第7课时 用数学(导学案)
- 格式:doc
- 大小:685.00 KB
- 文档页数:2
人教版数学一年级下册第7课时《用数学(一)》教案
一、教学目标
1.了解有关数学的基本概念和术语。
2.掌握数数的方法和技巧。
3.在实际生活中运用数学知识解决问题。
二、教学重点
1.数数的基本方法。
2.数学知识在日常生活中的应用。
三、教学准备
1.数学教材:人教版数学一年级下册。
2.教具:数字卡片、计数棒等。
四、教学过程
1. 导入
(1)老师通过展示数字卡片让学生熟悉数字。
(2)组织学生玩数数游戏,加深对数字的认识。
2. 学习内容
(1)教师讲解数数的基本方法。
(2)让学生进行数数练习,熟练掌握数数技巧。
3. 拓展练习
(1)布置一些拓展练习题目,让学生动手解决问题。
(2)引导学生在生活中发现数学的应用场景。
五、小结反思
在本节课中,学生学习了数数的基本方法,了解了数学在日常生活中的重要性。
希望学生能够继续努力,掌握更多数学知识,运用在实际生活中解决问题。
六、作业
1.完成课堂练习题。
2.观察生活中的数学应用场景,写出感想。
七、教学反馈
根据学生的表现,及时给予肯定和指导,帮助学生进一步提高数学学习能力。
以上是本节课的教学内容,希望同学们认真学习,掌握好数数技巧,乐于在生活中应用数学知识。
新人教版八年级数学上册证全等的辅助线作法导学案一、学习目标1.掌握全等三角形中常见辅助线的添加方法;2.提高解决实际问题的能力.二、知识回顾找全等三角形的方法(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能相等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可以从条件和结论综合考虑,看他们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形.三、新知讲解三角形中常见辅助线的作法:(1)连接两点构造全等三角形例如:已知,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D.分析:要证∠A=∠D,可证它们所在的三角形△ABD和△DCO全等,而只有AB=DC和对顶角.两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB=DC,AC=BD,如连接BC,则△ABD和△DCO全等,所以,证得∠A=∠D.(2)作倍长中线构造全等三角形若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形.利用的思维模式是全等变换中的“旋转”.例如:如下图:AD为△ABC的中线,求证:AB+AC>2AD.分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+ BD+CD> AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去.因此,可作辅助线:延长AD至E,使DE=AD,连接BE,CE.(3)截长补短构造全等三角形在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.例如:如图,△ABC中,AB=2AC,AD平分∠BAC,且AD=BD,求证:CD⊥AC.解析:(截长法)在AB上取中点F,连FD.△ADB是等腰三角形,F是底AB中点,由三线合一知:DF⊥AB,故∠AFD=90°△ADF≌△ADC(SAS)∠ACD=∠AFD=90°,即:CD⊥AC.(4)平移法过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”.例如:如图,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于点D,若EB=CF.求证:DE=DF.分析:因为DE,DF所在的两个三角形△DEB与△DFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换,过点E作EG∥CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决.四、典例探究扫一扫,有惊喜哦!1.连接两点证全等(连公共边构造全等)【例1】如图,在四边形ABCD中,AB∥CD,AD∥BC,求证:DC=AB,AD=BC.总结:四边形问题通常要转化成三角形问题求解,常作辅助线是连接对角线.练1.已知:如图,AC、BD相交于O点,且AB=CD,AC=BD,求证:∠A=∠D.2.倍长中线证全等(利用中点、中线构造全等)【例2】如图,在△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.D CBA总结:“倍长中线”的实质是用“SAS”构造全等,其中延长中线得到相等的边和对顶角.在遇到中点或中线时,通常用这种方法.练2.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.E DF C B A 3.截长法或补短法证全等【例3】如图,已知在△ABC 内,∠BAC=60°,∠C=40°,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是∠BAC ,∠ABC 的角平分线.求证:BQ+AQ=AB+BP .P QC BA总结:1.截长法:①在长边上截取一条与某一短边相同的线段;②证剩下的线段与另一短边相等. 2. 补短法:①延长短边;②通过旋转等方式使两短边拼合在一起.练3.如图,AD ∥BC ,EA ,EB 分别平分∠DAB ,∠CBA ,CD 过点E ,求证:AB =AD+BC . EDC B A五、课后小测 一、解答题1.如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE .ED CBA2.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.DCBA3.如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证:AB-AC>PB-PC.P2 1D CBA4.如图2,AD为△ABC的角平分线,AB>AC,求证:AB-AC>BD-DC.图221 ED CBA5.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点做一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.典例探究答案:【例1】【解析】可连接BD ,证明△ADB ≌△CBD ,进而获得结论. 证明:如图,连接BD .∵AB ∥CD , AD ∥BC ,∴∠1=∠2,∠3=∠4.在△ADB 和△CBD 中,12,,34,BD DB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADEB ≌△CBD (ASA ).∴DC=AB ,AD=BC .练1.【解析】根据已知条件证不出全等三角形,也证不出∠A=∠D . 连接BC ,在△ABC 和△DBC 中,AB=CD (已知),AC=BD (已知),BC=BC (公共边),∴△ABC ≌△DBC .∴∠A=∠D .【例2】【解析】延长AD 至E 使AE =2AD ,连接BE ,CE .AD=DE(作图)∠ADC=∠EDB(对顶角)CD=BD(D是中点)∴△ADC≌△EDB(SAS)∴BE=AC=3由三角形三边关系知:AB-BE <2AD<AB+BE ,即2<2AD<8,故AD的取值范围是1<AD<4.练2.【解析】(倍长中线)延长FD至G使FG=2DF,连BG,EG;由SAS可证:△FCD≌△GBD,∴FD=GD,在△EFD和△EGD中,ED=ED(公共边)∠EDF=∠EDG=90°(DE⊥DF)FD=GD(已证)∴△EFD≌△EGD∴EG=EF在△BEG中,由三角形性质知EG<BG+BE,故:EF<BE+FC .【例3】【解析】证明:(补短法)延长AB 至D ,使BD=BP ,连接DP ,在等腰三角形BPD 中,可得∠BDP=40°,从而∠BDP=40°=∠ACP ,在△ADP 和△ACP 中,D C DAP CAP AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩△ADP ≌△ACP(AAS).∴AD=AC ,又∠QBC=40°=∠QCB ,故BQ=QC .∵BD=BP ,∴BQ+AQ=AB+BP .练3.【解析】证明:(截长法)在AB 上取点F ,使AF =AD ,连FE ,△ADE ≌△AFE (SAS )∠ADE =∠AFE ,∠ADE+∠BCE =180°∠AFE+∠BFE =180°故∠ECB=∠EFB△FBE≌△CBE(AAS)故有BF=BC从而:AB=AD+BC.课后小测答案:一、解答题1.【解析】证明:延长AE至G使AG=2AE,连BG,DG,显然DG=AC,∠GDC=∠ACD,由于DC=AC,故∠ADC=∠DAC在△ADB与△ADG中,BD=AC=DG,AD=AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG,故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE.2.【解析】(补短法)延长BA至F,使BF=BC,连FD,△BDF≌△BDC(SAS)故∠DFB=∠DCB,FD=DC又AD=CD故在等腰△BFD 中∠DFB =∠DAF故有∠BAD+∠BCD =180°.3.【解析】(补短法)延长AC 至F ,使AF =AB ,连PD ,△ABP ≌△AFP (SAS )故BP =PF ,由三角形性质知:PB -PC =PF -PC < CF =AF -AC =AB -AC .4.【解析】可在AB 上截取AE=AC ,易得△ADE ≌△ADC ,从而将AB-AC 转化为AB-AE ,BD-DC 转化为BD-DE ,在△BDE 中即可解决问题.证明:在AB 上截取AE=AC ,连接DE ,则BE=AB-AC .在△ADE 和△ADC 中,,12,,AE AC AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC (SAS ).∴ DE=DC .又∵BE>BD-DE ,∴AB-AC>BD-DC .点评:本题借助角平分线,在角的两边截取相同的线段构造“SAS”形式的全等三角形,使得问题顺利得解.对线段和差问题,常用截长补短法.5.【解析】(图形补全法, “截长法”或“补短法”, 计算数值法) AC 的延长线与BD 的延长线交于点F ,在线段CF 上取点E ,使CE =BM∵△ABC 为等边三角形,△BCD 为等腰三角形,且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°-∠ACD=180°-∠ABD=90°,又∵BM=CE,BD=CD,∴△CDE≌△BDM,∴∠CDE=∠BDM,DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,∵在△DMN和△DEN中,DM=DE∠MDN=∠EDN=60°DN=DN∴△DMN≌△DEN,∴MN=NE∵在△DMA和△DEF中,DM=DE∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF (∠CDE=∠BDM)∠DAM=∠DFE=30°∴△DMN≌△DEN (AAS),∴MA=FE△AMN的周长为AN+MN+AM=AN+NE+EF=AF=6.。
人教版数学二年级下册第7课时《整理和复习》导学案
一、课时内容概述
本节课主要是对前面学过的知识进行整理和复习,巩固学生的基础知识,为以后的学习打下坚实的基础。
通过这节课的学习,学生将回顾和巩固数字的认识、数的加减法运算等内容。
二、课前导学
在开始正式的学习之前,老师可以通过一些引入的问题或活动,让学生迅速回忆起之前所学习过的知识点。
可设计一些小游戏或问答环节,让学生积极参与,调动他们的学习兴趣。
三、知识整理
1. 数字的认识
•整数的认识:介绍正整数、负整数及零的概念,让学生理解数轴的基本概念。
•数字的组成:复习各位数字的含义及位值,如个位、十位、百位等。
2. 数的加减法运算
•加法运算:回顾加法的基本运算规则,进行简单的计算练习。
•减法运算:复习减法的运算方法,包括借位运算的基本步骤。
3. 数的比较
•数的大小比较:让学生掌握比较大小的方法,包括利用大于、小于、等于符号进行比较。
四、练习环节
老师可以设计一些练习题目,让学生在课堂上互相交流讨论,加深对所学知识的理解和掌握程度。
同时,可以结合实际情境设计一些应用题目,培养学生的解决问题的能力。
五、课后反馈
在课程结束前,可以进行一些小测验或问答环节,让学生进行课程的回顾和总结。
同时,鼓励学生提出对学习内容的疑问和思考,激发他们对数学学习的兴趣。
通过本节课的学习,学生将不仅巩固了前期所学知识,也为接下来的学习打下了坚实的基础。
希望同学们能够认真复习和整理所学内容,做到掌握牢固,为数学学习之路打下坚实的基础。
第1课时 二次函数的概念【进修目的】1.阅历摸索,剖析和树立两个变量之间的二次函数关系的进程,进一步体验若何用数学的办法描写变量之间的数目关系;2.摸索并归纳二次函数的界说;3.可以或许暗示简略变量之间的二次函数关系. 【进修重点】控制二次函数的概念并能应用概念解答相干的题型. 【课时类型】概念课 【进修进程】 一.进修预备1.函数的界说:在某个变更进程中,有两个变量x 和y,假如给定一个x 值,响应地就肯定了一个y 值,那么我们称是的函数,个中是自变量,是因变量.2.一次函数的关系式为y=(个中k.b 是常数,且k≠0);正比例函数的关系式为y =(个中k 是的常数);反比例函数的关系式为y=(k 是的常数).二.解读教材——数学常识源于生涯3.某果园有100棵橙子树,每一棵树平均结600个橙子.现预备多种一些橙子树以进步产量,但是假如多种树,那么树之间的距离和每一棵树所接收的阳光就会削减.依据经验估量,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,那么果园共有棵橙子树,这时平均每棵树结个橙子,假如果园橙子的总产量为y 个,那么y=.4.假如你到银行存款100元,设人平易近币一年按期储蓄的年利率是x,一年到期后,银行将本金和利钱主动按一年按期储蓄转存.那么你能写出两年后的本息和y(元)的表达式(不斟酌利钱税)吗?. 5.可否依据适才推导出的式子y=5x2+100x+60000和y=100x2+200x+100猜测出二次函数的界说及一般情势吗?一般地,形如y =ax2+bx+c(a,b,c 是常数,a ≠0)的函数叫做x 的二次函数.它就是二次函数的一般情势,例1 下列函数中,哪些是二次函数?(1)2321x y +-=(2)112+=x y(3)x y 222+= (4)251t t s ++=(5)22)3(x x y -+= (6)210r s π=即时演习:下列函数中,哪些是二次函数?(1)2x y =(2)252132+-=x x y (3))1(+=x x y (4)1132--=)(x y (5)cax y -=2(6)12+=x s 三.发掘教材6.对二次函数界说的深入懂得及应用 例2 若函数1232++=+-kx x y k k 是二次函数,求k 的值.剖析:x 的最高次数等于2,即k23k+2=2,求出k 的值即可.解:即时演习:若函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值为.四.反思小结1.我们经由过程不雅察.思虑.合作,交换,归纳出二次函数的概念,并从中领会函数的建模思惟.2.界说:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠0)的函数叫做x 的二次函数.3.二次函数y=ax²+bx+c(a,b,c 是常数,a≠0)的几种不合暗示情势:(1) y=ax² (a≠0); (2) y=ax²+c (a≠0且c≠0); (3) y=ax²+bx (a≠0且b≠0).4.二次函数界说的焦点是症结字“二”,即必须知足自变量最高次项的指数为_____,且______项系数不为_____的整式. 【达标测评】1.下列函数不属于二次函数的是( ) A .y=(x -1)(x+2)B .y=21(x+1)2 C .y=2(x+3)2-2x2 D .y=1-3x22.在边长为6 cm 的正方形中央剪去一个边长为x cm(x<6)的小正方形,剩下的四方框形的面积为y,则y 与x 之间的函数关系是.3.用总长为60m 的篱笆围成矩形场地,场地面积S(m²)与矩形一边长a(m)之间的关系式是,它是函数.4.正方形的边长是5,若边长增长x,面积增长y,则y 与x 之间的函数表达式为.5.当m=时,22)2(--=m x m y 是二次函数;若函数m m x m y --=2)2(是二次函数,则m= .6.已知函数y=ax2+bx +c (个中a,b,c 都是常数):当a 时,它是二次函数;当a,b 时,它是一次函数;当a,b,c 时,它是正比例函数. 7.若函数y=(k2-4)x2+(k+2)x+3是二次函数,则k.,【进修难点】可以或许应用描点法作出函数的图象,并能依据图象熟悉和懂得二次函数y =ax2的性质. 【进修进程】 一.进修预备1.正比例函数y=kx(k≠0)是图像是. 2.一次函数y=kx+b(k≠0)的图像是. 3.反比列函数y=k x(k≠0)的图像是.4.当我们还不懂得一种函数图像的外形时,只能用描点法研讨,描点法的一般步调是:,,. 二.解读教材5.试作出二次函数y =x2的图象.(1)画出图象:①列表:(留意选择恰当的y值)②描点:(在右图坐标系中描点)③连线:(应留意用滑腻的曲线衔接各点) (2)依据图像,进行小结:①y=x2的图像是,且启齿偏向是 .②它是对称图像,对称轴是轴.在对称轴的左侧(x>0),y 随x 的增大而;在对称轴的右侧(x<0),y 随x 的增大而.③图像与对称轴有交点,称为抛物线的极点,的最低点,此时,坐标为(,).④因为图像有最低点,所以函数有最值,当x=0.小结:①y=x2的图像是,且启齿向 .②对称轴是,在对称轴阁下的增减性分离是:在对称轴左侧,y 随x 的增大 ,在对称轴的右侧,y 随x 的增大.③极点坐标是:(,),且从图像看出它有最点,所以函数有最值.当x=0时,.7.变式练习2作出y =2x2,y =0.5x2的图像.三.发掘教材8.依据上面的图象,从图象的启齿偏向.对称轴.增减性.极点坐标.最同时,a 决议图象在统一向角坐标系中的启齿偏向,|a|越小图象启齿. 9.例 已知:抛物线102-+=m m mx y ,当x>0时,y 随x 的增大而增大,求m 的值.10.已知抛物线y=ax2经由点A (2,8),(1)求此抛物线的函数解析式;(2)断定点B (1, 4)是否在此抛物线上;(3)求出此抛物线上纵坐标为6的点的坐标. 四.反思小结二次函数的y =ax2(a≠0)的图象与性质:五个方面懂得:,,,,. 【达标测评】1.抛物线y=2x2的极点坐标是,对称轴是,在侧,y 跟着x 的增大而增大;在侧,y 跟着x 的增大而减小.当x=时,函数y 的值最小,最小值是.抛物线y=2x2的图象在方(除极点外).2.函数y =x2的极点坐标为,若点(a,4)在其图象上,则a 的值是. 3.函数y =x2与 y =x2的图象关于对称,也可以以为y =x2 是函数y=x2的图象绕扭转得到的.4.求出函数y=x+2与函数y =x2的图象的交点坐标.5.若a>1,点(a1,y1),(a,y2),(a+1,y3)都在函数y =x2的图象上,断定y1,y2,y3的大小关系是.; 【进修难点】懂得二次函数y =ax2与y =ax2+k 的关系. .小结:①y=2x2+1的图像是,且启齿向.②对称轴是,在对称轴阁下的增减性分离是:在对称轴左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.③极点是:(,),且从图像看它有最点,则函数y有最值,即当x=时y有最值是.3.在统一向角坐标系中,作出二次函数y=②对称轴是,当a>0时,在对称轴左侧,y随x侧,y随x的增大而. 且函数y当x=0时ymin=.当a<时,在对称轴左侧,y随x的增大而,在对称轴的右侧,y随x 的增大而.且函数y当x=0时ymax=.③极点坐标是(,).④y=x2的极点坐标是( , ),y=x2+2的极点坐标是( , )所以y=x2向平移个单位即可以得到y=x2+2.y=x22的极点坐标是( , )所以y=x2+2向平移个单位即可以得到y=x22.4.变式练习1二次函数y=54x2+3的图像是线,启齿向,极点坐标是,对称轴是;当x>0时,y随x的增大而.当x=时,y有最值为.三.发掘教材抛物线y=ax2+k可以由抛物线y=ax2经由向上(k>0)或向下(k<0)平移|k|个单位得到.5.函数y=2x2的图像向下平移3个单位,就得到函数;函数y=4+32x2的图像可以看作函数y=3x2的图像向平移个单位而得到.2的图像有一个6.已知:二次函数y=ax2+1的图像与反比列函数y=kx公共点是(1,1).(1)求二次函数及反比例函数解析式;(2)在统一坐标系中画出它们的图形,解释x取何值时,二次函数与反比例函数都随x的增大而减小.四.反思小结:1.填表回想2.抛物线y=ax2+k 可以由抛物线y=ax2经由向(k>0)或向 (k<0)平移个单位得到.【达标测评】1.抛物线y=x25可以看作是抛物线经由向平移个单位得到.2.抛物线y=x2+4 的启齿向,对称轴是,在对称轴左侧,y随x的增大而,在对称轴的右侧,y随x的增大而;极点坐标是,当x=时,y有最值为. 3.抛物线y=3x2上有两点A(x,27),B(2,y),则x=,y=.4.抛物线y=3x2与直线y=kx+3的交点为(2,b),则k=,b=.第4课时二次函数y=a(xh)2和y=a(xh)2+k的图象与性质【进修目的】1.可以或许作出函数y=a(xh)2和y=a(xh)2+k的图象,并能懂得它与y=ax2的图象的关系,懂得a,h,k对二次函数图象的影响;2.可以或许准确说出二次函数的极点式y=a(xh)2+k图象的启齿偏向.对称轴和极点坐标.【进修重点】可以或许作出函数y=a(xh)2和y说出y =a(xh)2+k 【进修进程】一.进修预备1.说出下列函数图象的启齿偏向,对称轴, (1)y=2x² (2)y=2x²+12.请说出二次函数y=ax²+c 与y=ax²的关系.3.我们已知y=ax²,y=ax²+c 的图像及性质,如今同窗们可能想探讨y=ax²+bx 的图像,那我们就着手绘图像.列表.描点.连线. 二.解读教材4.由进修预备可知,我们假如知道一条抛物线的极点坐标,那么绘图像就比较简略,所以我们可以先配成完整平方法构造.如今我们画二次函数y=3(x1)2+2不雅察后得到:二次函数y =3x2,y=3(x1)2,y=3(x1)2+2的图象都是抛物线.并且外形雷同,启齿偏向雷同,只是地位不合,极点不合,对称轴不合,将函数y =3x2的图象向右平移1个单位,就得到函数y=3(x1)2的图象;再向上平移2个单位,就得到函数y=3(x1)2+2的图象.三.发掘教材5.抛物线的极点式y=a(xh)2+k在前面的进修中你发明二次函数y=a(xh)2+k中的a,h,k 决议了图形什么?用本身的说话整顿得:即时演习:直接说出抛物线x+1)²,y=0.5(x+1)²1 的启齿偏向.对称轴.极点坐标.6.例已知:抛物线y=a(xh)2+kx=2时,函数有最大值3,求a,h,k的值.即时演习已知抛物线的极点坐标是(3,5)且经由点A(2,5),请你求出此抛物线的解析式.7.例二次函数()2221y x=-+的极点坐标是,把它的图像向右平移2个单位再向下平移2个单位此时得到的抛物线极点坐标为,它的解析式为.四.反思小结1.一般地,平移二次函数y=ax2的图象即可得到二次函数为y=ax2+c,y =,右正左负)2y=的图象是轴对称图形,对称轴为x=h,极点坐标为, a>0时,启齿向上,有最小值k; a<0时,启齿向下,有最大值k.【达标测评】y = axh )2= a( x–h )2 + ky1.指出下面函数的启齿偏向,对称轴,极点坐标,最值.(4) y=2(x2)2+5 (5) y=0.5(x+4)2+2 (6) y=0.75(x3)22.函数y= x2的图象向平移个单位得到y=x2+3的图象;再向平移个单位得到y =(x1)2+3的图象.,;【进修重点】会用公式求二次函数c bx ax y ++=2的极点坐标,对称轴. 【进修难点】懂得用配办法推导公式的进程. 【课时类型】公式轨则进修 一.进修预备2.二次函数25(3)2y x =--的极点坐标是,对称轴是. 二.解读教材3.公式推导——二次函数c bx ax y ++=2图象的极点坐标,对称轴公式.由上一节课,我们看到一个二次函数经由过程配方化成极点式k h x a y +-=2)(来研讨了二次函数中的a.h.k 对二次函数图象的影响.但我以为,如许的恒等变形运算量较大,并且轻易出错.那么这节课,我们就研讨一般情势的二次函数图象的作法和性质.例1 求二次函数c bx ax y ++=2图象的极点坐标,对称轴. 解:c bx ax y ++=2=2()b c a x x a a++ =222[2()()]222b b b c a x x a a a a++-+ =224()24b ac b a x a a-++二次函数c bx ax y ++=2的极点坐标是(24,24b ac b a a--),对称轴是直线2bx a=-. 4.公式应用——用公式求函数c bx ax y ++=2的极点坐标,对称轴.(1)分离用配办法,公式法肯定下列二次函数的极点坐标,对称轴并比较其解值.①221213y x x =-++ ②2252y x x =-+ 5.现实操纵——画二次函数c bx ax y ++=2的图象 (2)已知:二次函数2463y x x =-+①指出函数图象的极点坐标,对称轴.②画出所给函数的草图,并研讨它的性质.三.发掘教材——二次函数c bx ax y ++=2的性质6.抛物线c bx ax y ++=2(0a ≠)经由过程配方可变形为y=224()24b ac b a x a a-++(1)启齿偏向:当0a >时,启齿向;当0a <时,启齿向. (2)对称轴是直线;极点坐标是.(3)最大(小)值:当0a >,2bx a=-时,ymin=244ac b a -;当0a <,2bx a =-时,ymax=. (4)增减性:当0a >时,对称轴左侧(2b x a<-),y 随x 增大而;对称轴右侧(2bx a>-),y 随x 增大而;当0a <时,对称轴左侧(2b x a<-),y 随x 增大而;对称轴右侧(2bx a>-),y 随x 增大而;【达标测评】依据公式法指出下列抛物线的启齿偏向.极点坐标,对称轴.最值和增减性.①422+-=x x y ②1422++-=x x y ③221y x x =-++④2516y x x =-+题.【进修进程】 一.进修预备1.已学二次函数的哪两种表达式? 2.分化因式:x22x3;3.解方程:x2 2x3=0 二.解读教材4.一元二次方程的两根x1,x2在哪里?在坐标系中画出二次函数y= x2 2x3的图象,,你发明了什么?再找一个一元二次方程和二次函数试一试吧! 5.二次函数的两根式(交点式) 二次函数)0(2≠++=a c bx ax y 的另一种表达式:叫做二次函数的两根式又称交点式. 演习:将下列二次函数化为两根式: (1)y=x2+2x15; (2)y= x2+x2;(3)y=2x2+2x12;(4)y=3(x1)23 (5)y=4x2+8x+4; (6)y=2(x3)2+8x 三.发掘教材6.抛物线)0(2≠++=a c bx ax y 与x 轴是否有交点?例 你能应用 a.b.c 之间的某种关系断定二次函数)0(2≠++=a c bx ax y 的图象与x 轴何时有两个交点,何时一个交点,何时没有交点吗?即时练习:(1)已知二次函数y=mx22x+1的图象与x 轴有两个交点,则k 的取值规模为.(2)抛物线y=x2(m4)xm 与x 轴的两个交点y 轴对称,则其极点坐标为. (3)抛物线y=x2(a+2)x+9与x 轴相切,则a=.7.弦长公式:抛物线与xAB ).例 求抛物线y= x2 2x3与x 轴两个交点间的距离. 总结:已知抛物线)0(2≠++=a c bx ax y 与x B (x2,0),那么抛物线的对称轴x=,AB=21x x -=221)(x x -=.即时练习:抛物线y=2(x2)(x +5)的对称轴为,与x 轴两个交点的距离为.四.反思小结——二次函数与一元二次方程的关系常识点1.二次函数y=ax2+bx +c 的图象与x 轴的交点有三种情形,,,交点横坐标就是一元二次方程ax2+bx +c=0的.常识点2.二次函数y=ax2+bx +c 的图象与x 轴的弦长公式:. 【达标测评】1.抛物线y=9(x4)(x +6)与x 轴的交点坐标为.2.抛物线y=2x2+8x +m 与x 轴只有一个交点,则m=.3.二次函数y=kx2+3x -4的图象与x 轴有两个交点,则k 的取值规模. 4.抛物线y=3x2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .0个5.与x 轴不订交的抛物线是( )A .y=3x24 B .y=2x26 C .y=x26 D .y=31(x+2)216.已知二次函数y=x2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.7.抛物线y=mx2+(3-2m)x +m -2(m≠0)与x 轴有两个不合的交点. (1)求m 的取值规模; (2)断定点P(1,1)是否在此抛物线上? 8.二次函数y=x2-(m -3)x -m 的图象如图所示.(1)试求m 为何值时,抛物线与x 轴的两个交点间的距离是3? (2)当m 为何值时,方程x2-(m -3)x -m=0的两个根均为负数? (3)设抛物线的极点为M,与x 轴的交点P.Q,求当PQ 最短时△MPQ 的面积.第7课时 刷图练习【进修目的】据二次函数系数a.b.c 画出抛物线的须要前提:启齿偏向.对称轴.极点坐标与坐标轴的交点坐标.【进修重点】二次函数一般式与极点式.交点式的互化;找特别点的坐标.【候课朗读】 【进修进程】 一.进修预备1.二次函数的一般式为:y=(个中0a ≠,a.b.c 为常数);极点式为:y=,它的极点坐标是,对称轴是;交点式为:(个中1x ,2x 是0y =时得到的一元二次方程20ax bx c ++=的根).2.函数2y ax bx c =++(0a ≠)中,a 肯定抛物线的启齿偏向:当a >0时,当a <0时;a 和b 肯定抛物线的对称轴的地位:当a .b 同号时对称轴在y轴的侧;当a .b 异号时对称轴在x 轴的侧;(可记为“左同右异” )c 肯定抛物线与的交点地位:当c >0时交于y 轴的半轴;当c <0时交于y 轴的负半轴. 二.浏览懂得3.界说:抛物线的草图:能大致表现抛物线的启齿偏向.对称轴.极点坐标.与y 轴的交点.x 轴上的两根为整根的抛物线叫抛物线的草图. 4.在抛物线的三种解析式的图象信息:教授教养跋文x一般式能直接表现启齿偏向.与y 轴的交点;极点式能直接表现启齿偏向.对称轴.极点坐标;两根式能直接表现启齿偏向.与x 轴的两个交点.是以,它们各有好坏,个中以极点式为最佳. 5①1,a b ==偶,例1 作出函数242y x x =-+解:242y x x =-+②1,a b ==奇,例2 作出函数253y x x =-+解:∴552212b a --=-=⨯③1a ≠(公式法) 例3 作出函数2241y x x =-+的大致图象.解:∵4124b a -=-=, 24816148ac b a --==-,∴则大致图象是:(在空白处绘图)即时演习:在右边空白处作出函数222y x x =-+-④两根式(先转化为一般式,再转换成极点式)例4 作出函数()()212y x x =-+的大致图象. 解:()()212y x x =-+219222x ⎛⎫=-- ⎪⎝⎭ 则大致图象是:6.含有参数的抛物线中的图象信息 例5作出函数22y x x m =-+-的大致图象.即时演习:在右边空白处画出函数y=-x2+n 的大致图象. 变式练习:画出函数y=-x2+mx+3的大致图象.x三.巩固练习:作出下列函数的大致图象 ①232y x x =-+- ②244y x x =-- ③221y x =+ ④()()1122y x x =-+:轴是__________,极点坐标是. 二.典例示范例 1 已知函数2y ax bx c =++的图象如图所示,1x =为该图象的对称轴,依据图象信息,你能得到关于系数a b c 、、解:由图可得:⑴a >0; ⑵1-<c <0; ⑶123b a -=,即又2ba-<1而a >0则得b -<2a ,∴2a+b>0;⑷由⑴⑵⑶得abc >0;⑸斟酌1x =时y <0,所以有a b c ++<0; ⑹斟酌1x =-时y >0,所以有a b c -+>0;⑺斟酌2x =时y >0,所以有42a b c ++>0,同理2x =-时,42a b c -+>0; ⑻图象与x 轴有两个交点,所以24b ac ->0.例2 如图是二次函数2y ax bx c =++图像的一部分,图像过点A ()3,0-,对称轴1x =-,给出四个结论: ①2b >4ac ,②20a b +=,③0a b c -+=,④5a <b ,个中( )A.②④B.①④C.②③D.①③剖析:由图象可以知道a <0;抛物线与x 轴有两个交点,∴24b ac ->0,即2b >4ac ;又对称轴1x =-,即12ba-=-,∴2a b =,b <0; ∴20a b -=,a 、b 均为负数,5a <b ;当1x =-时,∴a b c -+>0;综上,准确的是①④,故选B.例3 如图所示的抛物线是二次函数223y ax x a =-+_____.剖析:由图象可知:a <0;当0x =时1y =,即21a =,∴1a =±,但是a <0,故1a =-.三.巩固练习1.抛物线2y ax bx c =++如图所示,则( )A.a >0,b >0,c >0B.a >0,b <0,c <0C.a >0,b >0,c <0D.a >0,b <0,c >02.已知二次函数2y ax bx c =++的图像如图所示,下列结论中准确的个数是( )①a b c ++<0,②a b c -+>0,③abc >0,④2b a =A.4个B.3个C.2个D.1个3x c +的部分图像如图所示,则c0,当x_____时,y 随x 4ax b +则关于抛物线23y ax bx =-+(1x =;③当a <0时,其极点的纵坐标的最小值为3, ) A.0 B.1 C.2 D.35.已知二次函数()20y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值规模是( )A.-1<x <3B.x >3C.x <1D.x >3或x <16.抛物线c bx ax y ++=2的图象与x 轴的一个交点是()2,0-,极点是()1,3,下列说法中不准确的是( )A.抛物线的对称轴是1x =B.抛物线启齿向下C.抛物线与x 轴的另一个交点是()2,0D.当1x =时,y 有最大值是3 7.已知二次函数的图象如图所示,则这个二次函数的表达式为( ) A.223y x x =-+ B.223y x x =--223y x x =+-2第第第3题8.在直角坐标系中画一个二次函数y=ax2+bx+c的图象,且知足b<0,c<0..9.已知y=x2+ax+a1的图象如图所示,则a的取值规模是.10.据图抛物线y=ax2+bx+c肯定式子符号:①a0,②b0,③c0,④b24ac0,⑤a+b+c0,⑥ab+c0.11.若函数y=ax2+bx+c的对称轴x=1如图所示,则下列关系成立的是:()A.abc>0B.a+b+c<0C.a2>abacD.4acb2>0;2.控制已知极点及一点或对称轴或函数的最值,用极点式求函数的表达式.3.控制已知两根及一点,用两根式求函数解析式.【进修重点】用一般式.极点式求函数的表达式.【进修难点】用极点式和两根式求函数的表达式.【进修进程】一.进修预备:1.已知一次函数经由点(1,2),(1,0),则一次函数的解析式为 . 2.二次函数的一般式为,二次函数的极点式,二次函数的两根式(或交点式)为.二.办法探讨(一)——已知三点,用一般式求函数的表达式.3.例1 二次函数的图象经由(0,2),(1,1),(3,5)三点,求二次函数的解析式.4.即时演习已知抛物线经由A(1,0),B(1,0),C(0,1)三点,求二次函数的解析式.三.办法探讨(二)——已知极点及一点或对称轴或函数的最值,用极第5题第6题第7题第点式求出函数的解析式.5.例2 已知抛物线的极点坐标为(2,3),且经由点(1,7),求函数的解析式.解:设抛物线的解析式为2()y a x h k =-+.把极点(-2,3),即h=2 , k=3 代入表达式为 再把(-1,7)代入上式为 解得4a =所以函数解析式为24(2)3y x =++ 即241619y x x =++6.即时演习(1)抛物线经由点(0,-8),当1x =-时,函数有最小值为-9,求抛物线的解析式.(2)已知二次函数2()y a x h k =-+,当2x =时,函数有最大值2,其过点(0,2),求这个二次函数的解析式.四.办法探讨(三)——已知两根及一点或对称轴或函数的最值,用两根式求出函数的解析式.7.例3 已知抛物线经由(-1,0),(3,0),且过(2,6)三点,求二次函数的表达式.解:设抛物线的解析式为12()()y a x x x x =--把抛物线经由的(-1,0),(3,0)两点代入上式为: 再把(2,6)带入上式为6(21)(3)a x =+- 解得2a =-所以函数的解析式为2(1)(3)y x x =-+- 即2246y x x =-++8.即时演习已知抛物线经由A (2,0),B (4,0),C(0,3),求二次函数的解析式.五.反思小结——求二次函数解析式的办法 1.已知三点,求二次函数解析式的步调是什么?2.用极点式求二次函数的解题思绪是:已知极点及一点或对称轴或函数的最值,用极点式求解析式比较简略.3.用两根式求二次函数的解题思绪是:已知两根及一点或对称轴或函数的最值,用两根式求解析式比较简略. 【达标测评】求下列二次函数的解析式:1.图象过点(1,0).(0,2)和(2,3). 2.当x=2时,y 最大值=3,且过点(1,3).3.图象与x 轴交点的横坐标分离为2和4,且过点(1,10)第10课时 求二次函数的解析式(二)【进修目的】1.懂得二次函数的三种暗示方法;2.会灵巧地应用恰当的办法求二次函数的解析式.【进修重点】灵巧地应用恰当的办法求二次函数的解析式. 【进修进程】 一.进修预备1.函数的暗示方法有三种:法,法,法. 2.二次函数的表达式有:.,.二.典范例题——用恰当的办法求出二次函数的表达式3.例1 已知抛物线2(0)y ax bx c a =++≠与x 轴的两个交点的横坐标是-1,3,极点坐标是(1,-2),求函数的解析式(用三种办法) 4.即时演习:用恰当的办法求出二次函数的解析式.一条抛物线的外形与2y x =雷同,且对称轴是直线12x =-,与y 轴交于点(0,1),求抛物线的解析式.5.例 2 已知如图,抛物线b ax ax y ++-=22与x 轴的一个交点为A(1,0),与y 轴的正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点CO=3时,求抛物线的解析式.6.即时演习:已知直线y=2x4与抛物线y=ax2+bx+c 的图象订交于A (2,m ),B(n,2)两点,且抛物线以直线x=3为对称轴,求抛物线的解析式.三.反思小结——求二次函数解析式的办法1.已知三点或三对x.y 的对应值,通经常应用2(0)y ax bx c a =++≠. 2.已知图象的极点或对称轴,通经常应用2()(0)y a x h k a =-+≠. 3.已知图象与x 轴的交点坐标,通经常应用12()()(0)y a x x x x a =--≠. 四.巩固练习1.已知二次函数图象的极点坐标为C(1,0),该二次函数的图象与x 轴教授教养跋文交于A.B 两点,个中A 点的坐标为(4,0). (1)求B 点的坐标(2)求这个二次函数的关系式;2.如图,在平面直角坐标系中,直线y =-x交于点C ,抛物线2(0)y ax x c a =+≠经由A B C ,,(1)求过A B C ,,三点抛物线的解析式并求出极点F (2)在抛物线上是否消失点P ,使ABP △出P 点坐标;若不消失,请解释来由.【进修重点】用“数形联合”的思惟懂得公式,并能应用公式解决现实问题.【进修难点】剖析和暗示现实问题中变量之间的二次函数关系. 【进修进程】一.进修预备1.二次函数y=ax2+bx+c 的图像是一条____________,它的对称轴是直线x=-ab2,极点是______________. 2.二次函数y=2x2+3x1的图象启齿______,所以函数有最_______值,即当x=时,ymax =_________. 二.解读教材3.例1某商经营T 恤衫,已知成批购置时的单价是5元.依据市场查询拜访,发卖量与发卖单价知足如下关系:在一段时光内,单价是15元时,发卖量是500件,而单价每下降1元,就可以多售200件.问发卖价是若干时,可以获利最多?剖析:若设发卖单价为x(x≤15)元,所获利润为y元,则:(1)发卖量可以暗示为______________________________;(2)发卖额可以暗示为____________________________;(3)发卖成本可以暗示为____________________________;(4)所获利润可暗示为y=_________________________.解:设____________________依据题意得关系式:y=____________________,即y=.∵a=<0,∴y有最值.即当x=_______________=______________时,ymax=_________________=__________________.答:办法小结:解决此类问题的一般步调是:(1)设——设出问题中的两个变量(即设未知数);(2)列——用含变量的代数式暗示出等量关系,列出函数解析式;(3)自——找出自变量的取值规模;(4)图——作出函数图像(留意自变量的取值规模);(5)最——在自变量的取值规模内,取函数的最值;(6)答——依据请求作答.4.即时演习某市肆购置一批单价为20元的日用品,假如以单价30元发卖,那么半月内可以售出400件.据发卖经验,进步发卖单价会导致发卖量的削减,即发卖单价每进步一元,发卖量响应削减20件.若何进步发卖价,才干在半月内获得最大利润?三.发掘教材5.例2某商经营T恤衫,已知成批购置时的单价是5元.依据市场查询拜访,发卖量与发卖单价知足如下关系:在一段时光内,单价是15元时,发卖量是500件,而单价每下降1元,就可以多售于10元,问发卖价是若干时,可以获利最多?6.即时演习求二次函数y= x22x3在2≤x≤0时的最大.最小值.四.反思小结1.二次函数是解决现实问题中“最值”问题类较好的数学模子;2.留意解决此类问题的一般步调——“设”,“列”,“自”,“图”,“最”,“答”. 【达标测评】1.某市肆购置一批单价为8元的商品,假如以单价10元发卖,那么天天可以售出100件.据发卖经验,发卖单价每进步1元,发卖量响应削减10件.将发卖价定为若干,才干使天天获得最大利润?最大利润是若干?2.某观光社组团旅游,30人起组团,每人单价800元,每团乘坐一辆准载50人的大客车.观光社对超出30人的团赐与优惠,即每增长一人,每人的单价下降10元.你能帮忙盘算一下,当一个观光团的人数是若干时,观光社可以获得最大营业额?=ab ac 442-解决现实问题中的最大(小)值问题.【进修重点】 应用二次函数的有关常识解决现实问题. 【进修进程】一.进修预备1.函数y=ax2+bx+c(a≠0)中,若a>0,则当x=ab2时,y( )=;若a<0,则当x=时,y( )=.2.在二次函数y=2x28x+9中当x=时,函数y 有最值等于.3.如图,在边BC 长为20cm,高AM 为16cm 的△ABC 它的一边FG 在△ABC 的边BC 上,E.F 分离在AB.AC 请用x 的代数式暗示EH.解:∵矩形EFGH, ∴EH∥BC∴ △AEH∽___________.x D E CBA 又∵BC 上的高AM 交EH 于T. ∴AMAT =_______,即1616x=________. ∴EH=.二.解读教材4.在上题图中,若要使矩形EFGH 获得最大面积,那么它的长和宽各是若干?最大面积是若干?解:设矩形面积为y,而EF=x,EH=,则y==.∵a=45<0 则y 有最_______值.∴当x=______时,则y 最大值=______________.此时EH=.答:.5.想一想:活动4经由过程设EH 为xcm 能解决问题吗?(试一试吧!)6.即时演习:(1)在Rt△的内部作内接矩形ABCD,个中AB 和AD 分离在两条直角边上,点C 在斜边上.①设矩形ABCD 的边AB =x m,那么AD 边的长度若何暗示?②设矩形的面积为y m2,当x 取何值时,y 的值最大?最大值是若干? 解:(2)将(1)题变式:其它前提和图形都不变,设AD 边的长为x m,则问题又如何解决呢? 三.发掘教材:7.在Rt△QMN 的内部作内接矩形ABCD,点A 和D 分离在两直角边上,BC 在斜边MN 上.①设矩形的边BC=xm,则AB 边的长度若何暗示?②设矩形的面积为ym2,当x 取何值时,y 的最大值是若干?8.即时演习 如图,某村修一条沟渠,横断面是等腰梯形,底角∠C=120°,两腰与下底AD 的和为4m.当沟渠深(x )为何值时,横断面积(S )最大?最大值为若干? 解:四.反思小结:经由过程进修上节和本节解决问题的进程,你能总结一下解决此类问题的根本思绪吗?应用类似三角形性质和矩形面积公式列出二次函数,应用其性质解决.40m30m D N OABCM。
五年级上册数学教案-第五单元第7课时解方程(一) 人教版教学内容本节课主要介绍了解方程的基本概念和方法。
学生将学习到方程的意义,如何设置未知数,以及如何通过逆向运算求解方程。
课程内容将围绕简单的一元一次方程进行,并逐步引导学生理解并掌握解方程的基本步骤。
教学目标1. 让学生理解方程的概念和意义。
2. 培养学生设置未知数和列方程的能力。
3. 使学生能够通过逆向运算求解简单的一元一次方程。
4. 培养学生的逻辑思维能力和问题解决能力。
教学难点1. 方程概念的理解。
2. 未知数的设置和方程的列写。
3. 方程求解的步骤和方法。
教具学具准备1. 教学PPT。
2. 黑板和粉笔。
3. 练习题和草稿纸。
教学过程1. 导入: 通过简单的实际问题引入方程的概念,让学生了解方程的意义和作用。
2. 新知识学习: 介绍方程的基本组成部分,如未知数、等号和常数等,并引导学生学习如何设置未知数和列方程。
3. 例题讲解: 通过例题讲解,让学生了解解方程的基本步骤和方法,并强调每一步的重要性。
4. 课堂练习: 让学生进行课堂练习,以巩固所学知识,并及时解答学生的疑问。
5. 总结: 对本节课所学知识进行总结,强调方程的意义和解方程的步骤。
板书设计1. 方程的概念和意义。
2. 如何设置未知数和列方程。
3. 解方程的基本步骤和方法。
作业设计1. 填空题: 让学生填写未知数,列写方程。
2. 计算题: 让学生求解给定的一元一次方程。
3. 应用题: 让学生根据实际问题设置未知数,列写并求解方程。
课后反思本节课通过实际问题引入方程的概念,使学生能够更好地理解方程的意义和作用。
通过例题讲解和课堂练习,学生能够掌握解方程的基本步骤和方法。
但在教学过程中,也发现部分学生对未知数的设置和方程的列写还不够熟练,需要在今后的教学中进一步加强练习和指导。
教学难点在以上教案中,教学难点是需要重点关注的细节。
教学难点是指学生在学习过程中可能遇到的主要障碍或理解上的困难点。
标题:五年级上册数学教案第7课时实际问题与方程(2)人教版一、教学目标1. 让学生理解方程的概念,能够识别方程中的未知数和已知数。
2. 培养学生运用方程解决实际问题的能力,提高学生的数学思维能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
二、教学内容1. 方程的概念2. 方程的解法3. 方程在实际问题中的应用三、教学重点与难点1. 教学重点:方程的概念和方程的解法。
2. 教学难点:运用方程解决实际问题。
四、教学方法1. 讲授法:讲解方程的概念、解法及在实际问题中的应用。
2. 案例分析法:分析实际问题,引导学生运用方程解决问题。
3. 小组讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
五、教学过程1. 导入新课:通过回顾上一课时所学内容,引入方程的概念。
2. 讲解方程的概念:方程是由未知数、已知数和等号组成的数学表达式。
方程中的未知数用字母表示,已知数用数字表示。
方程的解是使等式成立的未知数的值。
3. 讲解方程的解法:解方程就是找到使等式成立的未知数的值。
解方程的方法有代入法、消元法、移项法等。
4. 分析实际问题:通过案例分析,引导学生运用方程解决实际问题。
例如,小明买了3本书,共花费45元,每本书的价格是多少?5. 小组讨论:将学生分成小组,讨论如何运用方程解决实际问题。
教师巡回指导,解答学生疑问。
6. 课堂小结:总结本节课所学内容,强调方程的概念和方程在实际问题中的应用。
7. 课后作业:布置课后作业,让学生运用方程解决实际问题,巩固所学知识。
六、教学评价1. 课堂问答:通过提问检查学生对方程概念的理解。
2. 课后作业:检查学生运用方程解决实际问题的能力。
3. 学生互评:组织学生互相评价,促进合作学习。
七、教学反思本节课通过讲解方程的概念、解法及在实际问题中的应用,使学生掌握了方程的基本知识。
在教学过程中,要注意引导学生运用方程解决实际问题,培养学生的数学思维能力。
同时,要加强小组合作学习,提高学生的合作意识和解决问题的能力。
人教版二年级上册数学教案-第2单元第7课时用数学教学目标:1. 让学生通过观察、操作、比较等方法,理解和掌握基本的数学概念和运算方法。
2. 培养学生运用数学知识解决实际问题的能力,提高学生的数学思维和创新能力。
3. 激发学生对数学的兴趣,培养学生的数学学习自信心和自主学习能力。
教学重点:1. 基本数学概念和运算方法的理解和掌握。
2. 数学知识在实际问题中的应用。
教学难点:1. 数学概念的理解和运算方法的掌握。
2. 数学知识在实际问题中的灵活运用。
教学准备:1. 教学课件或黑板、粉笔等教学工具。
2. 学生用书、练习本等学习用品。
教学过程:一、导入1. 引导学生回顾上一课时的学习内容,检查学生对知识的掌握情况。
2. 提问:同学们,你们在生活中遇到过需要用数学解决的问题吗?举例说明。
二、新课讲解1. 讲解基本的数学概念和运算方法,如加法、减法、乘法、除法等。
2. 通过具体的例子,引导学生理解和掌握数学概念和运算方法。
3. 讲解数学知识在实际问题中的应用,如购物找零、分配物品等。
三、课堂练习1. 布置一些基本的数学题目,让学生进行练习,巩固所学知识。
2. 提供一些实际问题,让学生运用所学的数学知识进行解决。
四、课堂小结1. 让学生回顾本节课的学习内容,总结数学概念和运算方法。
2. 强调数学知识在实际问题中的重要性,鼓励学生在生活中多运用数学。
五、作业布置1. 布置一些基本的数学题目,让学生回家进行练习。
2. 提供一些实际问题,让学生回家后运用所学的数学知识进行解决。
教学反思:本节课通过讲解基本的数学概念和运算方法,以及数学知识在实际问题中的应用,培养了学生运用数学知识解决问题的能力。
在教学过程中,要注意激发学生的学习兴趣,引导学生主动参与课堂活动,培养学生的数学思维和创新能力。
同时,要注意检查学生对知识的掌握情况,及时进行教学调整,确保教学效果。
需要注意的是,数学知识在实际问题中的应用是本节课的重点,教师可以通过举例、引导学生思考等方式,让学生理解和掌握数学知识在实际问题中的运用。
北师大版数学一年级上册第3单元第7课时《可爱的企鹅》说课稿(7)一. 教材分析《可爱的企鹅》这一课时是北师大版数学一年级上册第3单元的第7课时。
本节课主要内容是通过观察和描述企鹅的特征,培养学生的观察能力和语言表达能力。
教材以可爱的企鹅为载体,引导学生通过观察企鹅的外形、颜色、动作等特点,用数学语言进行描述,从而提高学生的数学表达能力。
二. 学情分析一年级的学生具有强烈的好奇心和求知欲,他们对可爱的动物充满兴趣。
通过前面的学习,学生们已经具备了一定的观察能力和语言表达能力,为本节课的学习奠定了基础。
然而,一年级学生的注意力容易分散,需要教师通过多种教学手段和方法,激发他们的学习兴趣,引导他们积极参与课堂活动。
三. 说教学目标1.知识与技能目标:学生能够观察并描述企鹅的外形、颜色、动作等特点,培养学生的观察能力和语言表达能力。
2.过程与方法目标:通过观察、描述、合作等环节,培养学生独立思考、合作交流的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生关爱动物、保护环境的意识。
四. 说教学重难点1.教学重点:学生能够观察并描述企鹅的外形、颜色、动作等特点。
2.教学难点:如何引导学生用数学语言进行描述,提高学生的数学表达能力。
五. 说教学方法与手段本节课采用以下教学方法与手段:1.情境教学法:通过展示可爱的企鹅图片,激发学生的学习兴趣,引导学生积极参与课堂活动。
2.观察法:学生观察企鹅的外形、颜色、动作等特点,培养学生的观察能力。
3.合作交流法:学生分组合作,共同描述企鹅的特点,提高学生的合作交流能力。
4.引导法:教师引导学生用数学语言进行描述,提高学生的数学表达能力。
六. 说教学过程1.导入:展示可爱的企鹅图片,引导学生关注企鹅的外形、颜色、动作等特点,激发学生的学习兴趣。
2.观察与描述:学生分组观察企鹅的图片,用自己的语言描述企鹅的特点。
3.合作交流:学生分组合作,共同总结企鹅的特点,并用数学语言进行描述。
第7课时互斥事件(2)【学习目标】1.了解互斥事件及对立事件的概念,能判断两个事件是否是互斥事件,进而判断是否是对立事件.2.了解两个互斥事件概率的加法公式,知道对立事件概率之和为1的结论.3.会用相关公式进行简单的概率计算.4.注重学生思维习惯的培养,在顺向思维受阻时,转而采用逆向思维.【问题情境】如果事件A,B互斥,那么事件A+B发生的概率等于事件A,B分别发生的概率的和,即______________.【合作探究】推广:一般地,如果事件A1,A2,…,A n两两互斥,则___________________________________.P A=______________.+=______________,()P A P A()()【展示点拨】例1.(1).从2件一等品和2件二等品任取2件,则对立事件的是________.A.至少有一件二等品与全是二等品;B.至少有1件一等品与至少有一件二等品;C.恰有1件二等品与恰有2件二等品;D.至少有1件二等品与全是一等品。
(2).下列命题:①对立事件一定是互斥事件;②A,B是两个事件,则P(A+B)=P(A)+P(B);③若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则事件A,B是对立事件.其中正确的是.例2.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1) (2)(3) (4)至少取得一个红球的概率.例3.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品; (2)取到的2(3)取到的2只中至少有一只正品.例4.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于21,求男女生相差几名?例5.某人写了三封信和相应的三个信封,他随机的将三封信分别装到三个信封中,(1)只有有一封信装对信封的概率;(2)至少有一封信装对信封的概率.【学以致用】1.袋中装有100个大小相同的红球,白球和黑球,如果从中任取一个球,摸出红球和白球的概率分别是0.40和0.35,那么袋中黑球共有个.2.设A,B是两个概率不为0的互斥事件,则下列结论中正确的是________.A.错误!未找到引用源。