[参考实用]垂直档距和水平档距、代表档距的定义和计算
- 格式:doc
- 大小:75.50 KB
- 文档页数:5
一、水平档距和水平荷载时间:2021.02.05 创作:欧阳科在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载 ,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。
图2-10 水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载 N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中 S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
一、水平档距和水平荷载之答禄夫天创作在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以包管导线受力不超出允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包含导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
< ShowPositionControls="0" ShowControls="1"invokeURLs="-1" volume="50" AutoStart="0" ShowStatusBar="1"> 为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载 ,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。
图2-10 水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载 N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它暗示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中 S—导线截面积,mm2。
垂直档距和水平档距代表档距的定义和计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载 ,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。
图2-10 水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载 N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中 S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
线路塔水平档距和垂直档距线路塔水平档距和垂直档距是指在输电线路中,相邻两个塔之间的水平距离和垂直距离。
它们是电力线路设计中至关重要的参数,对于保证线路的安全、稳定运行具有重要意义。
一、线路塔水平档距和垂直档距的概念及意义1.水平档距:指相邻两个塔之间的水平距离。
水平档距的大小影响着输电线路的输电能力和线路的稳定性。
在设计时,需要根据输电容量、线路电压、塔的结构等因素来确定合适的水平档距。
2.垂直档距:指相邻两个塔之间的垂直距离。
垂直档距的大小直接关系到输电线路的安全运行。
垂直档距过大可能导致导线之间的电气绝缘距离不足,而过小则可能导致塔架承受的风压增大,影响线路的稳定性。
二、水平档距的计算方法水平档距的计算方法主要包括以下几个方面:1.根据输电容量和线路电压,参考相关设计规范,确定初步的水平档距。
2.考虑线路所经地区的地形、地貌等因素,对水平档距进行调整。
3.结合输电线路的走向,确保相邻塔之间的水平距离满足设计要求。
4.最终确定的水平档距应满足输电线路的安全、稳定运行需求。
三、垂直档距的计算方法垂直档距的计算方法主要包括以下几个方面:1.参考相关设计规范,确定初步的垂直档距。
2.考虑线路所经地区的地形、地貌等因素,对垂直档距进行调整。
3.结合输电线路的走向,确保相邻塔之间的垂直距离满足设计要求。
4.最终确定的垂直档距应满足输电线路的安全运行需求。
四、影响线路塔档距选择的因素1.输电容量和电压等级:根据输电容量和电压等级,选择合适的水平档距和垂直档距。
2.地形、地貌和气候:线路所经地区的地形、地貌和气候条件会影响档距的选择。
例如,山区地形复杂,需要适当减小水平档距,以减小导线间的电气绝缘距离;风大地区应适当增大垂直档距,以降低风压对塔架的影响。
3.线路走向:线路走向会影响档距的选择。
在保证输电线路安全、稳定运行的前提下,应尽量使档距满足设计要求。
五、如何合理选择线路塔的水平档距和垂直档距1.了解输电线路的基本参数,包括输电容量、电压等级等。
一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC 两杆塔平均承担。
图2-10水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
垂直档距和水平档距的定义和计算首先,垂直档距是指两个点之间垂直方向的距离。
它通常用于描述物体的高度差,比如说建筑物的楼层高度或者地形之间的高差。
垂直档距可以正数、负数或者零,取决于两个点的相对位置。
如果一个点位置比另一个点的高度更高,那么垂直档距就是正数。
相反,如果一个点的位置比另一个点的高度更低,那么垂直档距就是负数。
如果两个点在同一水平线上,那么垂直档距就是零。
水平档距是指两个点之间水平方向的距离。
它通常用于描述横向的偏移,比如说两个建筑物之间的横向间距,或者从一个地点到另一个地点的水平距离。
水平档距总是正数,因为它只考虑了水平方向的距离,不考虑高度差。
可以通过在两点之间划一条水平线,并测量这条线的长度来计算水平档距。
计算垂直档距和水平档距需要根据具体情况决定使用不同的方法。
要计算垂直档距,可以使用测量工具(如测高仪、水平仪、GPS等)测量两个点的高度,并将这两个高度值相减。
如果两个点高度不同,则结果是一个正数或负数,表示垂直方向上的高差。
如果两个点在同一水平线上,那么垂直档距就是零。
要计算水平档距,可以使用测量工具(如测距仪、GPS等)测量两点之间的水平距离。
这可以通过使用水平测量仪器,或者在两点之间绘制一条水平线并测量其长度来完成。
这样就可以得到两点之间水平方向上的距离。
需要注意的是,垂直档距和水平档距通常不会在同一个方向上进行计算。
垂直档距描述的是垂直方向上的距离,而水平档距描述的是水平方向上的距离。
因此,在计算垂直档距和水平档距时需要将这两个方向分开来进行计算。
总结起来,垂直档距是指两个点之间的垂直距离,可以通过测量两个点的高度差来计算。
水平档距是指两个点之间的水平距离,可以通过测量两点之间的水平方向距离来计算。
在实际应用中,我们可以根据具体情况选择合适的测量设备和方法来计算这些距离。
一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC 两杆塔平均承担。
图2-10水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC 两杆塔平均承担。
图2-10水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC 两杆塔平均承担。
图2-10水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
一.程度档距和程度荷载【1 】在线路设计中,对导线进行力学盘算的目标重要有两个:一是肯定导线应力大小,以包管导线受力不超出许可值;二是肯定杆塔受到导线及避雷线的感化力,以验算其强度是否知足请求.杆塔的荷载重要包含导线和避雷线的感化成果,以及还有风速.覆冰和绝缘子串的感化.就感化偏向讲,这些荷载又分为垂直荷载.横向程度荷载和纵向程度荷载三种.< ShowPositionControls="0" ShowControls="1" invokeURLs="-1" volume="50" AutoStart="0" ShowStatusBar="1"> 为了搞清每基杆塔会推却多长导线及避雷线上的荷载,则引出了程度档距和垂直档距的概念.吊挂于杆塔上的一档导线,因为风压感化而引起的程度荷载将由两侧杆塔承担.风压程度荷载是沿线长均布的荷载,在平抛物线近似盘算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线优势压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担.图2-10程度档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的程度档距,m;—盘算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N.是以我们可知,某杆塔的程度档距就是该杆两侧档距之和的算术平均值.它暗示有多长导线的程度荷载感化在某杆塔上.程度档距是用来盘算导线传递给杆塔的程度荷载的.严厉说来,吊挂点不等高时杆塔的程度档距盘算式为只是吊挂点接近等高时,一般用式个中单位长度导线上的风压荷载p,依据比载的界说可按下述办法肯定,当盘算气候前提为有风无冰时,比载取g4,则p=g4S;当盘算气候前提为有风有冰时,比载取g5,则p=g5S,是以导线传递给杆塔的程度荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2.二.垂直档距和垂直荷载如图2-10所示,O1.O2分离为档和档内导线的最低点,档内导线的垂直荷载(自重.冰重荷载)由B.A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A 段导线上的垂直荷载由A杆承担.同理,AO2段导线上的垂直荷载由A杆承担,O2C段导线上的垂直荷载由C杆承担.在平抛物线近似盘算中,设线长等于档距,即则(2-50)式中G—导线传递给杆塔的垂直荷载,N;g—导线的垂直比载,N/m.mm2;—盘算杆塔的一侧垂直档距分量,m;—盘算杆塔的垂直档距,m;S—导线截面积, .由图2-10可以看出,盘算垂直档距就是盘算杆塔两侧档导线最低点O1.O2之间的程度距离,由式(2-50)可知,导线传递给杆塔的垂直荷载与垂直档距成正比.个中m1.m2分离为档和档中导线最低点对档距中点的偏移值,由式(2-38)可得联合图2-10中所示最低点偏移偏向,A杆塔的垂直档距为分解斟酌各类高差情形,可得垂直档距的一般盘算为(2-51)式中g.σ0—盘算气候前提时导线的比载和应力,N/m.mm2; MPa ;h1.h2—盘算杆塔导线悬点与前后两侧导线悬点间高差,m.垂直档距暗示了有多长导线的垂直荷载感化在某杆塔上.式(2-51)括号中正负的拔取原则:以盘算杆塔导线悬点高为基准,分离不雅测前后两侧导线悬点,如对方悬点低取正,对方悬点高取负.式(2-50)中导线垂直比载g应按盘算前提拔取,如盘算气候前提无冰,比载取g1,有冰,比载取g3,而式(2-51)中导线比载g为盘算气候前提时分解比载.垂直档距是随气候前提变更的,所以对统一悬点,所受垂直力大小是变更的,甚至可能在某一气候前提受下压力感化,而当气候前提变更后,在另一气候前提则可能受上拔力感化.【例2-2】某一条110KV输电线路,导线为LGJ—150/25型,导线截面积为S=2,线路中某杆塔前后两档安插如图2-11所示,图2-11例2-2示意图导线在自重和大风尚象前提时导线的比载分离为g1=34.047×10-3 N/m.mm2;g4=44.954×10-3 N/m.mm2;g6=56.392×10-3 N/m.mm2.试求:(1)若导线在大风尚象前提时应力σ0=120MPa,B杆塔的程度档距和垂直档距各为多大?感化于悬点B的程度力和垂直力各为多大?(2) 当导线应力为多大时,B杆塔垂直档距为正值?解:程度档距垂直档距程度力垂直力在本例中,B悬点两侧垂直档距分量分离为所以,这时垂直力盘算成果为负值,解释偏向向上,即悬点B受上拔力感化.按式(2-50)和图2-11所示情形,请求>0,即导线应力在此可以看到,在比载不变时,对于低悬点,垂直档距随应力增长而减小,反之,对高悬点则垂直档距随应力增长而增大.确实地说,垂直档距随气候前提变更是由应力和比载的比值决议的,对低悬点,在最大的气候前提时垂直档距最小,对高悬点为,在最大的气候前提时垂直档距最大.代表档距代表档距=档内各档距三次方之和,除以档内各档距之和,之后开根号代表档距=√((〖L1〗^3+〖L2〗^3……〖+Ln〗^3)/(L1+L2……+Ln))。
一、火仄档距战火仄荷载之阳早格格创做正在线路安排中,对付导线举止力教估计的手段主要有二个:一是决定导线应力大小,以包管导线受力没有超出允许值;二是决定杆塔受到导线及躲雷线的效率力,以验算其强度是可谦脚央供.杆塔的荷载主要包罗导线战躲雷线的效率截止,以及另有风速、覆冰战绝缘子串的效率.便效率目标道,那些荷载又分为笔曲荷载、横背火仄荷载战纵背火仄荷载三种.< ShowPositionControls="0" ShowControls="1" invokeURLs="-1" volume="50" AutoStart="0" ShowStatusBar="1"> 为了搞浑每基杆塔会启受多少导线及躲雷线上的荷载,则引出了火仄档距战笔曲档距的观念.悬挂于杆塔上的一档导线,由于风压效率而引起的火仄荷载将由二侧杆塔背担.风压火仄荷载是沿线少均布的荷载,正在仄扔物线近似估计中,咱们假定一档导线少等于档距,若设每米少导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB二杆塔仄衡背担;AC档导线上的风压荷载为,由AC二杆塔仄衡背担.图2-10火仄档距战笔曲档距如上图所示:此时对付A杆塔去道,所要背担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的火仄档距,m;—估计杆塔前后二侧档距,m;P—导线传播给杆塔的风压荷载,N.果此咱们可知,某杆塔的火仄档距便是该杆二侧档距之战的算术仄衡值.它表示有多少导线的火仄荷载效率正在某杆塔上.火仄档距是用去估计导线传播给杆塔的火仄荷载的.庄重道去,悬挂面没有等下时杆塔的火仄档距估计式为不过悬挂面交近等下时,普遍用式其中单位少度导线上的风压荷载p,根据比载的定义可按下述要领决定,当估计局里条件为有风无冰时,比载与g4,则p=g4S;当估计局里条件为有风有冰时,比载与g5,则p=g5S,果此导线传播给杆塔的火仄荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截里积,mm2.二、笔曲档距战笔曲荷载如图2-10所示,O1、O2分别为档战档内导线的最矮面,档内导线的笔曲荷载(自沉、冰沉荷载)由B、A二杆塔背担,且以O1面区分,即BO1段导线上的笔曲荷载由B 杆背担,O1A段导线上的笔曲荷载由A杆背担.共理,AO2段导线上的笔曲荷载由A杆背担,O2C段导线上的笔曲荷载由C杆背担.正在仄扔物线近似估计中,设线少等于档距,即则(2-50)式中G—导线传播给杆塔的笔曲荷载,N;g—导线的笔曲比载,N/m.mm2;—估计杆塔的一侧笔曲档距分量,m;—估计杆塔的笔曲档距,m;S—导线截里积, .由图2-10不妨瞅出,估计笔曲档距便是估计杆塔二侧档导线最矮面O1、O2之间的火仄距离,由式(2-50)可知,导线传播给杆塔的笔曲荷载与笔曲档距成正比.其中m1、m2分别为档战档中导线最矮面对付档距中面的偏偏移值,由式(2-38)可得分离图2-10中所示最矮面偏偏移目标,A杆塔的笔曲档距为概括思量百般下好情况,可得笔曲档距的普遍估计为(2-51)式中g、σ0—估计局里条件时导线的比载战应力,N/m.mm2;MPa ;h1、h2—估计杆塔导线悬面与前后二侧导线悬面间下好,m.笔曲档距表示了有多少导线的笔曲荷载效率正在某杆塔上.式(2-51)括号中正背的采用准则:以估计杆塔导线悬面下为基准,分别瞅测前后二侧导线悬面,如对付圆悬面矮与正,对付圆悬面下与背.式(2-50)中导线笔曲比载g应按估计条件采用,如估计局里条件无冰,比载与g1,有冰,比载与g3,而式(2-51)中导线比载g为估计局里条件时概括比载.笔曲档距是随局里条件变更的,所以对付共一悬面,所受笔曲力大小是变更的,以至大概正在某一局里条件受下压力效率,而当局里条件变更后,正在另一局里条件则大概受上拔力效率.【例2-2】某一条110KV输电线路,导线为LGJ—150/25型,导线截里积为S=2,线路中某杆塔前后二档安插如图2-11所示,图2-11例2-2示企图导线正在自沉战大风局里条件时导线的比载分别为g1=34.047×10-3 N/m.mm2;g4=44.954×10-3 N/m.mm2;g6=56.392×10-3 N/m.mm2.试供:(1)若导线正在大风局里条件时应力σ0=120MPa,B杆塔的火仄档距战笔曲档距各为多大?效率于悬面B的火仄力战笔曲力各为多大?(2) 当导线应力为多大时,B杆塔笔曲档距为正值?解:火仄档距笔曲档距火仄力笔曲力正在本例中,B悬面二侧笔曲档距分量分别为所以,那时笔曲力估计截止为背值,证明目标进与,即悬面B受上拔力效率.按式(2-50)战图2-11所示情况,央供>0,即导线应力正在此不妨瞅到,正在比载没有变时,对付于矮悬面,笔曲档距随应力减少而减小,反之,对付下悬面则笔曲档距随应力减少而删大.确切天道,笔曲档距随局里条件变更是由应力战比载的比值决断的,对付矮悬面,正在最大的局里条件时笔曲档距最小,对付下悬面为,正在最大的局里条件时笔曲档距最大.代表档距代表档距=档内各档距三次圆之战,除以档内各档距之战,之后启根号代表档距=√((〖L1〗^3+〖L2〗^3……〖+Ln〗^3)/(L1+L2……+Ln))。
一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC 两杆塔平均承担。
图2-10水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
一、水平档距和水平荷载之五兆芳芳创作在线路设计中,对导线进行力学计较的目的主要有两个:一是确定导线应力大小,以包管导线受力不超出允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求.杆塔的荷载主要包含导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用.就作用标的目的讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种.< ShowPositionControls="0" ShowControls="1" invokeURLs="-1" volume="50" AutoStart="0" ShowStatusBar="1"> 为了弄清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念.悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担.风压水平荷载是沿线长均布的荷载,在平抛物线近似计较中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担.图2-10水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;—计较杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N.因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值.它暗示有多长导线的水平荷载作用在某杆塔上.水平档距是用来计较导线传递给杆塔的水平荷载的.严格说来,悬挂点不等高时杆塔的水平档距计较式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,按照比载的定义可按下述办法确定,当计较气象条件为有风无冰时,比载取g4,则p=g4S;当计较气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2.二、垂直档距和垂直荷载如图2-10所示,O1、O2辨别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B 杆承担,O1A段导线上的垂直荷载由A杆承担.同理,AO2段导线上的垂直荷载由A杆承担,O2C段导线上的垂直荷载由C杆承担.在平抛物线近似计较中,设线长等于档距,即则(2-50)式中G—导线传递给杆塔的垂直荷载,N;g—导线的垂直比载,N/m.mm2;—计较杆塔的一侧垂直档距份量,m;—计较杆塔的垂直档距,m;S—导线截面积, .由图2-10可以看出,计较垂直档距就是计较杆塔两侧档导线最低点O1、O2之间的水平距离,由式(2-50)可知,导线传递给杆塔的垂直荷载与垂直档距成正比.其中m1、m2辨别为档和档中导线最低点对档距中点的偏移值,由式(2-38)可得结合图2-10中所示最低点偏移标的目的,A杆塔的垂直档距为综合考虑各类高差情况,可得垂直档距的一般计较为(2-51)式中g、σ0—计较气象条件时导线的比载和应力,N/m.mm2;MPa ;h1、h2—计较杆塔导线悬点与前后两侧导线悬点间高差,m.垂直档距暗示了有多长导线的垂直荷载作用在某杆塔上.式(2-51)括号中正负的选取原则:以计较杆塔导线悬点高为基准,辨别不雅测前后两侧导线悬点,如对方悬点低取正,对方悬点高取负.式(2-50)中导线垂直比载g应按计较条件选取,如计较气象条件无冰,比载取g1,有冰,比载取g3,而式(2-51)中导线比载g为计较气象条件时综合比载.垂直档距是随气象条件变更的,所以对同一悬点,所受垂直力大小是变更的,甚至可能在某一气象条件受下压力作用,而当气象条件变更后,在另一气象条件则可能受上拔力作用.【例2-2】某一条110KV输电线路,导线为LGJ—150/25型,导线截面积为S=2,线路中某杆塔前后两档安插如图2-11所示,图2-11例2-2示意图导线在自重和大风尚象条件时导线的比载辨别为g1=34.047×10-3 N/m.mm2;g4=44.954×10-3 N/m.mm2;g6=56.392×10-3 N/m.mm2.试求:(1)若导线在大风尚象条件时应力σ0=120MPa,B杆塔的水平档距和垂直档距各为多大?作用于悬点B的水平力和垂直力各为多大?(2) 当导线应力为多大时,B杆塔垂直档距为正值?解:水平档距垂直档距水平力垂直力在本例中,B悬点两侧垂直档距份量辨别为所以,这时垂直力计较结果为负值,说明标的目的向上,即悬点B受上拔力作用.按式(2-50)和图2-11所示情况,要求>0,即导线应力在此可以看到,在比载不变时,对于低悬点,垂直档距随应力增加而减小,反之,对高悬点则垂直档距随应力增加而增大.确切地说,垂直档距随气象条件变更是由应力和比载的比值决定的,对低悬点,在最大的气象条件时垂直档距最小,对高悬点为,在最大的气象条件时垂直档距最大.代表档距代表档距=档内各档距三次方之和,除以档内各档距之和,之后开根号代表档距=√((〖L1〗^3+〖L2〗^3……〖+Ln〗^3)/(L1+L2……+Ln))。
一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC 两杆塔平均承担。
图2-10水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
一、水平档距与水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一就是确定导线应力大小,以保证导线受力不超过允许值;二就是确定杆塔受到导线及避雷线的作用力,以验算其强度就是否满足要求。
杆塔的荷载主要包括导线与避雷线的作用结果,以及还有风速、覆冰与绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载与纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距与垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载就是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。
图2-10水平档距与垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就就是该杆两侧档距之与的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距就是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只就是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为: 无冰时(2-48)有冰时(2-49)式中S—导线截面积,mm2。
二、垂直档距与垂直荷载如图2-10所示,O1、O2分别为档与档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A 段导线上的垂直荷载由A杆承担。
一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以ﻫ保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种.为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念.悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。
ﻫ图2—10水平档距和垂直档距ﻫ如上图所示:此时对A杆塔来说,所要承担的总风压荷载为ﻫ(2-47)令则式中P—每米导线上的风压荷载N/m;—杆塔的水平档距,m;ﻫ-计算杆塔前后两侧档距,m;ﻫP-导线传递给杆塔的风压荷载,N。
ﻫ因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
ﻫ严格说来,悬挂点不等高时杆塔的水平档距计算式为ﻫ只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为: 无冰时(2-48)ﻫ有冰时(2-49)式中S-导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O 1A段导线上的垂直荷载由A杆承担.同理,AO2段导线上的垂直荷载由A杆承担,O2C段导线上的垂直荷载由C杆承担.ﻫ在平抛物线近似计算中,设线长等于档距,即ﻫ则(2-50)式中G-导线传递给杆塔的垂直荷载,N;ﻫg-导线的垂直比载,N/m.mm2;—计算杆塔的一侧垂直档距分量,m;—计算杆塔的垂直档距,m;S—导线截面积, .ﻫ由图2—10可以看出,计算垂直档距就是计算杆塔两侧档导线最低点O1、O2之间的水平距离,由式(2-50)可知,导线传递给杆塔的垂直荷载与垂直档距成正比.其中ﻫm1、m2分别为档和档中导线最低点对档距中点的偏移值,由式(2-38)可得结合图2-10中所示最低点偏移方向,A杆塔的垂直档距为ﻫﻫ综合考虑各种高差情况,可得垂直档距的一般计算为(2-51)ﻫ式中g、σ0—计算气象条件时导线的比载和应力,N/m.mm2;MPa;h1、h2—计算杆塔导线悬点与前后两侧导线悬点间高差,m。
一、水平档距和水平荷载时间:2021.02.11 创作:欧阳计在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载 ,如图2-10所示:则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。
图2-10 水平档距和垂直档距如上图所示:此时对A杆塔来说,所要承担的总风压荷载为(2-47)令则式中P—每米导线上的风压荷载 N/m;—杆塔的水平档距,m;—计算杆塔前后两侧档距,m;P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:无冰时(2-48)有冰时(2-49)式中 S—导线截面积,mm2。
二、垂直档距和垂直荷载如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B 杆承担,O1A段导线上的垂直荷载由A杆承担。
一、水平档距和水平荷载
在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以
保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是
否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘
子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:
则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。
图2-10 水平档距和垂直档距
如上图所示:此时对A杆塔来说,所要承担的总风压荷载为
(2-47)
令
则
式中P—每米导线上的风压荷载N/m;
—杆塔的水平档距,m;
—计算杆塔前后两侧档距,m;
P—导线传递给杆塔的风压荷载,N。
因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。
它表示有多长导线的水平荷载作用在某杆塔上。
水平档距是用来计算导线传递给杆塔的水平荷载的。
严格说来,悬挂点不等高时杆塔的水平档距计算式为
只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;
当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:
无冰时(2-48)
有冰时(2-49)
式中S—导线截面积,mm2。
二、垂直档距和垂直荷载
如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。
同理,AO2段导线上的垂直荷载由A杆承担,O2C段导线上的垂直荷载由C杆承担。
在平抛物线近似计算中,设线长等于档距,即
则(2-50)
式中G—导线传递给杆塔的垂直荷载,N;
g—导线的垂直比载,N/m.mm2;
—计算杆塔的一侧垂直档距分量,m;
—计算杆塔的垂直档距,m;
S—导线截面积,。
由图2-10可以看出,计算垂直档距就是计算杆塔两侧档导线最低点O1、O2之间的水平距离,由式(2-50)可知,导线传递给杆塔的垂直荷载与垂直档距成正比。
其中
m1、m2分别为档和档中导线最低点对档距中点的偏移值,由式(2-38)可得
结合图2-10中所示最低点偏移方向,A杆塔的垂直档距为
综合考虑各种高差情况,可得垂直档距的一般计算为
(2-51)
式中g、σ0—计算气象条件时导线的比载和应力,N/m.mm2;MPa;
h1、h2—计算杆塔导线悬点与前后两侧导线悬点间高差,m。
垂直档距表示了有多长导线的垂直荷载作用在某杆塔上。
式(2-51)括号中正负的选取原则:以计算杆塔导线悬点高为基准,分别观测前后两侧导线悬点,如对方悬点低取正,对方悬点高取负。
式(2-50)中导线垂直比载g应按计算条件选取,如计算气象条件无冰,比载取g1,有冰,比载取g3,而式(2-51)中导线比载g为计算气象条件时综合比载。
垂直档距是随气象条件变化的,所以对同一悬点,所受垂直力大小是变化的,甚至可能在某一气象条件受下压力作用,而当气象条件变化后,在另一气象条件则可能受上拔力作用。
【例2-2】某一条110KV输电线路,导线为LGJ—150/25型,导线截面积为S=173.11mm2,线路中某杆塔前后两档布置如图2-11所示,
图2-11 例2-2示意图
导线在自重和大风气象条件时导线的比载分别为g1=
34.047×10-3N/m.mm2;g4=44.954×10-3N/m.mm2;g6=
56.392×10-3N/m.mm2。
试求:
(1)若导线在大风气象条件时应力σ0=120MPa,B杆塔的水平档距和垂直档距各为多大?作用于悬点B的水平力和垂直力各为多大?
(2)当导线应力为多大时,B杆塔垂直档距为正值?
解:水平档距
垂直档距
水平力
垂直力
在本例中,B悬点两侧垂直档距分量分别为
所以,这时垂直力计算结果为负值,说明方向向上,即悬点B受上拔力作用。
按式(2-50)和图2-11所示情况,要求>0,即
导线应力
在此可以看到,在比载不变时,对于低悬点,垂直档距随应力增加而减小,反之,对高悬点则垂直档距随应力增加而增大。
确切地说,垂直档距随气象条件变化是由应力和比载的比值决定的,对低悬点,在最大的气象条件时垂直档距最小,对高悬点为,在最大的气象条件时垂直档距最大。
代表档距
代表档距=档内各档距三次方之和,除以档内各档距之和,之后开根号
代表档距=√((〖L1〗^3+〖L2〗^3……〖+Ln〗^3)/(L1+L2……+Ln))。