a ,a DP 32=,∴ .33322cos ===∠a a DP PH DPH450. 四面体对棱长分别相等,分别是a,b,c.求体积.解析: 把四面体“嵌入”棱长为x,y,z 的长方体(如图).其充分条件是⎪⎩⎪⎨⎧=+=+=+222222222,,c x z b z y a y x有实数解⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=222222222222a c b z c b a y b a c x 如果关于x,y,z 的方程组有实数解,则四面体体积V =xyz-4·31·(21xy)·z =31xyz =122))()((222222222b a c a c b c b a -+-+-+说明 对棱相等的四面体各面是全等的锐角三角形,本题采用了体积分割法,转化法求体积.。
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
高中数学立体几何经典题型专题训练试题姓名 班级 学号 得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得 分一.单选题(共10小题,每题3分,共30分)1、如图,在正方体中ABCD-A1B1C1D1,M为BC的中点,点N在四边形CDD1C1及其内部运动.⊥1C1,则N点的轨迹为( )若MN AA.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分2、如图,正方体ABCD-A1B1C1D1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是( )A.点H是△A1BD的垂心B.直线AH与CD1的成角为900C.AH的延长线经过点C1D.直线AH与BB1的成角为4503、如图,正方体ABCD-A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为( )A.棱柱B.棱锥C.棱台D.球4.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形5.用一个平面去截一个正方体,所得截面不可能是(1)钝角三角形;(2)直角三角形;(3)菱形;(4)正五边形;(5)正六边形.下述选项正确的是( )A.(1)(2)(5)B.(1)(2)(4)C.(2)(3)(4)D.(3)(4)(5)6、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )⊥A.AC BEB.A1C⊥平面AEFC.三棱锥A-BEF的体积为定值D.异面直线AE、BF所成的角为定值7.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( )A.4B.C.D.28.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.29、如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为10.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=()A.1:1B.1:2C.1:3D.1:4第Ⅱ卷(非选择题)评卷人得 分二.填空题(共14小题,每题3分,共42分)11、正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使⊥,则∠D1NG=______.C1N MG12、已知如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点(不含顶点).则下列说法正确的是______.①A1C⊥平面B1EF;②△B1EF在侧面上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E位置有关,与点F位置无关;⑤当E,F分别为中点时,平面B1EF与棱AD交于点P,则三棱锥P-DEF的体积为.⊥,∠BAC=θ(0<θ≤),且13、如图,三棱锥A-BCD中,AB AD⊥,AC ADAB=AC=AD=2,E、F分别为AC、BD的中点,则EF的最大值为______.14、如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记,,那么M,N的大小关系是______.15.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.⊥1D则EF和BD1的关系是______.16、正方体ABCD-A1B1C1D1中,EF AC⊥,EF A17、已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为______.18、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).19、如图,正方体ABCD-A1B1C1D1的棱长为4,E,F分别是棱CD、C1D1的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A1B1C1D1上运动,则线段MN 的中点P的轨迹(曲面)与二面角D-C1D1-B1所围成的几何体的体积为______.∈1,且AM=BN,有以下四个结论:20、如图,正方体ABCD-A1B1C1D1中,点M AB∈1,N BC⊥;①AA1MN∥;②A1C1MN③MN与面A1B1C1D1成0°角;④MN与A1C1是异面直线.其中正确结论的序号是______.21、在正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于点E,交CC1于F,①四边形BFD1E一定是平行四边形②四边形BFD1E有可能是正方形③四边形BFD1E在底面ABCD内的投影一定是正方形④四边形BFD1E点有可能垂直于平面BB1D以上结论正确的为______(写出所有正确结论的编号)22、如图,正方体ABCD-A1B1C1D1中,对角线BD1与过A1、D、C1的平面交于点M,则=______.23.设A是自然数集的一个非空子集,如果k2A∉,且A,那么k是A的一个“酷元”,⊆,且集合M中的两个元素都是“酷元”那么这样的结给定S={0,1,2,3,4,5},设M S合M有______个.24、如图,AC为圆O的直径,B为圆周上不与A、C重合的点,SA⊥圆O所在的平面,连接SB、SC、AB、BC,则图中直角三角形的个数是______.评卷人得 分三.简答题(共28分)25、四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的⊥.一点,若△PAD为等边三角形,求证:PB AD26、如图,设三棱锥S-ABC的三个侧棱与底面ABC所成的角都是60°,又∠BAC=60°,且⊥.SA BC(1)求证:S-ABC为正三棱锥;(2)已知SA=a,求S-ABC的全面积.27、如图,E、F、G、H分别是空间四边形ABCD四边上的中点.(1)若BD=2,AC=6,则EG2+HF2等于多少?(2)若AC与BD成30°的角,且AC=6,BD=4,则四边形EFGH的面积等于多少?28、已知三棱锥S-ABC的三条侧棱SA、SB、SC两两互相垂直且长度分别为a、b、c,设O 为S在底面ABC上的射影.求证:(1)O为△ABC的垂心;(2)O在△ABC内;(3)设SO=h,则++=.29.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.30、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案评卷人得 分一.单选题(共__小题)1、如图,在正方体中ABCD-A1B1C1D1,M为BC的中点,点N在四边形CDD1C1及其内部运动.⊥1C1,则N点的轨迹为( )若MN AA.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分答案:A解析:解:正方体中ABCD-A1B1C1D1中,M为BC的中点,点N在四边形CDD1C1及其内部运动;如图所示,取CD、C1D1的中点Q、P,连接PQ,⊥1C1;当点N在线段PQ上时,MN A因为正方体ABCD-A1B1C1D1中,⊥1D1,连接B1D1,交A1C1于点O,∴B1D1A取B1C1的中点E,连接PE,则PE B∥1D1,⊥1C1;∴PE A∥1,又CC1⊥平面A1B1C1D1,PQ CC∴PQ⊥平面A1B1C1D1,∵A1C1⊂平面A1B1C1D1,⊥1C1;∴PQ A且PQ∩PE=P,∴A1C1⊥平面PQME,PQ⊂平面PQME,⊥;∴A1C1PQ∴N点的轨迹为线段PQ.故选:A.2、如图,正方体ABCD-A1B1C1D1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是( )A.点H是△A1BD的垂心B.直线AH与CD1的成角为900C.AH的延长线经过点C1D.直线AH与BB1的成角为450答案:D解析:解:由ABCD-A1B1C1D1是正方体,得A-A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故A正确;⊥1B,又CD1A∥1B,可得直线AH与CD1的成角为90°,故B正确;∵AH⊥面A1BD,∴AH A连接AC1,由三垂线定理及线面垂直的判定可得AC1⊥面A1DB,再由过一点与已知平面垂直的直线有且只有一条可得AH与AC1重合,可得C正确;直线AH与BB1所成的角,即为AH与AA1所成的角,设为θ,由正方体棱长为1,可得正三棱锥的底面边长为,从而求得AH=,则cos,∴D错误.故选:D.3、如图,正方体ABCD-A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为( )A.棱柱B.棱锥C.棱台D.球答案:A解析:解:∵Q点不能超过边界,若P点与A点重合,设AB中点E、AD中点F,移动Q点,则此时M点的轨迹为:以AE、AF为邻边的正方形;下面把P点从A点向上沿线段AD1移动,在移动过程中可得M点轨迹为正方形,…,最后当P点与D1点重合时,得到最后一个正方形,故所得几何体为棱柱,故选:A4.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形答案:A解析:解:棱柱的定义是,有两个面互相平行,其余各面都是四边形,相邻的公共边互相平行,有这些面围成的几何体是棱柱;可以判断A正确;B不正确,例如正六棱柱的相对侧面;C 不正确,只有直棱柱满足C的条件;D不正确,例如长方体.故选A5.用一个平面去截一个正方体,所得截面不可能是(1)钝角三角形;(2)直角三角形;(3)菱形;(4)正五边形;(5)正六边形.下述选项正确的是( )A.(1)(2)(5)B.(1)(2)(4)C.(2)(3)(4)D.(3)(4)(5)答案:B解析:解:如图所示截面为三角形ABC,OA=a,OB=b,OC=c,AC2=a2+c2,AB2=a2+b2,BC2=b2+c2∠=>0,∴cos CAB=∴∠CAB为锐角,同理∠ACB与∠ABC也为锐角,即△ABC为锐角三角形;如右图,取相对棱的中点,得到的四边形是菱形;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,如图为正六边形;经过正方体的一个顶点去切就可得到5边形.但此时不可能是正五边形.故不可能是(1)(2)(4).故选:B.6、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )⊥A.AC BEB.A1C⊥平面AEFC.三棱锥A-BEF的体积为定值D.异面直线AE、BF所成的角为定值答案:D解析:解:∵AC⊥平面BB1D1D,又BE⊂平面BB1D1D,⊥.故A正确.∴AC BE∵EF垂直于直线AB1,AD1,∴A1C⊥平面AEF.故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为,故V A-BEF为定值.C正确当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠FBC1,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠EAA1显然两个角不相等,D不正确.故选D.7.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( )A.4B.C.D.2答案:A解析:解:由于正六棱锥可知底面是六个正三角形组成,∴底面积S=6×=6,∴体积V==12,∴h=,夺直角三角形SOB中,侧棱长为SB=.故选A.8.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.2答案:C解析:解:如图PO⊥底面ABCD,连接OA,取AD的中点E,连接OE,PE,则PE为斜高.∠PAO为侧棱与底面所成的角,且为45°,在直角△PAO中,PO=2,AO=2,PA=4,在直角△AEO中,AE=2,故在直角△PEA中,PE==2.故选C.9、如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为答案:D解析:解:如图,∥,连接B1D1,交A1C1于N,则可证明OD1BN由OD1⊄面A1BC1,BN⊂面A1BC1,可得D1O∥面A1BC1,A正确;⊥,由三垂线定理的逆定理可得OD1AC设正方体棱长为2,可求得OM2=3,,,⊥,由线面垂直的判定可得D1O⊥平面AMC,B正确;则,有OD1OM由正方体的面对角线相等得到△A1BC1为正三角形,即∠A1C1B=60°,∴异面直线BC1与AC所成的角等于60°,C正确;设点B到平面AMC的距离为d,正方体的棱长为2a,则,,由V B-AMC=V A-BCM,得,即,解得:d=,D错误.故选:D.10.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=()A.1:1B.1:2C.1:3D.1:4答案:C解析:解:解:设正方体的棱长为:2,由题意可知C1E==3,∠C1EF=90°,所以设AF=x,12+x2+C1E2=22+22+(2-x)2,解得:x=,所以AF:FB=:=1:3;故选:C.评卷人得 分二.填空题(共__小题)11、正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使⊥,则∠D1NG=______.C1N MG答案:90°解析:解:连接MN,∵M,N分别是AA1和BB1的中点,∥1D1,由正方体的几何特征可得MN C在正方体ABCD-A1B1C1D1中,D1C1⊥平面B1C1CB∵C1N⊂平面B1C1CB⊥1N∴D1C1C⊥1N∴MN C⊥,MN∩MG=M,MD1,MG⊂平面MNG又∵C1N MG∴C1N⊥平面MNG又∵NG⊂平面MNG⊥∴C1N NG故∠D1NG=90°故答案为:90°12、已知如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点(不含顶点).则下列说法正确的是______.①A1C⊥平面B1EF;②△B1EF在侧面上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E位置有关,与点F位置无关;⑤当E,F分别为中点时,平面B1EF与棱AD交于点P,则三棱锥P-DEF的体积为.答案:②③⑤解析:解:对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.对于②△B 1EF 在侧面BCC 1B 1上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB 1,而E 点在面上的投影到此棱BB 1的距离是定值,故正确;对于③在平面A 1B 1C 1D 1内总存在与平面B 1EF 平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;对于④平面B 1EF 在平面ABCD 中的射影为△DFB ,面积为定值,但△B 1EF 的面积不定,故不正确;对于⑤由面面平行的性质定理可得EQ B ∥1F ,故D 1Q=,B 1Q PF ∥,故AP=,所以三棱锥P-DEF 的体积为,故正确故答案为:②③⑤.13、如图,三棱锥A-BCD 中,AB AD ⊥,AC AD ⊥,∠BAC=θ(0<θ≤),且AB=AC=AD=2,E 、F 分别为AC 、BD 的中点,则EF 的最大值为______.答案:解析:⊥,垂足为G,连接GE,解:过F作FG AB⊥,∵AD AB∥,∴G为AB的中点,∴AD FG∴FG=1,AG=1,∵E为AC的中点,∴AE=1,∠BAC=θ,∴EG=∵AD⊥平面ABC,∴FG⊥平面ABC,△中,EF===,在Rt FGE∵0,∴EF≤.故答案是.14、如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记,,那么M,N的大小关系是______.答案:M=N解析:解:根据平面中直角三角形的勾股定理类比得,S ABC△2=S PAB△2+S PBC△2+S PAC△2①,由等体积法得,∴②,①÷②整理得M=N.故答案为:M=N.15.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.答案:10解析:解:设截面四边形为EFGH,F、G、H分别是BC、CD、DA的中点,∴EF=GH=2,FG=HE=3,∴周长为2×(2+3)=10.故答案为:10.16、正方体ABCD-A1B1C1D1中,EF AC⊥,EF A⊥1D则EF和BD1的关系是______.答案:平行解析:解:法一:根据图象可知:⊥,AC∩B1C=C,⊥1D,A1D B∥1C,B1C EFEF AC⊥,EF A∥.∴EF⊥面AB1C,而BD1⊥面AB1C,即BD1EF法二:建立以D1为原点的空间直角坐标系D1-xyz,且设正方形的边长为1所以就有D1(0,0,0),B(1,1,0),A1(1,0,0),D(0,0,1),A(1,0,1),C(0,1,1)所以=(-1,0,1),=(-1,1,0),=(-1,-1,1)⊥1,所以•=-1+1=0 所以A1D BD⊥1,•=1-1=0 所以AC BD所以BD1与A1D和AC都垂直又∵EF是AC、A1D的公共垂线,∥.∴BD1EF故答案为:平行.17、已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为______.答案:解析:解:∵正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,连结AD1,AB1,∴由正方体的性质,得:AD1∩A1D=P,P是AD1的中点,∥1,PQ AB∴PQ=AB1==.故答案为:.18、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A 1C ⊥平面B 1EF ;②△B 1EF 在侧面BCC 1B 1上的正投影是面积为定值的三角形;③在平面A 1B 1C 1D 1内总存在与平面B 1EF 平行的直线;④平面B 1EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).答案:②③解析:解:若A 1C ⊥平面B 1EF ,则A 1C B ⊥1F ,由三垂线逆定理知:B 1F A ⊥1B ,又当F 与A 不重合时,B 1F 与A 1B 不垂直,∴①错误;∵E 在侧面BCC 1B 1上的投影在CC 1上,F 在侧面BCC 1B 1上的投影是B ,∴△B 1EF 在侧面BCC 1B 1上的正投影是三角形,三角形的面积S=×棱长×棱长为定值.∴②正确;设平面A 1B 1C 1D 1∩平面B 1EF=l ,∵平面A 1B 1C 1D 1内总存在与l 平行的直线,由线面平行的判定定理得与l 平行的直线,与平面B 1EF 平行,∴③正确;设E 与D 重合,F 位置变化,平面B 1EF 与平面ABCD 所成的二面角(锐角)的大小也在变化,∴④错误.故答案为:②③.19、如图,正方体ABCD-A 1B 1C 1D 1的棱长为4,E ,F 分别是棱CD 、C 1D 1的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A 1B 1C 1D 1上运动,则线段MN 的中点P 的轨迹(曲面)与二面角D-C 1D 1-B 1所围成的几何体的体积为______.答案:解析:解:依题意知|FP|=|MN|=1,因此点P的轨迹是以点F为球心、1为半径的球的.∴所求几何体的体积是×π×13=.故答案为:.∈1,且AM=BN,有以下四个结论:∈1,N BC20、如图,正方体ABCD-A1B1C1D1中,点M AB⊥;①AA1MN∥;②A1C1MN③MN与面A1B1C1D1成0°角;④MN与A1C1是异面直线.其中正确结论的序号是______.答案:①③解析:解:当M 为A ,N 为B ,排除②;当M 为B 1,N 为C 1,排除④.作MM′A ⊥1B 1于M′,作NN′B ⊥1C 1于N′,易证|MM′|=|NN′|,MM′NN′∥∴MN M′N′∥,由此知①③正确.故答案为:①③21、在正方体ABCD-A 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于点E ,交CC 1于F ,①四边形BFD 1E 一定是平行四边形②四边形BFD 1E 有可能是正方形③四边形BFD 1E 在底面ABCD 内的投影一定是正方形④四边形BFD 1E 点有可能垂直于平面BB 1D以上结论正确的为______(写出所有正确结论的编号)答案:①③④解析:解:如图:①由平面BCB 1C 1∥平面ADA 1D 1,并且B 、E 、F 、D 1四点共面,∴ED 1BF ∥,同理可证,FD 1EB ∥,故四边形BFD 1E 一定是平行四边形,故①正确;②若BFD 1E 是正方形,有ED 1BE ⊥,这个与A 1D 1BE ⊥矛盾,故②错误;③由图得,BFD 1E 在底面ABCD 内的投影一定是正方形ABCD ,故③正确;④当点E 和F 分别是对应边的中点时,平面BFD 1E ⊥平面BB 1D 1,故④正确.故答案为:①③④.22、如图,正方体ABCD-A 1B 1C 1D 1中,对角线BD 1与过A 1、D 、C 1的平面交于点M ,则=______.答案:2解析:解:由正方体的性质可得:D 1B ⊥平面DA 1C 1,∴D 1M 是三棱锥D 1-A 1DC 1的高.不妨设正方体的棱长为1.∵=,∴=,解得D 1M==.∴=2.故答案为:2.∉,且A,那么k是A的一个“酷元”,23.设A是自然数集的一个非空子集,如果k2A⊆,且集合M中的两个元素都是“酷元”那么这样的结给定S={0,1,2,3,4,5},设M S合M有______个.答案:5解析:解:∵S={0,1,2,3,4,5},由题意可知:集合M不能含有0,1,也不能同时含有2,4故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5},共5个故答案为:524、如图,AC为圆O的直径,B为圆周上不与A、C重合的点,SA⊥圆O所在的平面,连接SB、SC、AB、BC,则图中直角三角形的个数是______.答案:4解析:解:题题意SA⊥圆O所在的平面,AC为圆O的直径,B为圆周上不与A、C重合的点,可得出AB,BC垂直由此两个关系可以证明出CB垂直于面SAB,由此可得△ADB,△SAC,△ABC,△SBC都是直角三角形故图中直角三角形的个数是4个故答案为:4.评卷人得 分三.简答题(共__小题)25、四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的⊥.一点,若△PAD为等边三角形,求证:PB AD答案:证明:如图,连结BD ,取AD 的中点E ,连结PE ,BE ;从而易知△ABD 也是等边三角形,又∵△PAD 为等边三角形,∴AD PE ⊥,AD BE ⊥,又∵PE∩BE=E ;故AD ⊥平面PBE ;故AD PB ⊥.解析:证明:如图,连结BD ,取AD 的中点E ,连结PE ,BE ;从而易知△ABD 也是等边三角形,又∵△PAD 为等边三角形,∴AD PE ⊥,AD BE ⊥,又∵PE∩BE=E ;故AD ⊥平面PBE ;故AD PB ⊥.26、如图,设三棱锥S-ABC 的三个侧棱与底面ABC 所成的角都是60°,又∠BAC=60°,且SA BC ⊥.(1)求证:S-ABC 为正三棱锥;(2)已知SA=a ,求S-ABC 的全面积.答案:(1)证明:正棱锥的定义中,底面是正多边形;顶点在底面上的射影是底面的中心,两个条件缺一不可.作三棱锥S-ABC 的高SO ,O 为垂足,连接AO 并延长交BC 于D .因为SA BC ⊥,所以AD BC ⊥.又侧棱与底面所成的角都相等,从而O 为△ABC 的外心,OD 为BC 的垂直平分线,所以AB=AC .又∠BAC=60°,故△ABC 为正三角形,且O 为其中心.所以S-ABC 为正三棱锥.(2)解:在Rt SAO △中,由于SA=a ,∠SAO=60°,所以SO=a ,AO=a .因O 为重心,所以AD=AO=a ,BC=2BD=2ADcot60°=a ,OD=AD=a .在Rt SOD △中,SD 2=SO 2+OD 2=(a )2+(a )2=,则SD=a .于是,(S S-ABC )全=•(a )2sin60°+3••a•a=a 2.解析:(1)证明:正棱锥的定义中,底面是正多边形;顶点在底面上的射影是底面的中心,两个条件缺一不可.作三棱锥S-ABC 的高SO ,O 为垂足,连接AO 并延长交BC 于D .因为SA BC ⊥,所以AD BC ⊥.又侧棱与底面所成的角都相等,从而O 为△ABC 的外心,OD 为BC 的垂直平分线,所以AB=AC .又∠BAC=60°,故△ABC 为正三角形,且O 为其中心.所以S-ABC 为正三棱锥.(2)解:在Rt SAO △中,由于SA=a ,∠SAO=60°,所以SO=a ,AO=a .因O 为重心,所以AD=AO=a ,BC=2BD=2ADcot60°=a ,OD=AD=a .在Rt SOD △中,SD 2=SO 2+OD 2=(a )2+(a )2=,则SD=a .于是,(S S-ABC )全=•(a )2sin60°+3••a•a=a 2.27、如图,E 、F 、G 、H 分别是空间四边形ABCD 四边上的中点.(1)若BD=2,AC=6,则EG 2+HF 2等于多少?(2)若AC 与BD 成30°的角,且AC=6,BD=4,则四边形EFGH 的面积等于多少?答案:解:(1)∵E 、F 、G 、H 分别是空间四边形ABCD 四边上的中点,∴EH BD ∥,且EH=BD ;FG BD ∥,且FG=BD ;∴EH FG ∥,且EH=FG ,∴四边形EFGH 是平行四边形;又BD=2,AC=6,∴EH=BD=1,EF=AC=3,在△EFG 和△HFG 中,由余弦定理得,EG 2=EF 2+FG 2-2EF•FG•cos EFG∠=32+12-2×3×1×cos EFG∠=10-6cos EFG ∠,HF 2=HG 2+FG 2-2HG•FG•cos FGH∠=32+12-2×3×1×cos (π-EFG ∠)=10+6cos EFG ∠,∴EG 2+HF 2=20;(2)∵AC 与BD 成30°的角,且EF AC ∥,FG BD ∥,∴∠EFG=30°,又AC=6,BD=4,∴EF=AC=3,FG=BD=2;∠.∴四边形EFGH的面积为S=EF•FG•sin EFG=3×2×sin30°=3解析:解:(1)∵E、F、G、H分别是空间四边形ABCD四边上的中点,∥,且EH=BD;∴EH BDFG BD∥,且FG=BD;∥,且EH=FG,∴EH FG∴四边形EFGH是平行四边形;又BD=2,AC=6,∴EH=BD=1,EF=AC=3,在△EFG和△HFG中,由余弦定理得,∠EG2=EF2+FG2-2EF•FG•cos EFG∠=32+12-2×3×1×cos EFG∠,=10-6cos EFG∠HF2=HG2+FG2-2HG•FG•cos FGH∠)=32+12-2×3×1×cos(π-EFG=10+6cos EFG∠,∴EG2+HF2=20;(2)∵AC 与BD 成30°的角,且EF AC ∥,FG BD ∥,∴∠EFG=30°,又AC=6,BD=4,∴EF=AC=3,FG=BD=2;∴四边形EFGH 的面积为S=EF•FG•sin EFG=3×2×sin30°=3∠.28、已知三棱锥S-ABC 的三条侧棱SA 、SB 、SC 两两互相垂直且长度分别为a 、b 、c ,设O 为S 在底面ABC 上的射影.求证:(1)O 为△ABC 的垂心;(2)O 在△ABC 内;(3)设SO=h ,则++=.答案:证明:(1)∵SA SB ⊥,SA SC ⊥,∴SA ⊥平面SBC ,BC ⊂平面SBC .∴SA BC ⊥.而AD 是SA 在平面ABC 上的射影,∴AD BC ⊥.同理可证AB CF ⊥,AC BE ⊥,故O 为△ABC 的垂心.(2)证明△ABC 为锐角三角形即可.不妨设a≥b≥c ,则底面三角形ABC 中,AB=为最大,从而∠ACB 为最大角.用余弦定理求得cos ACB=∠>0,∴∠ACB 为锐角,△ABC 为锐角三角形.故O 在△ABC 内.(3)SB•SC=BC•SD ,故SD=,=+,又SA•SD=AD•SO ,∴===+=++=.解析:证明:(1)∵SA SB ⊥,SA SC ⊥,∴SA ⊥平面SBC ,BC ⊂平面SBC .∴SA BC ⊥.而AD 是SA 在平面ABC 上的射影,∴AD BC ⊥.同理可证AB CF ⊥,AC BE ⊥,故O 为△ABC 的垂心.(2)证明△ABC 为锐角三角形即可.不妨设a≥b≥c ,则底面三角形ABC 中,AB=为最大,从而∠ACB 为最大角.用余弦定理求得cos ACB=∠>0,∴∠ACB 为锐角,△ABC 为锐角三角形.故O 在△ABC 内.(3)SB•SC=BC•SD ,故SD=,=+,又SA•SD=AD•SO ,∴===+=++=.29.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.答案:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9⊥于点G,(2)过O作OG PE∽△,且OG=OH=R,则△POG PEH∴,∴R=解析:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9⊥于点G,(2)过O作OG PE∽△,且OG=OH=R,则△POG PEH∴,∴R=30、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ;(3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.解析:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.。
高中立体几何典型500题及解析(四)(151~200题)151. .已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( )A .32 B .32C .35 D .322 解析:C如图,1D GD ∠为所求的二面角的平面角。
GθθCD BA可利用求cos θ求出DG 的长度,则所求函数值可求。
152. 与正方形各面成相等的角且过正方体三个顶点的截面的个数是________.解析:如图中,截面ACD 1和截面ACB 1均符合题意要求,这样的截面共有8个;153. 已知矩形ABCD 的边AB=1,BC=a ,PA ⊥平面ABCD ,PA=1,问 BC 边上是否存在点Q ,使得PQ ⊥QD ,并说明理由.解析:连接AQ ,因PA ⊥平面ABCD ,所以PQ ⊥QD ƒAQ ⊥QD ,即以AD 为直经的圆与BC 有交点.当AD=BC=a ≥AB=1,即a ≥1时,在BC 边上存在点Q ,使得PQ ⊥1QD ;.........5分当0<a<1时,在BC 边上不存在点Q ,使得PQ ⊥QD ...154. 如图,正三棱柱ABC —A 1B 1C 1的底面边长的3,侧棱AA 1=,233D 是CB 延长线上一点,且BD=BC.(Ⅰ)求证:直线BC 1//平面AB 1D ;(Ⅱ)求二面角B 1—AD —B 的大小; (Ⅲ)求三棱锥C 1—ABB 1的体积.(Ⅰ)证明:CD//C 1B 1,又BD=BC=B 1C 1, ∴ 四边形BDB 1C 1是平行四边形, ∴BC 1//DB 1.又DB 1⊂平面AB 1D ,BC 1⊄平面AB 1D ,∴直线BC 1//平面AAAB 1D....................5分(Ⅱ)解:过B 作BE ⊥AD 于E ,连结EB 1, ∵B 1B ⊥平面ABD ,∴B 1E ⊥AD ,∴∠B 1EB 是二面角B 1—AD —B 的平面角, ∵BD=BC=AB , ∴E 是AD 的中点, .2321==AC BE在Rt △B 1BE中,.32332311===∠BEB B BE B tg ∴∠B 1EB=60°。
第九章立体几何与空间向量第1节简单几何体的结构、三视图和直观图一、选择题1.如图是由哪个平面图形旋转得到的( A )解析:根据面动成体的原理即可解,一个直角三角形绕直角边旋转一周可以得到一个圆锥.一个直角梯形绕着直角腰旋转一周得到圆台.该几何体的上部分是圆锥,下部分是圆台,圆锥的轴截面是直角三角形,圆台的轴截面是直角梯形,所以这个几何图形是由直角三角形和直角梯形围绕直角边所在的直线为轴旋转一周得到.故选A.2.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4, AB⊥AC,AA1=12,则球O的半径为( C )(A) (B)2 (C) (D)3解析:构建长方体的棱长分别为3,4,12.体对角线长为=13,外接球的半径为,故选C.3.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( B )(A)8 (B)(C)(D)解析:若以4作为圆柱的高、2作为底面圆的周长,则圆柱轴截面面积为;若以2作为圆柱的高、4作为底面圆的周长,则圆柱轴截面面积为,所以此圆柱轴截面面积为.故选B.4.正四棱锥S-ABCD的底面边长为4,高SE=8,则过点A,B,C,D,S的球的半径为( C )(A)3 (B)4 (C)5 (D)6解析:由正四棱锥及其外接球的对称性,球心O在正四棱锥的高线SE上,球半径R=OS=OB,EB=BD=4.所以在直角三角形OEB中,由勾股定理得,(8-R)2+42=R2,解得R=5,故选C.5.三棱锥P-ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为( B )(A)16 (B)(C)(D)32解析:因为PA,PB,PC两两垂直,又因为三棱锥P-ABC的四个顶点均在半径为1的球面上,所以以PA,PB,PC为棱的长方体的对角线即为球的一条直径.所以16=PA2+PB2+PC2,因为PA=2PB,则这个三棱锥的三个侧棱长的和PA+PB+PC=3PB+PC,因为5PB2+PC2=16,设PB=4cos α,PC=4sin α,则3PB+PC=cos α+4sin α=sin(α+φ)≤=. 可知其最大值为,选B.6.已知一个四面体其中五条棱的长分别为1,1,1,1,,则此四面体体积的最大值是( B )(A) (B) (C) (D)解析:设四面体为P-ABC,则设PC=X,AB=,其余的各边为1,那么取AB 的中点D,那么连接PD,因此可知,AB垂直于平面PCD,则棱锥的体积可以运用以PCD为底面,高为AD,BD的两个三棱锥体积的和来表示,因此只要求解底面积的最大值即可.由于PD=CD=,那么可知三角形PDC的面积越大,体积越大,可知S△PDC=××sin θ≤=,也就是当PD垂直于CD时,面积最大,因此可得四面体的体积的最大值为××=,选B.二、填空题7.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为.解析:因为圆柱的侧面展开图是边长为6π和4π的矩形,①若6π=2πr,r=3,所以圆柱的表面积为4π×6π+2×πr2=24π2+18π;②若4π=2πr,r=2,所以圆柱的表面积为4π×6π+2×πr2=24π2+8π.答案:24π2+8π或24π2+18π8.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.解析:设球的半径为r,则V圆柱=πr2×2r=2πr3,V圆锥=πr2×2r=,V球=πr3,所以V圆柱∶V圆锥∶V球=2πr3∶∶πr3=3∶1∶2.答案:3∶1∶29.将4个半径都是R的球体完全装入底面半径是2R的圆柱形桶中,则桶的最小高度是.解析:由题意知,小球要分两层放置且每层两个,令下层两小球的球心分别是A,B,上层两小球的球心分别是C,D.此时,圆柱底面的半径=两小球半径的和,恰好使小球相外切,且与圆柱母线相切.圆柱的高=上层小球的上方半径+AB与CD间的距离+下层小球的下方半径=2R+AB与CD间的距离.令AB,CD的中点分别为E,F.很明显,四面体ABCD每条棱的长都是2R,容易求出:EC=ED,FA=FB,由EC=ED,CF=DF,得EF⊥CD.由FA=FB,AE=BE,得EF⊥AB.所以EF是AB与CD间的距离,所以圆柱的高=2R+EF.由勾股定理,有CE2+AE2=AC2,CE2=EF2+CF2.两式相减,消去CE,得AE2=AC2-EF2-CF2,所以EF2=AC2-AE2-CF2=(2R)2-R2-R2=2R2,所以EF=R.所以圆柱的高=2r+R=(2+)R.答案:(2+)R10.一个圆锥有三条母线两两垂直,则它的侧面展开图的圆心角大小为.解析:设母线长为l,因圆锥有三条母线两两垂直,则这三条母线可以构成以它们为侧棱、以底面边长为l的正三角形的正三棱锥,故由正弦定理得,圆锥的底面直径2R=,解得R=,因此可知侧面展开图的圆心角大小为π.答案:π11.若圆锥的侧面展开图是圆心角为180°,半径为4的扇形,则这个圆锥的表面积是.解析:因为圆锥的侧面展开图是圆心角为180°,母线长等于4,半径为4的扇形,则这个圆锥的表面积是底面积加上侧面积,扇形面积加上底面面积的和为12π.答案:12π12.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是.解析:从长方体的一条对角线的一个端点A出发,沿表面运动到另一个端点B,有三种方案,如图是它们的三种部分侧面展开图,AB路程可能是:最短路程是.答案:三、解答题13.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,求a+b的最大值.解:如图,把几何体放到长方体中,使得长方体的体对角线刚好为几何体的已知棱,则长方体的体对角线A 1C=,则它的正视图投影长为A 1B=,侧视图投影长为A1D=a,俯视图投影长为A1C1=b,则a2+b2+()2=2·()2,即a2+b2=8,又≤,当且仅当“a=b=2”时等号成立.所以a+b≤4,即a+b的最大值为4.14.某几何体的三视图如图所示.(1)判断该几何体是什么几何体?(2)画出该几何体的直观图.解:(1)该几何体是一个正方体切掉两个圆柱后得到的几何体.(2)直观图如图所示.15.已知正三棱锥V-ABC的正视图和俯视图如图所示.(1)画出该正三棱锥的侧视图和直观图;(2)求出侧视图的面积.解:(1)如图.(2)侧视图中V A===2,则S △VBC=×2×2=6.第2节简单几何体的表面积与体积一、选择题1.如图所示是一个几何体的三视图,则该几何体的体积为( B )(A)16+2π(B)8+2π(C)16+π (D)8+π解析:由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此V=1×2×4+π×12×2=8+2π.故选B.2.一个三条侧棱两两互相垂直并且侧棱长都为a的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( B )(A)πa2(B)3πa2(C)6πa2(D)πa2解析:由题可知该三棱锥为一个棱长a的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为a,则球半径为a,则S=4πr2=4π(a)2=3πa2.故选B.3.一个棱长都为a的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( A )(A)πa2(B)2πa2(C)πa2(D)πa2解析:如图,设O1,O2为棱柱两底面的中心,球心O为O1O2的中点.又直三棱柱的棱长为a,可知OO1=a,AO1=a,所以R2=OA2=O+A=,因此该直三棱柱外接球的表面积为S=4πR2=4π×=πa2,故选A.4.某几何体的三视图如图所示,则该几何体的体积为( D )(A) (B)2 (C) (D)解析:由三视图可知,该几何体的直观图为一个竖立的圆锥和一个倒立的圆锥组成,其体积为V=2×π×12×1=,选D.5.某四棱锥的三视图如图所示,则该四棱锥的体积是( C )(A)5 (B)2 (C) (D)解析:由三视图知,该四棱锥的底面是直角梯形,上底长为2,下底长为3,高为,四棱锥的高为h=2,故该四棱锥的底面积S=(2+3)×=,所以该四棱锥的体积V=Sh=××2=.6.已知边长为2的菱形ABCD中,∠A=60°,现沿对角线BD折起,使得二面角A BD C为120°,此时点A,B,C,D在同一个球面上,则该球的表面积为( C )(A)20π(B)24π(C)28π(D)32π解析:如图,分别取BD,AC的中点M,N,连接MN,则容易算得AM=CM=3,MN=,MD=,CN=,由图形的对称性可知球心必在MN的延长线上,设球心为O,半径为R,ON=x,则由题设可得解得x=,则R2=+=7,所以球面面积S=4πR2=28π,故选C.二、填空题7.一个圆柱的轴截面为正方形,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.解析:令正方形的边长为a,则圆柱的侧面积S1=2π××a=πa2,与它同底等高的圆锥的侧面积S2=πrl=π××a=,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.答案:8.球O与直三棱柱ABC-A1B1C1的各个面都相切,若三棱柱的表面积为27,△ABC的周长为6,则球的表面积为.解析:设内切球半径为r,那么直三棱柱的底面内切圆半径为r,棱柱的高为2r,由等面积法,则直三棱柱底面面积S 底=r×6=3r,由等体积法,V三棱柱=S底·2r=r·27,所以9r=6r2,解得r=.其表面积为4π×()2=3π.答案:3π9.已知母线长为6,底面半径为3的圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,则球的体积是 .解析:取圆锥的轴截面,则截面是边长为6的正三角形,正三角形的内切圆的圆心即为球心,R=6××,所以R=,所以V=πR3=4π.答案:4π10.棱长为a的正方体ABCD A 1B1C1D1的8个顶点都在球O的表面上,E,F 分别是棱AA1,DD1的中点,则过E,F两点的直线被球O截得的线段长为.解析:设过E,F两点的直线与球O交于M,N,所以△OMN,△OEF均为等腰直角三角形,所以OM=ON=R=a,点O到EF的距离为棱长一半,所以|MN|=2= a.答案: a11.四棱锥P-ABCD的各顶点都在同一球面上,且矩形ABCD的各顶点都在同一个大圆上,球半径为R,则此四棱锥的体积的最大值为.解析:点P到平面ABCD的最大距离为R,设矩形ABCD的长宽分别为x,y,则x2+y2=4R2,四棱锥P ABCD的体积V=xyR≤×=R3,当且仅当x=y=R时,V max=R3.答案:R312.设正四面体ABCD的棱长为a,P是棱AB上的任意一点,且P到平面ACD,BCD的距离分别为d1,d2,则d1+d2= .解析:根据题意,由于正四面体ABCD的棱长为a,各个面的面积为a2,高为a,所以V=×a2×a=×a2×(d1+d2),所以d1+d2= a.答案: a三、解答题13.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥加一个圆柱组成的,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=(2πa)·(a)=πa2,S圆柱侧=(2πa)·(2a)=4πa2,S圆柱底=πa2,所以S 表=πa2+4πa2+πa2=(+5)πa2.(2)沿P点所在母线剪开圆柱侧面,如图.则PQ===a,所以从P点到Q点在侧面上的最短路径长为a.14.如图,四棱锥P ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体NBCM的体积.(1)证明:由已知得AM=AD=2.如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.所以AM=TN,又AD∥BC,故TN AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)解:因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.取BC的中点E,连接AE.由AB=AC=3得AE⊥BC,AE==.由AM∥BC得M到BC的距离为,故S △BCM=×4×=2.所以四面体NBCM的体积V N-BCM=×S△BCM×=.15.如图所示,在空间几何体ADE BCF中,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是线段AE上的动点.(1)试确定点M的位置,使AC∥平面MDF,并说明理由;(2)在(1)的条件下,平面MDF将几何体ADE-BCF分成两部分,求空间几何体M-DEF与空间几何体ADM BCF的体积之比.解:(1)当M是线段AE的中点时,AC∥平面MDF.理由如下:连接CE交DF于点N,连接MN.因为M,N分别是AE,CE的中点,所以MN∥AC.又因为MN⊂平面MDF,AC⊄平面MDF,所以AC∥平面MDF.(2)将几何体ADE-BCF补成三棱柱ADE-B′CF,如图所示,三棱柱ADE-B′CF的体积为V=S△ADE·CD=×2×2×4=8,则几何体ADE-BCF的体积=-=8-×(×2×2)×2=.因为三棱锥M-DEF的体积=×(×2×4)×1=,所以=-=,所以两几何体的体积之比为∶=1∶4.第3节空间图形的基本关系与公理一、选择题1.设m,n是两条不同的直线,α,β是两个不同的平面( C )(A)若m∥α,n∥α,则m∥n(B)若m∥α,m∥β,则α∥β(C)若m∥n,m⊥α,则n⊥α(D)若m∥α,α⊥β,则m⊥β解析:设直线a⊂α,b⊂α,a∩b=A,因为m⊥α,所以m⊥a,m⊥b.又n∥m,所以n⊥a,n⊥b,所以n⊥α.故选C.2.下列命题中,错误的是( D )(A)平行于同一平面的两个不同平面平行(B)一条直线与两个平行平面中的一个相交,则必与另一个平面相交(C)如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直(D)若直线不平行于平面,则此直线与这个平面内的直线都不平行解析:当直线l在平面α内,即l⊂α时,直线l不平行于平面α,但平面α内存在直线与直线l平行,可知D选项错误,故选D.3.下列四个命题:①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( D )(A)①和②(B)②和③(C)③和④(D)②和④解析:①显然错误,因为这两条直线相交才满足条件;②成立;③错误,这两条直线可能平行、相交,也可能异面;④成立,用反证法容易证明.故选D.4.若α,β是两个相交平面,则在下列命题中,真命题的序号为( C )①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线;②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直;③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线;④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.(A)①③(B)②③(C)②④(D)①④解析:若α⊥β且直线m⊥α,则在平面β内,一定存在与直线m平行的直线,所以①错误;若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直,故②正确;若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线,故③错误,④正确,故选C.5.设不在同一条直线上的A,B,C三点到平面α的距离相等,且A∉α,则( B )(A)α∥平面ABC(B)△ABC中至少有一条边平行于α(C)△ABC中至多有两条边平行于α(D)△ABC中只可能有一条边平行于α解析:因为A∉α,所以A,B,C均不在平面α内.当A,B,C三点在平面α的同侧时,α∥平面ABC,此时△ABC的三条边都平行于α,排除C,D;当A,B,C三点不在平面α的同侧时,易知△ABC中只有一条边平行于α,此时平面α和平面ABC相交,故选B.6.若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( B )(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:因为l⊥m,m⊥α,所以l∥α或l⊂α.故充分性不成立.若l∥α,m⊥α,一定有l⊥m.故必要性成立.选B.二、填空题7.长方体ABCD-A1B1C1D1的底面是边长为1的正方形,点E在侧棱AA1上(不与A,A1重合),满足∠C1EB=90°,则异面直线BE与C1B1所成的角为,侧棱AA1的长的最小值为.解析:在长方体ABCD-A1B1C1D1中,CB⊥平面ABB1A1,所以∠CBE=90°,又C1B1∥BC,所以异面直线BE与C1B1所成的角为90°.连接BC1,设AA1=x,AE=m(m>0),则有BE2=1+m2,C1E2=(x-m)2+2,C1B2=1+x2,因为∠C1EB=90°,所以C1B2=C1E2+BE2,即1+x2=(x-m)2+2+1+m2,即m2-mx+1=0,所以x=m+≥2,当且仅当m=,即m=1时,“=”成立.答案:90° 28.四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A1-BCD,使平面A1BD⊥平面BCD,给出下列结论:(1)A1C⊥BD;(2)∠BA1C=90°;(3)四面体A1-BCD的体积为.其中正确的命题是.(把所有正确命题的序号都填上) 解析:若A1C⊥BD,因为BD⊥CD,A1C∩CD=C,所以BD⊥平面A1CD,所以BD⊥A1D.而由A 1B=AB=1,A1D=AD=1,BD=,得A1B⊥A1D,与BD⊥A1D矛盾,故(1)错.因为CD⊥BD,平面BCD⊥平面A1BD,所以CD⊥平面A1BD,则CD⊥A1B.又A1B⊥A1D,A1D∩CD=D,所以A1B⊥平面A1CD,则A1B⊥A1C,故(2)正确.由(2)知==×·A1D·DC·A1B=,故(3)错.答案:(2)9.在正方体ABCD A 1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有条.解析:在A1D1上任取一点P,过点P与直线EF作一个平面α,因为CD 与平面α不平行,所以它们相交,设α∩CD=Q,连接PQ,则PQ与EF必然相交.由点P的任意性,知有无数条直线与A1D1,EF,CD都相交.答案:无数10.如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形.∠ACB =90°,AC=6,BC=CC 1=,P是BC1上一动点,则CP+PA1的最小值为.解析:连接A1B,将△A1BC1与△CBC1同时展开形成一个平面四边形A1BCC1,则此时对角线CP+PA1=A1C达到最小,在等腰直角三角形△BCC1中,BC1=2,∠CC1B=45°,在△A 1BC1中,A1B==2,A1C1=6,BC1=2,所以A1+B=A1B2,即∠A1C1B=90°.对于展开形成的四边形A1BCC1,如图,在△A 1C1C中,C1C=,A1C1=6,∠A1C1C=135°,由余弦定理有,CP+PA 1=A1C===5.答案:511. 如图,三棱锥A BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.因为M为AD的中点,所以MK∥AN,所以∠KMC为异面直线AN,CM所成的角.因为AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理求得AN=DN=CM=2,所以MK=.在Rt△CKN中,CK==.在△CKM中,由余弦定理,得cos∠KMC===.答案:12.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE 翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是.①BM是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.解析:取DC中点F,连接MF,BF,MF∥A1D且MF=A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB 是定值,所以M是在以B为圆心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;A1C在平面ABCD中的投影与AC重合,AC与DE不垂直,可得③不正确.答案:③三、解答题13.如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.解:如图所示,取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,所以EF∥CD.所以∠BEF或其补角即为异面直线BE与CD所成的角.在Rt△EAB中,AB=AC=1,AE=AD=,所以BE=.在Rt△EAF中,AF=AC=,AE=,所以EF=.在Rt△BAF中,AB=1,AF=,所以BF=.在等腰三角形EBF中,cos∠FEB===.所以异面直线BE与CD所成角的余弦值为.14.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:(1)如图所示,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体ABCD-A1B1C1D1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面.即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,则R∈α且∈β.则R∈PQ,故P,Q,R三点共线.15.在长方体ABCD A 1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.(1)过P点在空间内作一条直线l,使l∥直线BD,应该如何作图?并说明理由;(2)过P点在平面A1C1内作一条直线m,使m与直线BD成α角,其中α∈(0°,90°],这样的直线有几条,应该如何作图?解:(1)连接B1D1,BD,在平面A1C1内过P点作直线l,使l∥直线B1D1,则l即为所求作的直线.因为直线B1D1∥直线BD,l∥直线B1D1,所以l∥直线BD.如图(1).(2)在平面A1C1内作直线m,使直线m与B1D1相交成α角,因为BD∥B1D1,所以直线m与直线BD也成α角,即直线m为所求作的直线,如图(2).由图(2)知m与BD是异面直线,且m与BD所成的角α∈(0,90°].当α=90°时,这样的直线m有且只有一条,当α≠90°时,这样的直线m 有两条.第4节直线、平面平行的判定与性质一、选择题1.若直线l∥平面α,直线a⊂平面α,则l与a的位置关系是( D )(A)l∥a (B)l与a异面(C)l与a相交 (D)l与a没有公共点解析:因为直线平行于平面,那么l与平面内的任何一条直线都没有公共点,因此l与a的位置关系是没有公共点,选D.2.下列条件能推出平面α∥平面β的是( D )(A)存在一条直线a,a∥α,a∥β(B)存在一条直线a,a⊂α,a∥β(C)存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α(D)存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:因为根据面面平行的判定定理可知,如果存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,则可以利用线线平行得到面面平行,选D.3.已知直线l,m,平面α,β,则下列命题中:①若α∥β,l⊂α,则l∥β②若α⊥β,l⊥α,则l∥β③若l∥α,m⊂α,则l∥m④若α⊥β,α∩β=l,m⊥l,则m⊥β,其中真命题有( B )(A)0个(B)1个(C)2个(D)3个解析:当两个平面平行时,一个平面上的线与另一个平面平行,故①正确;一条直线垂直于两个垂直平面中的一个平面,那么这条直线平行于或包含于另一个平面,故②不正确;④不正确;③中l,m的关系是不相交,故③不正确,故选B.4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( B )(A)①③(B)①④(C)②③(D)②④解析:对图①,构造AB所在的平面,即对角面,可以证明这个对角面与平面MNP平行,由线面平行的定义可得AB∥平面MNP;对图④,通过证明AB∥PN得到AB∥平面MNP;对于②,证MP中点为K,延长BA,KN则相交,所以BA与平面MNP相交,②错;对于③平面MNP与直线AB相交于点B,③错.故选B.5.类比平面几何中的定理“设a,b,c是三条直线,若a⊥c,b⊥c,则a∥b”,得出如下结论:①设a,b,c是空间的三条直线,若a⊥c,b⊥c,则a∥b;②设a,b是两条直线,α是平面,若a⊥α,b⊥α,则a∥b;③设α,β是两个平面,m是直线,若m⊥α,m⊥β,则α∥β;④设α,β,γ是三个平面,若α⊥γ,β⊥γ,则α∥β.其中正确命题的个数是( B )(A)1 (B)2 (C)3 (D)4解析:①错;②垂直于同一个平面的两条直线平行,正确;③垂直于同一条直线的两个平面平行,正确;④错;两个平面也可能相交.6.在空间中,下列命题正确的是( D )(A)平面α内的一条直线a垂直于平面β内的无数条直线,则α⊥β(B)若直线m与平面α内的一条直线平行,则m∥α(C)若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β(D)若直线a与平面α内的无数条直线都垂直,则不能说一定有a⊥α解析:直线a与平面α内的任意直线都垂直,则有a⊥α,所以D正确.二、填空题7.点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB的中点,则EF= .解析:取BC的中点D,连接ED与FD,因为E,F分别是SC和AB的中点,点D为BC的中点所以ED∥SB,FD∥AC,而SB⊥AC,SB=AC=2,则三角形EDF为等腰直角三角形,则ED=FD=1,即EF=.答案:8.正四棱锥S ABCD的底面边长为2,高为2,E是边BC的中点,动点P 在这个棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.解析:由题意知,点P的轨迹为如图所示的三角形EFG,其中G,F为其所在棱的中点,所以EF=BD=,GE=GF=SB=,所以轨迹的周长为+.答案:+9.将边长为2,一个内角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E,F分别为AC,BD的中点,则下列命题中正确的是.①EF∥AB;②EF⊥BD;③EF有最大值,无最小值;④当四面体ABCD的体积最大时,AC=;⑤AC垂直于截面BDE.解析:因为将边长为2,一个内角为60°的菱形ABCD沿较短对角线BD 折成四面体ABCD,点E,F分别为AC,BD的中点,则可知EF⊥BD,当四面体ABCD的体积最大时,AC=,AC垂直于截面BDE成立.答案:②④⑤10.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于A,C,过点P的直线n与α,β分别交于B,D且PA=6,AC=9,PD=8,则BD的长为.解析:因为平面α∥平面β,所以AB∥CD,①当P在两平面外时,==,所以=,所以BD=.②当P在两平面之间时,=,所以=,所以BD=24,所以BD的长为或24.答案:或2411.给出下列四个命题:①过平面外一点,作与该平面成θ角的直线一定有无穷多条;②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行;④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等.其中正确的命题序号为.解析:①中,成90度角的时候,就只有一条,因此错误.②中是线面平行的性质定理,显然成立.③不正确.④中,利用等角定理,可知成立. 答案:②④12.侧棱长为2的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A 作截面AEF,则截面△AEF周长的最小值为.解析:沿着侧棱VA把正三棱锥V ABC展开在一个平面内,则设VA的另一边为VA′,则AA′即为截面△AEF周长的最小值,且∠AVA′=3×40=120°.△VAA′中,由余弦定理可得AA′=6.答案:6三、解答题13.已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E 在棱C1D1上,且D1E=3.(1)试在棱CD上确定一点E1,使得直线EE1∥平面D1DB,并证明;(2)若动点F在底面ABCD内,且AF=2,请说明点F的轨迹,并探求EF 长度的最小值.解:(1)取CD的四等分点E1,使得DE1=3,则有EE1∥平面D1DB.证明如下:因为D1E∥DE1且D1E=DE1,所以四边形D1EE1D为平行四边形,则D1D∥EE1,因为DD1⊂平面D1DB,EE1⊄平面D1DB,所以EE1∥平面D1DB.(2)因为AF=2,所以点F在平面ABCD内的轨迹是以A为圆心,半径等于2的四分之一圆弧.因为EE1∥DD1,D1D⊥平面ABCD,所以E1E⊥平面ABCD,故EF==.所以当E1F的长度取最小值时,EF的长度最小,此时点F为线段AE1和四分之一圆弧的交点,即E1F=E1A-AF=5-2=3,所以EF==.即EF长度的最小值为.14.在正方体ABCD-A1B1C1D1中,棱长为2,E是棱CD的中点,P是棱AA1的中点,(1)求证:PD∥平面AB1E;(2)求三棱锥B-AB1E的体积.(1)证明:取AB1中点Q,连接PQ,则PQ为中位线,PQ A1B1,而正方体ABCD-A1B1C1D1,E是棱CD的中点,故DE A1B1,所以PQ DE,所以四边形PQED为平行四边形.所以PD∥QE,而QE⊂平面AB1E,PD⊄平面AB1E,故PD∥平面AB1E.(2)解:正方体ABCD-A1B1C1D1中,BB1⊥平面ABE,故BB1为高,BB1=2,因为CD∥AB,所以S△ABE=S△ABC=AB·BC=×2×2=2.故==BB1·S△ABC=.15.如图,在四面体PABC中,PA=PB,CA=CB,D,E,F,G分别是PA,AC,CB,BP的中点.(1)求证:D,E,F,G四点共面;(2)求证:PC⊥AB;(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,PC=,求四面体PABC的体积.(1)证明:依题意DG∥AB,EF∥AB,所以DG∥EF,DG,EF共面,从而D,E,F,G四点共面.(2)证明:取AB中点为O,连接PO,CO.因为PA=PB,CA=CB,所以PO⊥AB,CO⊥AB,因为PO∩CO=O,所以AB⊥平面POC,PC⊂平面POC,所以AB⊥PC.(3)解:因为△ABC和△PAB是等腰直角三角形,所以PO=CO=AB=1,因为PC=,OP2+OC2=PC2,所以OP⊥OC,又PO⊥AB,且AB∩OC=O,所以PO⊥平面ABC,=PO·S△ABC=×1×2×1×=.第5节直线、平面垂直的判定与性质一、选择题1.已知直线l,m和平面α, 则下列命题正确的是( C )(A)若l∥m,m⊂α,则l∥α(B)若l∥α,m⊂α,则l∥m(C)若l⊥α,m⊂α,则l⊥m(D)若l⊥m,l⊥α,则m∥α解析:A项中直线l与平面α可能平行,可能直线在平面内;B项中直线l,m平行或异面;C项中当直线垂直于平面时,直线垂直于平面内任意直线;D项中直线m与平面α平行或直线在平面内.2.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P ABC中共有直角三角形个数为( A )(A)4 (B) 3 (C) 2 (D) 1解析:因为PA⊥平面ABC,AB⊥BC,所以PA⊥AB,PA⊥AC,PB⊥CB,所以△ABC,△PBC, △ABP, △APC都是直角三角形,故选A.3.已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则( C )(A)n⊥β (B)n∥β,或n⊂β(C)n∥α或n⊂α(D)n⊥α解析:由题意画出图形,容易判断选项.由于直线m⊥n,m⊥α,α⊥β,选项A,中线面可能相交,也可能垂直,选项B中,n与β还可能相交,错误,选项D中,直线不能垂直于平面,故结合图象不难得到选项为C.4.正方体的棱长为1,C,D,M分别为三条棱的中点,A,B是顶点,那么点M到截面ABCD的距离是( B )(A)(B)(C)(D)解析:过M作AB的垂线MN交AB于N,连接CN.由于CM⊥AB,MN⊥AB,则AB⊥平面CMN,所以,M到面ABCD的距离h是直角三角形CMN的斜边CN上的高.由于BM=,CM=1,MN=,CN=,则结合=求得h=.故选B.。
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
高中立体几何典型500题及解析(九)(401~450题)401. 如图,在ΔABC 中,∠ACB =90°,BC =a,AC =b,D 是斜边AB 上的点,以CD 为棱把它折成直二面角A —CD —B 后,D 在怎样的位置时,AB 为最小,最小值是多少?解析: 设∠ACD =θ,则∠BCD =90°-θ,作AM ⊥CD 于M ,BN ⊥CD 于N ,于是AM =bsin θ,CN =asin θ.∴MN =|asin θ-bcos θ|,因为A —CD —B 是直二面角,AM ⊥CD ,BN ⊥CD ,∴AM 与BN 成90°的角,于是AB =22222)cos sin (cos sin θθθθb a a b -++=θ222sin ab b a -+≥ab b a -+22.∴当θ=45°即CD 是∠ACB 的平分线时,AB 有最小值,最小值为ab b a -+22.402.自二面角内一点分别向两个面引垂线,求证:它们所成的角与二面角的平面角互补. 已知:从二面角α—AB —β内一点P ,向面α和β分别引垂线PC 和PD ,它们的垂足是C 和D.求证:∠CPD 和二面角的平面角互补.证:设过PC 和PD 的平面PCD 与棱AB 交于点E , ∵PC ⊥α,PD ⊥β ∴PC ⊥AB ,PD ⊥AB ∴CE ⊥AB ,DE ⊥AB又∵CE ⊂α,DE ⊂β,∴∠CED 是二面角α—AB —β的平面角. 在四边形PCED 内:∠C =90°,∠D =90°∴∠CPD 和二面角α—AB —β的平面∠CBD 互补.403.求证:在已知二面角,从二面角的棱出发的一个半平面内的任意一点,到二面角两个面的距离的比是一个常数.已知:二面角α—ED —β,平面γ过ED ,A ∈γ,AB ⊥α,垂足是B.AC ⊥β,垂足是C. 求证:AB ∶AC =k(k 为常数)证明:过AB 、AC 的平面与棱DE 交于点F ,连结AF 、BF 、CF. ∵AB ⊥α,AC ⊥β.∴AB ⊥DE ,AC ⊥DE.∴DE ⊥平面ABC.∴BF ⊥DE ,AF ⊥DE ,CF ⊥DE.∠BFA ,∠AFC 分别为二面角α—DE —γ,γ—DE —β的平面角,它们为定值. 在Rt ΔABF 中,AB =AF ·sin ∠AFB.在Rt ΔAFC 中,AC =AF ·sin ∠AFC ,得:AC AB =AFCAF AFBAF ∠∠sin sin =定值.404. 如果直线l 、m 与平面α、β、γ满足l =β∩γ,l ∥α,m ⊂α和m ⊥γ.那么必有( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ 解析:∵m ⊂α,m ⊥γ. ∴α⊥γ. 又∵m ⊥γ,β∩γ=l. ∴m ⊥l.∴应选A.说明 本题考查线面垂直、面面垂直及综合应用推理判断能力及空间想象能力.405. 如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a,AD =3a,且∠ADC =arcsin 55,又PA ⊥平面ABCD ,AP =a.求:(1)二面角P —CD —A 的大小(用反三角函数表示);(2)点A到平面PBC 的距离.解析:(1)作CD ′⊥AD 于D ′,∴ABCD ′为矩形,CD ′=AB =a ,在Rt ΔCD ′D 中. ∵∠ADC =arcsin55,即⊥D ′DC =arcsin 55, ∴sin ∠CDD ′=CD D C '=55 ∴CD =5a ∴D ′D =2a ∵AD =3a,∴AD ′=a =BC 又在Rt ΔABC 中,AC =22BC AB +=2a,∵PA ⊥平面ABCD ,∴PA ⊥AC ,PA ⊥AD ,PA ⊥AB. 在Rt ΔPAB 中,可得PB =2a.在Rt ΔPAC 中,可得PC =22AC PA +=3a.在Rt ΔPAD 中,PD =22)3(a a +=10a.∵PC 2+CD 2=(3a)2+(5a)=8a 2<(10a)2∴cos ∠PCD <0,则∠PCD >90°∴作PE ⊥CD 于E ,E 在DC 延长线上,连AE ,由三垂线定理的逆定理得AE ⊥CD ,∠AEP 为二面角P —CD —A 的平面角. 在Rt ΔAED 中∠ADE =arcsin55,AD =3a. ∴AE =AD ·sin ∠ADE =3a ·55=553 a.在Rt ΔPAE 中,tan ∠PEA =AE PA =a a 553=35. ∴∠AEP =arctan35,即二面角P —CD —A 的大小为arctan 35. (2)∵AD ⊥PA ,AD ⊥AB ,∴AD ⊥平面PAB.∵BC ∥AD ,∴BC ⊥平面PAB.∴平面PBC ⊥平面PAB ,作AH ⊥PB 于H ,∴AH ⊥平面PBC. AH 为点A 到平面PBC 的距离. 在Rt ΔPAB 中,AH =PB AB PA ⋅=aa a 2⋅=22a. 即A 到平面PBC 的距离为22a. 说明 (1)中辅助线AE 的具体位置可以不确定在DC 延长线上,而直接作AE ⊥CD 于E ,得PE ⊥CD ,从而∠PEA 为所求,同样可得结果,避免过多的推算.(2)中距离的计算,在学习几何体之后可用“等体积法”求.406. 如图,在二面角α—l —β中,A 、B ∈α,C 、D ∈l ,ABCD 为矩形,P ∈β,PA ⊥α,且PA =AD ,M 、N 依次是AB 、PC 的中点. (1)求二面角α—l —β的大小; (2)求证:MN ⊥AB ;(3)求异面直线PA 与MN 所成角的大小.解析:(1)连PD ,∵ABCD 为矩形,∴AD ⊥DC ,即AD ⊥l.又PA ⊥l ,∴PD ⊥l. ∵P 、D ∈β,则∠PDA 为二面角α—l —β的平面角.∵PA ⊥AD ,PA =AD ,∴ΔPAD 是等腰直角三角形,∴∠PDA =45°,即二面角α—l —β的大小为45°.(2)过M 作ME ∥AD ,交CD 于E ,连结NE ,则ME ⊥CD ,NE ⊥CD ,因此,CD ⊥平面MNE ,∴CD ⊥MN.∵AB ∥CD ,∴MN ⊥AB(3)过N 作NF ∥CD ,交PD 于F ,则F 为PD 的中点.连结AF ,则AF 为∠PAD 的角平线,∴∠FAD =45°,而AF ∥MN ,∴异面直线PA 与MN 所成的45°角.407. 如图,在三棱柱ABC —A ′B ′C ′中,四边形A ′ABB ′是菱形,四边形BCC ′B ′是矩形,C ′B ′⊥AB.(1)求证:平面CA ′B ⊥平面A ′AB ;(2)若C ′B ′=2,AB =4,∠ABB ′=60°,求AC ′与平面BCC ′B ′所成角的大小.(用反三角函数表示)解析:(1)∵在三棱柱ABC —A ′B ′C 中,C ′B ′∥CB ,∴CB ⊥AB.∵CB ⊥BB ′,AB ∩BB ′=B ,∴CB ⊥平面A ′AB.∵CB 平面CA ′B ,∴平面CA ′B ⊥平面A ′AB (2)由四边形A ′ABB ′是菱形,∠ABB ′=60°,连AB ′,可知ΔABB ′是正三角形.取 B B ′中点H ,连结AH ,则AH ⊥BB ′.又由C ′B ′⊥平面A ′AB ,得平面A ′ABB ′⊥平面 C ′B ′BC ,而AH 垂直于两平面交线BB ′,∴AH ⊥平面C ′B ′BC.连结C ′H ,则∠AC ′H 为 AC ′与平面BCC ′B ′所成的角,AB ′=4,AH =23,于是直角三角形C ′B ′A 中,A ′C=5,在Rt ΔAHC ′中,sin ∠AC ′H =532∴∠AC ′H =arcsin523,∴直线AC ′与平面BCC ′B ′所成的角是arcsin523.408. 已知四棱锥P —ABCD ,它的底面是边长为a 的菱形,且∠ABC =120°,PC ⊥平面ABCD ,又PC =a ,E 为PA 的中点.(1)求证:平面EBD ⊥平面ABCD ; (2)求点E 到平面PBC 的距离;(3)求二面角A —BE —D 的大小.(1)证明: 在四棱锥P —ABCD 中,底面是菱形,连结AC 、BD ,交于F ,则F 为AC 的中点. 又E 为AD 的中点,∴EF ∥PC又∵PC ⊥平面ABCD ,∴EF ⊥平面ABCD.EF ⊂平面EBD. ∴平面EBD ⊥平面ABCD.(2)∵EF ∥PC ,∴EF ∥平面PBC∴E 到平面PBC 的距离即是EF 到平面PBC 的距离 过F 作FH ⊥BC 交BC 于H ,∵PC ⊥平面ABCD ,FH ⊂平面ABCD ∴PC ⊥FH.又BC ⊥FH ,∴FH ⊥平面PBC ,则FH 是F 到平面PBC 的距离,也是E 到平面PBC 的距离. ∵∠FCH =30°,CF =23a. ∴FH =21CF =43a. (3)取BE 的中点G ,连接FG 、AG 由(1)的结论,平面BDE ⊥平面ABCD ,AF ⊥BD ,∴AF ⊥平面BDC. ∵BF =EF =2a,∴FG ⊥BE ,由三垂线定理得,AG ⊥BE , ∴∠FGA 为二面角D —BE —A 的平面角. FG =2a ×22=42a,AF =23a. ∴tg ∠FGA =FGAF=6,∠FAG =arctg 6 即二面角A —BE —D 的大小为arctg 6409. 若ΔABC 所在的平面和ΔA 1B 1C 1所在平面相交,并且直线AA 1、BB 1、CC 1相交于一点O ,求证:(1)AB 和A 1B 1、BC 和B 1C 1、AC 和A 1C 1分别在同一平面内;(2)如果AB 和A 1B 1、BC 和B 1C 1、AC 和A 1C 1分别相交,那么交点在同一直线上(如图).(1)证明:∵AA1∩BB1=O,∴AA1、BB1确定平面BAO,∵A、A1、B、B1都在平面ABO内,∴AB⊂平面ABO;A1B1⊂平面ABO.同理可证,BC和B1C1、AC和A1C1分别在同一平面内.(2)分析:欲证两直线的交点在一条直线上,可根据公理2,证明这两条直线分别在两个相交平面内,那么,它们的交点就在这两个平面的交线上.证明:如图,设AB∩A1B1=P;AC∩A1C1=R;∴面ABC∩面A1B1C1=PR.∵ BC⊂面ABC;B1C1⊂面A1B1C1,且 BC∩B1C1=Q ∴ Q∈PR,即 P、R、Q在同一直线上.410.点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR∩BD=Y.求证:X、Y、Z三点共线.解析:证明点共线的基本方法是利用公理2,证明这些点是两个平面的公共点.证明∵P、Q、R三点不共线,∴P、Q、R三点可以确定一个平面α.∵ X∈PQ,PQ⊂α,∴X∈α,又X∈BC,BC⊂面BCD,∴X∈平面BCD.∴点X是平面α和平面BCD的公共点.同理可证,点Y、Z都是这两个平面的公共点,即点X、Y、Z都在平面α和平面BCD的交线上.411.直线m、n分别和平行直线a、b、c都相交,交点为A、B、C、D、E、F,如图,求证:直线a、b、c、m、n共面.解析:证明若干条直线共面的方法有两类:一是先确定一个平面,证明其余的直线在这个平面里;二是分别确定几个平面,然后证明这些平面重合.证明∵a∥b,∴过a、b可以确定一个平面α.∵A∈a,a⊂α,∴A∈α,同理B∈a.又∵A∈m,B∈m,∴m⊂α.同理可证n⊂α.∵b∥c,∴过b,c可以确定平面β,同理可证m⊂β.∵平面α、β都经过相交直线b、m,∴平面α和平面β重合,即直线a、b、c、m、n共面.412.证明两两相交而不共点的四条直线在同一平面内.已知:如图,直线l1,l2,l3,l4两两相交,且不共点.求证:直线l1,l2,l3,l4在同一平面内解析:证明几条直线共面的依据是公理3及推论和公理1.先证某两线确定平面α,然后证其它直线也在α内.证明:图①中,l1∩l2=P,∴ l1,l2确定平面α.又 l1∩l3=A,l2∩l3=C, ∴ C,A∈α.故 l3⊂α.同理 l4⊂α.∴ l1,l2,l3,l4共面.图②中,l1,l2,l3,l4的位置关系,同理可证l1,l2,l3,l4共面.所以结论成立.413.证明推论3成立.(如图)已知:a∥b,求证:经过a,b的平面有且只有一个.证明:(存在性)∵a∥b,由平行线的定义知:a、b共面,所以经过a、b的平面有一个. (唯一性),在a上取两点A、B,在b上取一点C.∵a∥b,∴A、B、C三点不共线,由公理3知过A、B、C三点的平面只有一个,从而过a,b 两直线的平面也是惟一的.414.一条直线过平面内一点与平面外一点,它和这个平面有几个公共点?为什么?解析:只有一个,假设有两个公共点,由公理1知该直线上所有点都在这个平面内,这和直线过平面外一点矛盾.415.过已知直线外一点与这条直线上的三点分别画三条直线,证明:这三条直线在同一平面内.解答:已知:A a,如图,B、C、D∈a,证明:AB、AC、AD共面.证明:∵A a,∴A,a确定平面α,∵B、C、D∈a,a⊂α.∴B、C、D∈α又A∈α.∴AB、AC、AD⊂α.即AB、AC、AD共面.416.空间可以确定一个平面的条件是( )A.两条直线B.一点和一直线C.一个三角形D.三个点解析:由推论2和推论3知两条相交直线或者两条平行直线才确定一个平面,两条直线还有位置关系异面.故排除A,由推论1知点必在线外才合适,排除B.由公理3知不共线三点可确定一个平面,D中三个点不一定不共线,排除D.公理3结合公理1,知选C.417.下列命题正确的是( )A.经过两条直线有且只有一个平面B.经过一条直线和一个点有且只有一个平面C.如果平面α与β有三个公共点,则两个平面一定是重合平面D.两个平面α、β有一个公共点,那么它们有且只有一条通过这个点的公共直线解析:根据公理2、公理3知选D.418.已知四点,无三点共线,则可以确定( )A.1个平面B.4个平面C.1个或4个平面D.无法确定解析:因为无三点共线,所以任意三个点都可以确定平面α,若第四个点也在α内,四个点确定一个平面,当第四个点在α外,由公理3知可确定4个平面.故选C.419.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是( )A.4B.3C.2D.5解析:如图,设球的半径是r,则πBD2=5π,πAC2=8π,∴BD2=5,AC2=8.又AB=1,设OA=x.∴x2+8=r2,(x+1)2+5=r2.解之,得r=3故选B.420.在桌面上有三个球两两相切,且半径都为1,在桌面与三球间放置一个小球,使它与三个球相切.求此小球半径.解析:如图,球O为放置在桌面上与已知三球相切的半径为r的小球,过O作O1O2O3平面的垂线,垂足为H ,它一定是ΔO 1O 2O 3的中心,连接O 1H ,O 1O ,在Rt ΔO 1OH 中,O 1H =332,OH =1-r,OO 1=1+r,∴OO 12=O 1H 2+OH 2,即(1+r)2=(332)2+(1-r)2,解得r =31.421. 地球半径为R ,在北纬45°圈上有A 、B 两点,它们的经度差为2π,求球面上A 、B 两点间球面距离.解析:本题关键是求出∠AOB 的大小,(如图1)现在我们将这个球的截面问题转化为较为熟悉的长方体问题.如图2,以O 1O ,O 1A ,O 1B 为三条相互垂直的棱,可构造一个长方体,问题转化为长方体截面ABO 内求∠BOA 的问题. 解: 如图2,∵∠O 1OA =4π=∠O 1OB ,OA =OB =R ,∴OO 1=O 1A =O 1B =22R ∴AB 2=O 1A 2+O 1B 2=R , ∴ΔAOB 为等边Δ, ∴∠AOB =3π,A 、B 间的球面距离为3πR. 422. 一个圆在平面上的射影图形是( )A.圆B.椭圆C.线段D.圆或椭圆或线段解析:D423. 两面都是凸形的镜中,它的面都是球冠形,球半径分别为10cm 和17cm ,两球心间的距离为21cm ,求此镜面的表面积和体积.解析:轴截面如图,设O 2C =x ,则CO 1=21-x,∵AB ⊥O 1O 2 ∴AO 22-O 2C 2=AO 12-CO 12,即102-x2=172-(21-x)2,解得x =6,CO 1=15,又设左边球缺的高为h 1,右边的球缺高为h 2,则h 1=17-15=2,h 2=10-6=4,∴S 表=2π(17·2+10·4)=148π(cm)2,V =31π[22(3·10-2)+42(3·17-4)]=288π(cm 3).424. 正三棱锥的底面边长是2cm ,侧棱与底面成60°角,求它的外接球的表面积.解析:如图,PD 是三棱锥的高,则D 是ΔABC 的中心,延长PD 交球于E ,则PE 就是外接球的直径,AD =33AB =323,∠PAD =60°,∴PD =AD ·tan60°=2,PA =343,而AP⊥AE ,∴PA 2=PD ·PE =PD PA 2=38,R =34,∴S 球=964π(cm)2.425. 求证:球的外切正四面体的高是球的直径的2倍.证明: 设球的半径为R ,正四面体的高为h ,侧面积为S ,则有V A —BCD =V O —ABC +V O —ABD +V O —BCD ,如图,即31Sh =4×31SR,∴h =4R.426. 地球半径为R ,A 、B 两地都在北纬45°线上,且A 、B 的球面距离为3R,求A 、B 两地经度的差.解析:如图,O 为球心,O 1为北纬45°小圆的圆心,知A 、B 的球面距离,就可求得∠AOB的弧度数,进而求得线段AB 的长,在ΔAO 1B 中,∠AO 1B 的大小就是A 、B 两地的经度差. 解: 设O 1是北纬45°圆的中心, ∵A 、B 都在此圆上, ∴O 1A =O 1B =22R. ∵A 、B 的球面距离为3R π, ∴∠AOB =R l =RR3π=3π,ΔAOB 为等边三角形. AB =R ,在ΔAO 1B 中, ∵O 1A 2+O 1B 2=21R 2+21R 2=R 2=AB 2, ∴∠AO 1B =90°.∴A 、B 两地的经度差是90°.评析:注意搞清纬度和经度的问题,球面距离三步骤的运用是非常重要的问题.427. 已知圆锥的母线长为l ,母线对圆锥底面的倾角为θ,在这个圆锥内有一内切球,球内又有一个内接的正方体,求这个内接正方体的体积.解析:设球半径为R ,以内接正方体对角面为轴截面,如图.连接OA ,∠OAD =2θ,R =OD =AD ·tan2θ,VA =l,AD =lcos θ,∴R =lcos θtan 2θ,又设正方体棱长为x ,则3x 2=EG 2=4R 2,x =323R.∴V 正方体=938(lcos θtan 2θ)3.428. 如图,过半径为R 的球面上一点P 作三条两两垂直的弦PA 、PB 、PC ,(1)求证:PA 2+PB 2+PC 2为定值;(2)求三棱锥P —ABC 的体积的最大值.解析:先选其中两条弦PA 、PB ,设其确定的平面截球得⊙O 1,AB 是⊙O 1的直径,连PO 1并延长交⊙O 1于D ,PADB 是矩形,PD 2=AB 2=PA 2+PB 2,然后只要证得PC 和PD 确定是大圆就可以了.解: (1)设过PA 、PB 的平面截球得⊙O 1,∵PA ⊥PB ,∴AB 是⊙O 1的直径,连PO 1并延长交⊙O 1于D ,则PADB 是矩形,PD 2=PA 2+PB 2. 设O 为球心,则OO 1⊥平面⊙O 1, ∵PC ⊥⊙O 1平面,∴OO 1∥PC ,因此过PC 、PD 的平面经过球心O ,截球得大圆,又PC ⊥PD. ∴CD 是球的直径.故 PA 2+PB 2+PC 2=PD 2+PC 2=CD 2=4R 2定值.(2)设PA 、PB 、PC 的长分别为x 、y 、z ,则三棱锥P —ABC 的体积V =61xyz , V 2=361x 2y 2z 2≤361(3222z y x ++)3=361·27646R =5432R 6.∴V ≤2734R 3. 即 V 最大=2734R 3. 评析:定值问题可用特殊情况先“探求”,如本题(1)若先考虑PAB 是大圆,探求得定值4R 2可为(1)的证明指明方向.球面上任一点对球的直径所张的角等于90°,这应记作很重要的性质. 429. 求棱长为a 的正四面体的外接球和内切球的半径.解析:如图,作AH ⊥底面BCD 于H ,则AH =36a ,设内切球的球心为O ,半径为r ,O 点与A 、B 、C 、D 相连,得四个锥体,设底面为S ,则每个侧面积为S ,有4·31·Sr =31S ·AH ,∴r =41AH =126a,设外接球心为O ,半径R ,过A 点作球的半径交底面ΔBCD 于H ,则H 为ΔBCD 的外心,求得BH =32a,AH =36a,由相交弦定理得36a ×(2R-36a)=(33a)2. 解得R =36a.430.求证:球的任意两个大圆互相平分.证明:因为任意两个大圆都过球心O ,所以它们必交于过球心的直径,这条直径也是两个大圆的公共直径,所以任意两个大圆互相平分.2.在球心的同一侧有相距9cm 的两个平行截面,它们的面积各为49πcm 2和400πcm 2.求球的表面积.解: 如图,设球的半径为R ,∵πO 2B 2=49π, ∴O 2B =7 同理 O 1A =20设OO 1=xcm ,则OO 2=(x+9)cm.在Rt ΔOO 1A 中,可得R 2=x 2+202在Rt ΔOO 2B 中,可得R 2=72+(x+9)2∴x 2+202=72+(x+9)2 解方程得 x =15cm R 2=x 2+202=252∴S 球=4π·OA 2=2500π(cm 2)431. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为4π,那么这个球的半径为( )A.43B.23C.2D. 3解析: 设球半径为R ,小圆半径为r ,则2πr =4π,∴r =2.如图,设三点A 、B 、C ,O 为球心,∠AOB =∠BOC =∠COA =3,又∵OA =OB ∴ΔAOB 是等边三角形同理,ΔBOC 、ΔCOA 都是等边三角形,得ΔABC 为等边三角形. 边长等于球半径R ,r 为ΔABC 的外接圆半径.r =33AB =33R R =33r =23 ∴应选B.432. 已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是( ) A.964π B.38π C.4π D.916π 解析: 如图,过ABC 三点的截面圆的圆心是O ′,球心是O ,连结AO ′、OO ′,则OO ′⊥ AO ′.ΔABC 中,AB =BC =CA =2,故ΔABC 为正三角形. ∴AO ′=33×2=332 设球半径为R ,则OA =R ,OO ′=2R在Rt ΔOAO ′中,OA 2=O ′O 2+O ′A 2,即R 2=42R +(323)2∴R =34∴球面面积为4πR 2=964π ∴应选A.说明 因为R =OA >O ′A >21AB =1,所以球面积S =4πR 2>4π.从而选A. 433. 长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是( ) A.202πB.252πC.50πD.200π解析: 正方体的对角线为l ,球的半径为R ,则l =2R.得:l 2=4R 2=32+42+52=50从而 S 球=4πR 2=50π ∴应选C.434. 在球面上有四个点P 、A 、B 、C.如果PA 、PB 、PC 两两互相垂直,且PA =PB =PC =a,那么这个球的表面积是 .解析:由已知可得PA 、PB 、PC 实际上就是球内接正方体中交于一点的三条棱,正方体的对角线长就是球的直径,连结过点C 的一条对角线CD ,则CD 过球心O ,对角线CD =3a.∴S 球表面积=4π·(23a)2=3πa 2. 435. 圆柱形容器的内壁底半径为5cm ,两个直径为5cm 的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器内的水面将下降 cm. 解析:球的体积等于它在容器中排开水的体积.解: 设取出小球后,容器水平面将下降hcm ,两小球体积为V 球=2×34π×52×h,V 1= V 球即 25πh =3125π ∴h =35cm. ∴应填35.436. 空间四边形ABCD 的四条边相等,那么它的两条对角线AC 和BD 的关系是( ). A .相交且垂直 B .相交但不垂直 C .不相交也不垂直 D .不相交但垂直解析:D .取BD 中点O ,则BD ⊥AO ,BD ⊥CO ,故BD ⊥平面ACO ,因此BD ⊥AC . 437. 已知a 、b 是异面直线,那么经过b 的所在平面中( ).A .只有一个平面与a 平行B .有无数个平面与a 平行C .只有一个平面与a 垂直D .有无数个平面与a 垂直解析:A .过b 上任一点P 作直线a a //',由a '和b 确定的平面α 与a 平行,这个平面是过b 且平行于a 的唯一一个平面.故排除B .当a 与b 不垂直时,假设存在平面β ,使bβ ,且a ⊥β ,则a ⊥b ,这与a 、b 不垂直矛盾,所以当a 、b 不垂直时,不存在经过b 且与a 垂直的平面,当a 、b 垂直时,过b 且与a 垂直的平面是唯一的,设a 、b 的公垂线为c ,则由c 和b 所确定的平面与a 垂直,且唯一. 438. 若直线l 与平面α 所成角为3π,直线a 在平面α 内,且与直线l 异面,则直线l 与直线a 所成的角的取值范围是( ).A .⎥⎦⎤⎢⎣⎡π32 0,B .⎥⎦⎤⎢⎣⎡3π 0,C .⎥⎦⎤⎢⎣⎡2π 3π,D .⎥⎦⎤⎢⎣⎡π32 3π,解析:C .因为直线l 是平面的斜线,斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角,故a 与l 所成的角大于或等于3π;又因为异面直线所成的角不大于2π,故选C . 439. 直线a 、b 均在平面α 外,若a 、b 在平面α 上的射影是两条相交直线,则a 和b 的位置关系是( ).A .异面直线B .相交直线C .平行直线D .相交或异面直线 解析:D440. ABCD 是平面α 内的一个四边形,P 是平面α 外的一点,则△P AB 、△PBC 、△PCD 、△PDA 中是直角三角形的最多有( ).A .1个B .2个C .3个D .4个 解析:D .作矩形ABCD ,PA ⊥平面AC ,则所有的三角形都是直角三角形 441. 已知直线PG ⊥平面α 于G ,直线EFα ,且PF ⊥EF 于F ,那么线段PE 、PF 、PG的关系是( ).A .PE >PG >PFB .PG >PF >PEC .PE >PF >PGD .PF >PE >PG 解析:C .如图答9-17.PG ⊥α ,EFα ,PF ⊥EF ,则GF ⊥EF .在Rt △PGF 中,PF 为斜边,PG 为直角边,PF >PG .在Rt △PFE 中,PF 为直角边,PE 为斜边,PE >PF ,所以有PE >PF >PG .442. 下列命题中正确的是( ).A .若a 是平面α 的斜线,直线b 垂直于a 在平面α 内的射影为a ',则a ⊥bB .若a 是平面α 的斜线,平面β 内的直线b 垂直于a 在平面α 内的射影为a ',则a ⊥bC .若a 是平面α 的斜线,直线b 平行于平面α ,且b 垂直于a 在平面α 内的射影a ',则a ⊥bD .若a 是平面α 的斜线,b 是平面α 内的直线,且b 垂直于a 在另一个平面β 内的射影a ',则a ⊥b解析:C .如图答9-18,直线b 垂直于a 在平面α 内的射影,但不能得出a ⊥b 的结论.排除A .令β 是直线a 与其在α 内的射影a '确定的平面,在β 内取垂直于a '的直线为b ,不能得出a ⊥b 的结论.排除B .同理排除D .如图答9-19,在α 内任取点P ,∵ b P ∉,则过b 与P 确定平面γ ,设b '=αγ ,因为b ∥α ,则b b '//.∵ a b '⊥,∴ a b '⊥'.∴a b ⊥',∴ b ⊥a .于是C 正确.443. 设正方体1111D C B A ABCD -的棱长为1,则 (1)A 到C B 1的距离等于________; (2)A 到1BD 的距离等于________; (3)A 到平面CD B A 11的距离等于________; (4)AB 到平面CD B A 11的距离等于________.解析:1)连接1AB ,AC ,则AC AB =1,取C B 1的中点E ,连结AE ,则C B AE 1⊥. ∴ AE 为点A 到直线C B 1的距离,在Rt △ACE 中,2=AC ,221211==C B CE , ∴ =2AE 23212)22()2(22=-=-,∴ 26=AE .即A 到1B 、C 的距离等于26. (2)连结1AD .∵ AB ⊥平面11A ADD ,∴ 1AD AB ⊥.在Rt △1ABD 中,AB =1,21=AD ,31=BD ,设A 到1BD 的距离为h ,则112121BD h AD AB ⋅=⋅⋅.即=⨯⨯2121321⋅h ,∴ 3632==h ,即点A 到1BD 的距离为36. (3)连结1AD 交D A 1于F ,则D A AF 1⊥.∵ CD ⊥平面D D AA 11,且AF平面D D AA 11,∴ CD ⊥AF .∵ CD ∩AD =D ,∴ AF ⊥平面CD B A 11.∴ AF 为点A 到平面CD B A 11的距离.∵ 21=AD ,∴ 22211==AD AF . (4)∵ AB ∥CD ,∴ AB ∥平面CD B A 11,∴ AB 到平面CD B A 11的距离等于A 点 到平面CD B A 11的距离,等于22. 444. 已知正方体1111D C B A ABCD -.则(1)1AD 与平面ABCD 所成的角等于________; (2)1AC 与平面ABCD 所成的角的正切值等于________; (3)1AD 与平面C C BB 11所成的角等于________ ; (4)11C D 与平面C C BB 11所成的角等于________; (5)C B 1与平面D D BB 11所成的角等于________.解析:(1)∵ D D 1⊥平面ABCD ,∴ AD D 1∠为1AD 与平面ABCD 所成的角,AD D 1∠ =45°.(2)∵ C C 1⊥平面ABCD ,∴ AC C 1∠为1AC 与平面ABCD 所成的角.设11=CC ,则2=AC ,∴ .2221t a n 11===∠AC CC AC C(3)∵ 1AD 平面C C BB 11,11//AD C B ,∴ 1AD ∥平面C C BB 11,∴ 1AD 与平面C C BB 11所成的角为0°.(4)∵ 11C D ⊥平面C C BB 11,∴ 11C D 与平面C C BB 11所成的角为90°. (5)连结AC ,交AD 于H .连结H B 1,∵ B B 1⊥平面ABCD ,CH平面ABCD ,∴ CH B B ⊥1,又∵ CH ⊥BD ,∴ CH ⊥平面D D BB 11.∴ H B 1为C B 1在平面D D BB 11内的射影.∴ H CB 1∠为C B 1与平面D D BB 11所成的角.设正方体棱长为1,则21=C B ,2221==AC CH ,∴ ︒=∠301H CB ,即C B 1与平面D D BB 11所成的角为30°.445. 如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点.求证:MN ⊥AB .图9-29解析:连结AC ,取AC 中点O ,连结OM ,ON .由OM ∥BC ,得OM ⊥A B .又NO ∥P A ,且P A ⊥AB ,故NO ⊥AB .由此可得AB ⊥平面OMN .因此MN ⊥AB .446. 如图9-30,直线a 、b 是异面直线,它们所成角为30°,A A '为a 、b 的公垂线段,cm 4='A A .另有B 在直线a 上,且BA =2cm ,求点B 到直线b 的距离.解析:如图答9-20,过A '作a a //',则a '与b 确定平面α .作a BC '⊥于C ,在平面α 内作CD ⊥b 于D ,连结B D .∵ a A A ⊥'∴ a A A '⊥'. ∵ b A A ⊥',A b a '=' ,∴α⊥'A A .∵ A A BC '//,∴ BC ⊥α .∵ CD ⊥b ,∴ BD ⊥b (三垂线定理),即BD 为B 点到b 的距离.∵ a a '//,∴ D A C '∠为异面直线a 与b 所成的角,∴ ︒='∠30D A C .∵ 2=='AB C A ,︒='∠90A CD ,∴ CD =1.在Rt △BCD 中,4='=A A BC ,CD =1,∠BCD =90°,∴ 171422222=+=+=CD BC BD ,∴17=BD .447. 如图9-31,SA 、SB 、SC 三条直线两两垂直,点H 是S 在平面ABC 上的射影,求证:H 是△ABC 的垂心.解析:∵ SC ⊥SA ,SC ⊥SB ,且SA ∩SB =S ,∴ SC ⊥平面SAB ,∴ AB ⊥SC .∵ H 是S 在平面ABC 上的射影,∴ SH ⊥平面ABC .连结CH ,CH 为SC 在平面ABC 上的射影,∵ AB ⊥SC ,由三垂线定理的逆定理可知CH ⊥AB ,即CH 为AB 的垂线.同理AH ⊥BC ,即AH 为BC 边的垂线.H 为△ABC 两条垂线的交点,∴ H 为△ABC 垂心.448. 如图9-32,△ABD 和△ACD 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:图9-32(1)BD ⊥平面ADC ;(2)若H 是△ABC 的垂心,则H 为D 在平面ABC 内的射影.解析:(1)设AD =BD =CD =a ,则a AC AB 2==.∵ ∠BAC =60°,∴ a BC 2=.由勾股定理可知,∠BDC =90°.即BD ⊥DC ,又∵ BD ⊥AD ,AD ∩DC =D ,∴ BD ⊥平面ADC .(2)如图答9-21,要证H 是D 在平面ABC 上的射影,只需证DH ⊥平面ABD .连结HA 、HB 、HC .∵ H 是△ABC 的垂心,∴ CH ⊥AB .∵ CD ⊥DA ,CD ⊥BD ,∴ CD ⊥平面ABD ,∴ CD ⊥AB .∵ CH ∩CD =C ,∴ AB ⊥平面DCH . ∵ DH平面DCH ,∴ AB ⊥DH ,即DH ⊥AB ,同理DH ⊥BC .∵ AB ∩BC =B ,∴ DH ⊥平面ABC .449. PA 、PB 、PC 是从点P 出发的三条射线,每两条射线的夹角为60°,求直线PC 与平面PAB 所成的角的余弦值.解析:如图答9-22,在PC 上任取一点D ,作DH ⊥平面P AB 于H ,则∠DPH 为PC 与平面P AB 所成的角.作HE ⊥P A 于E ,HF ⊥PB 于F ,连结PH ,DE ,DF .∵ EH 、FH 分别为DE 、DF 在平面P AB 内的射影,由三垂线定理可得DE ⊥P A .DF ⊥PB .∵ ∠DPE =∠DPF ,∴ △DPE ≌△DPF .∴ PE =PF .∴ Rt △HPE ≌Rt △HPF ,∴ HE =HF ,∴ PH 是∠APB 的平分线.设EH =a ,则PH =2EH =2a ,a PE 3=.在Rt △PDE 中,∠DPE =60°,DE ⊥P A ,∴ a PE DP 322==.在Rt △DPH 中,DH ⊥HP ,PH =2a ,a DP 32=,∴ .33322c o s ===∠a a DP PH DPH450. 四面体对棱长分别相等,分别是a,b,c.求体积.解析: 把四面体“嵌入”棱长为x,y,z 的长方体(如图).其充分条件是⎪⎩⎪⎨⎧=+=+=+222222222,,c x z b z y a y x有实数解 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=222222222222a c b z c b a y b a c x 如果关于x,y,z 的方程组有实数解,则四面体体积 V =xyz-4·31·(21xy)·z =31xyz =122))()((222222222b a c a c b c b a -+-+-+说明 对棱相等的四面体各面是全等的锐角三角形,本题采用了体积分割法,转化法求体积.。