第二节 电生磁
- 格式:doc
- 大小:124.23 KB
- 文档页数:2
新版课件九年级物理第二十章第2节《电生磁》一、教学内容本节课选自九年级物理第二十章第2节,主题为“电生磁”。
具体内容包括:电流的磁效应,奥斯特实验,安培定则,电流与磁场的关系,以及电生磁在日常生活中的应用。
二、教学目标1. 理解并掌握电流产生磁场的基本原理,了解奥斯特实验和安培定则。
2. 学会运用安培定则判断电流产生的磁场方向。
3. 了解电生磁在生活中的应用,提高学生的科学素养。
三、教学难点与重点重点:电流的磁效应,奥斯特实验,安培定则。
难点:安培定则的应用,电流与磁场关系的理解。
四、教具与学具准备1. 教具:电流表,磁针,导线,电池,演示用电流产生磁场的装置。
2. 学具:每组一套电流表,磁针,导线,电池。
五、教学过程1. 实践情景引入:展示磁针在电流附近的偏转现象,引导学生思考电流与磁场的关系。
2. 新课导入:讲解电流的磁效应,介绍奥斯特实验。
3. 例题讲解:运用安培定则判断电流产生的磁场方向。
4. 随堂练习:让学生动手操作,观察电流产生的磁场,并运用安培定则判断方向。
5. 知识拓展:介绍电生磁在日常生活中的应用。
六、板书设计1. 电生磁2. 内容:电流的磁效应奥斯特实验安培定则电流与磁场的关系电生磁的应用七、作业设计1. 作业题目:(1)简述电流产生磁场的原理。
(2)运用安培定则判断下列电流产生的磁场方向:……(给出具体图示)(3)列举生活中电生磁的应用实例。
2. 答案:(1)电流通过导线时,周围会产生磁场。
(2)根据安培定则,右手握住导线,拇指指向电流方向,四指弯曲的方向即为磁场方向。
(3)电磁铁、电动机等。
八、课后反思及拓展延伸1. 课后反思:本节课学生对电流产生磁场的原理和安培定则的掌握程度,以及实践操作中的表现。
2. 拓展延伸:引导学生思考电流与磁场的相互作用,为学习电磁感应打下基础。
重点和难点解析1. 安培定则的应用2. 实践操作中电流产生磁场的观察和判断3. 电生磁在日常生活中的应用实例一、安培定则的应用1. 确定电流方向:在电路图中,电流方向通常用箭头表示,实际操作中可借助电流表确定电流方向。
新版课件九年级物理第二十章第2节《电生磁》一、教学内容本节课我们将学习九年级物理第二十章第2节《电生磁》的内容。
具体包括教材第20章第2节“电生磁”的基本原理,奥斯特实验,电流的磁效应及其应用,电磁铁的原理和特性。
二、教学目标1. 让学生了解并掌握电生磁的基本原理,理解电流的磁效应。
2. 使学生能够运用所学知识解释生活中与电生磁有关的现象。
3. 培养学生的实验操作能力和科学思维。
三、教学难点与重点重点:电生磁的基本原理,奥斯特实验,电流的磁效应。
难点:电磁铁的原理及其应用,理解电流与磁场之间的关系。
四、教具与学具准备1. 教具:电磁铁实验装置,电流表,导线,电池,磁铁,指南针等。
2. 学具:每组一套电磁铁实验装置,导线,电池,指南针。
五、教学过程1. 实践情景引入:展示电磁铁的应用实例,如电磁起重机,引导学生思考其原理。
2. 例题讲解:讲解奥斯特实验,引导学生理解电生磁的原理。
3. 知识讲解:详细讲解电流的磁效应,电磁铁的原理和特性。
4. 随堂练习:分组实验,让学生动手验证电生磁现象。
6. 课堂反馈:解答学生疑问,检查学生对知识点的掌握。
六、板书设计1. 电生磁的基本原理2. 奥斯特实验3. 电流的磁效应4. 电磁铁的原理和特性七、作业设计1. 作业题目:请简述电生磁的基本原理,并举例说明其在生活中的应用。
答案:电生磁是指电流通过导体时,周围会产生磁场的现象。
例如,电磁铁、电动机等都是利用电生磁原理工作的。
2. 作业题目:解释为什么电磁铁的磁性强度与电流的大小、线圈的匝数有关。
答案:电磁铁的磁性强度与电流的大小和线圈的匝数成正比,电流越大、匝数越多,磁性越强。
八、课后反思及拓展延伸1. 反思:本节课学生对电生磁的原理掌握情况较好,但对电磁铁的应用还需加强。
2. 拓展延伸:鼓励学生查阅资料,了解电磁铁在其他领域的应用,如医疗、交通等。
重点和难点解析1. 电生磁的基本原理的理解和应用2. 奥斯特实验的操作和观察3. 电磁铁磁性强度与电流大小、线圈匝数的关系4. 教学过程中的实践情景引入和随堂练习设计5. 作业设计的针对性和拓展延伸的引导详细补充和说明:一、电生磁的基本原理的理解和应用电生磁的原理是电流通过导体时,会在其周围产生磁场。
第2节电生磁知识与技能:1.认识电流的磁效应,初步了解电和磁之间的联系。
2.知道通电导体周围存在着磁场,知道通电螺线管外部的磁场与条形磁体的磁场相似。
3.会判断通电螺线管两端的极性或通电螺线管中电流的方向。
过程与方法:1.通过观察直导线电流磁场和通电螺线管的磁场实验,进一步拓展学生的空间想象力。
2.通过对实验的分析,提高学生比较、分析、归纳得出结论的能力。
情感、态度与价值观:通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙,培养学生的学习热情,初步领会探索物理规律的方法和技巧。
重点:电流的磁效应;通电螺线管的磁场。
难点:运用安培定则判断通电螺线管的极性或通电螺线管的电流方向。
多媒体课件、纸盒吸铁魔术道具、电源、导线、小磁针、圆筒、硬纸板、铁屑。
一、情景导入教师先给大家表演一个魔术──纸盒吸铁,然后提问学生:此盒中可能是什么?你猜想的依据是什么?教师断开开关,再去接触铁屑,由不能吸引铁屑引起学生思维冲突,此时教师将纸盒打开,让学生明白,刚才产生的磁可能跟电有关。
到底磁是否能生电?这节课我们就来揭开这个谜!二、合作探究电流的磁效应提出问题观察实验中通电导线周围的小磁针的情况。
电源和导线的作用是什么?小磁针有什么作用?演示实验将一枚转动灵活的小磁针置于桌面上,在小磁针旁放一条直导线,使导线与电池触接,看看电路连通瞬间小磁针有什么变化?断电,小磁针有什么变化?改变电流方向触接,小磁针有什么变化?交流讨论同学们根据观察到的现象,交流讨论产生该现象说明了什么?归纳总结(1)直导线通电后,小磁针发生偏转。
说明:通电导体周围存在磁场。
(2)改变电流方向,小磁针偏转方向相反。
说明:电流周围磁场的方向与电流方向有关。
(3)通电导线周围存在与电流方向有关的磁场,这种现象叫做电流的磁效应。
通电螺线管的磁场提出问题既然电能生磁,为什么我们在生活中感受不到呢?比如:手电筒在通电时连一根大头针都吸不动……怎样增大磁性呢?演示实验把导线绕在圆筒上,做成螺线管,与电源相连通电后各圈导线产生的磁场叠加在一起,磁场就会强得多。
电生磁要点一、电生磁1.电流的磁效应:(1)通电导体和磁体一样,周围存在着磁场,即电流具有磁效应。
(2)电流周围的磁场方向与通过导体的电流方向有关。
2.通电螺线管的磁场:(1)螺线管:用导线绕成的螺旋形线圈叫做螺线管。
(2)安培定则:假设用右手握住通电导线,大拇指指向电流方向,那么弯曲的四指就表示导线周围的磁场方向,如图甲所示。
假设用右手握住通电螺线管,弯曲的四指指向电流方向,那么大拇指的指向就是通电螺线管内部的磁场方向,如图乙所示。
注意:1.奥斯特实验的重大意义是首次揭示了电和磁之间的联系,对磁现象的“电”本质的研究提供了有力的证据。
2.安培定则:用右手握住螺线管,让四指指向螺线管中电流的方向,则拇指所指的那端就是螺线管的N极。
要点二、电磁铁电磁继电器1.电磁铁:内部有铁心的螺线管叫做电磁铁。
电磁铁在电磁起重机、电铃、发电机、电动机、自动控制上有着广泛的应用。
2.电磁铁的磁性:(1)电磁铁磁性的有无,完全可以由通断电来控制。
(2)电磁铁磁性的强弱可以由电流的大小、线圈匝数控制。
3.电磁继电器:(1)结构:具有磁性的电磁继电器由控制电路和工作电路两部分组成。
控制电路包括低压电源、开关和电磁铁,其特点是低电压、弱电流的电路;工作电路包括高压电源、用电器和电磁继电器的触点,其特点是高电压、强电流的电路。
(2)原理:电磁继电器的核心是电磁铁。
当电磁铁通电时,把衔铁吸过来,使动触点和静触点接触(或分离),工作电路闭合(或断开)。
当电磁铁断电时失去磁性,衔铁在弹簧的作用下脱离电磁铁,切断(或接通)工作电路。
从而由低压控制电路的通断,间接地控制高压工作电路的通断,实现远距离操作和自动化控制。
电磁继电器的作用相当于一个电磁开关。
注意:电磁继电器是利用低电压、弱电流电路的通断,来间接的控制高电压、强电流电路通断的装置。
电磁继电器就是利用电磁铁来控制工作电路的一种开关。
例题一、电生磁1、如左图,甲、乙、丙是放在通电螺线管周围的软铁片,当开关闭合时则()A.甲的左端为N极B.乙的左端为N极C.丙的左端为N极D.丙的右端为N极【答案】A、C【解析】看右图,通电螺线管的磁场极性跟电流方向的关系,可以用安培定则来决定:用右手握螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那端就是螺线管的北极。
第2节电生磁【学习目标】1.认识电流的磁效应;2.知道通电导体周围存在着磁场;通电螺线管的磁场与条形磁体相似【学习过程】一、新课引入:我们已经学习了电荷与磁现象,他们之间有哪些类似的地方?你认为电与磁之间有某种联系吗?二、独立自主学习:请快速阅读P124---P127的相关内容,然后独立完成以下学习任务。
1.丹麦物理学家奥斯特在课堂上做实验时偶然发现:当导线中有电流时,它旁边的磁针发生了偏转,他做了许多实验终于证实有联系。
2.通电导体的周围有磁场,磁场的方向跟有关,这种现象叫做。
3.通电螺线管周围也存在。
4.安培定则:。
请结对相互更正,然后在组内展示质疑,如果还有不清楚的地方,请其他小组来帮忙解决。
三、合作互助学习:演示一:电流的磁效应(奥斯特实验)要求学生仔细观察实验现象——小磁针的偏转方向1.首先让小磁针静止,不受外界磁场干扰,观察小磁针指向。
2.在磁针正上方拉一条直导线,当直导线通电时,观察小磁针指向。
断电后观察小磁针指向。
表明:________________________________________3.改变电流的方向,观察小磁针指向。
表明:________________________________________。
你的结论:演示二:螺线管的磁场教师演示实验(观察课件):要求学生仔细观察实验现象——小磁针的偏转方向1.把小磁针放到螺线管四周不同的位置,在螺线管中通入电流。
观察小磁针所指的磁场方向,在我们所熟悉的各种磁场中,通电螺线管的磁场与哪种磁体相似?结论:通电螺旋管外部的磁场和磁铁的磁场类似。
通电螺线管的两端就相当于条形磁铁的两个。
2.(1)如图将通电螺线管靠近已知磁极的小磁针,观察小磁针的偏转方向,判断并标出通电螺线管的N、S极。
(2)切断电源,将上图螺线管中的电流方向改变观察发生什么现象?(3)你来你来归纳:当电流的方向改变时,通电螺线管的N,S极正好对调,这说明,通电螺线光两端的极性跟螺线管中有关。
第二节电生磁引言电生磁是一种物理现象,可以简单地描述为电流通过导体时所产生的磁场。
这个现象是电动力学中的一个重要概念,也是理解电磁学与电磁感应的基础。
在这个文档中,我们将介绍电生磁的基本原理、相关方程以及一些实际应用。
电生磁的原理电生磁的原理可以通过安培环路定理和比奥萨法尔定律来解释。
安培环路定理表明,通过任何一条闭合路径所围成的曲面上的磁场总和为零,除非存在通过这个曲面的电流。
而比奥萨法尔定律则表示,通过一段导体的电流和导体附近的磁场之间存在一种相互作用关系。
具体来说,当电流通过导体时,电子在导体中移动。
这些移动的电子形成了一个电流环路,并产生了一个围绕该导体的磁场。
这个磁场的方向可以根据“右手定则”确定,即将右手握住导体,大拇指指向电流的方向,其他四指的弯曲方向则表示磁场的方向。
这个磁场会随着电流的变化而变化,可以通过一些方程来描述。
相关方程和规律在电生磁的研究中,有几个重要的方程和规律需要了解。
比奥萨法尔定律比奥萨法尔定律是描述电流与磁场相互作用的基本规律。
它可以表示为以下公式:$$\\vec{B} = \\frac{{\\mu_0}}{{4\\pi}} \\int \\frac{{I \\cdot d\\vec{l}\\times \\vec{r}}}{{r^2}}$$其中,$\\vec{B}$表示磁场的矢量,$\\mu_0$表示真空磁导率,I表示电流,$d\\vec{l}$表示电流元的矢量微元,$\\vec{r}$表示观察点与电流元之间的矢量差。
安培环路定理安培环路定理是描述磁场环路的闭合性质的重要规律。
它可以表示为以下公式:$$\\oint \\vec{B} \\cdot d\\vec{l} = \\mu_0 \\int \\vec{J} \\cdot d\\vec{S}$$其中,$\\oint \\vec{B} \\cdot d\\vec{l}$表示磁场环路的积分,$\\vec{J}$表示电流密度,$d\\vec{S}$表示环路的微分面积元。
第二节电与磁
学习目标
1、认识电流的磁效应
2、知道通电导体周围存在磁场;通电螺线管的磁场与什么的磁场相似
3、会用安培定则判断通电螺线管的极性跟电流的关系
知识点一电流的磁效应
1、观察演示实验:电流的磁效应。
实验现象:
(1)比较甲、乙两图可观察到的现象:直导线触接
电池通电时小磁针 .
(2)比较甲、丙两图可观察到的现象:改变直导线
中电流方向小磁针偏转方向也________。
(3) 结论:通电导体的周围存在_______,磁场方向跟__________方向有关,这种现象叫做电流的。
2、针对以上问题,在1820年,丹麦物理学家______________最先发现了电和磁的联系,所以把本实验也叫_____________实验.
思考:根据小磁针发生偏转来反映通电导线周围存在的磁场,用到的研究方法是
知识点二通电螺线管的磁场
探究活动二:
1、将导线绕成螺线管可使各圈导线产生的磁场叠加,从而加强。
2、跟据实验回答:
(1)通电螺线管的磁场跟________磁体的磁场相似。
(2)在螺线管中插入一根铁芯的目的是加强螺线管的。
(3)通电螺线管的极性与________方向和通电螺线管的有关
注意:通电螺线管的内部磁感线和外部磁感线组成闭合的曲线
随堂练习判断:通电螺线管的磁场方向总是从N极指向S极()
知识点三安培定则(右手螺旋定则)
思考:(1)知道通电螺线管中的电流方向,如何判断其磁极?
(2)知道通电螺线管的磁极,如何判断其电流方向?
通电螺线管的磁性跟电流的方向之间的关系可用来判定,方法是:用右手握住螺线管,让四指指向螺线管中的方向,则大拇指所指的那端就是螺线管的极。
总结:安培定则:(1)已知电流方向,可以判定磁极
(2)已知磁极,可以判定电流方向和电源正、负极
综合练习
1、首先发现电流周围存在磁场的科学家是 ( ) A.法拉第 B.阿基米德 C.奥斯特 D.托里拆利
2、要使通电螺线管的两个磁极对调,可采取的方法是()
A.改变电流方向 B.增加螺线管的匝数 C.改变电流大小 D.将铁心从螺线管中拔出3、许达同学在探究通电螺线管的极性和管外磁场的分布情况时,在螺线管外部的a、b、c 处摆放了三个小磁针,如图所示,当他闭合开关,等到小磁针静止后,下面的说法中正确的是 ( )
A.小磁针a、b的左端是N极、小磁针c的右端是N极
B.小磁针a、c的左端是N极、小磁针b的右端是N极
C.小磁针b、c的左端是N极、小磁针a的右端是N极
D.小磁针a、c的右端是N极、小磁针b的左端是N极
4、标出通电螺线管的N、S极。
5、在导线上标出通电螺线管的电流方向。