闭环频率特性
- 格式:ppt
- 大小:488.50 KB
- 文档页数:18
用MATLAB分析闭环系统的频率特性闭环系统的频率特性指的是系统在不同频率下的响应特性。
在MATLAB中,可以通过不同的函数和工具箱来分析闭环系统的频率特性。
下面将介绍一些常用的方法。
1. 传递函数分析法(Transfer Function Analysis Method):传递函数描述了系统的输入和输出之间的关系。
在MATLAB中,可以使用tf函数创建传递函数对象,并利用bode函数绘制系统的频率响应曲线。
例如,假设有一个传递函数G(s) = 1/(s^2 + s + 1),可以用以下代码创建传递函数对象并绘制其频率响应曲线:```matlabG = tf([1], [1, 1, 1]);bode(G);```运行上述代码,将会显示出频率响应曲线,并且可以通过该函数的增益曲线和相位曲线来分析系统在不同频率下的响应特性。
2. 状态空间分析法(State-Space Analysis Method):状态空间模型描述了系统的状态变量之间的关系。
在MATLAB中,可以使用ss函数创建状态空间模型,并利用bode函数绘制系统的频率响应曲线。
例如,假设有一个状态空间模型A、B、C和D分别为:```matlabA=[01;-1-1];B=[0;1];C=[10];D=0;sys = ss(A, B, C, D);bode(sys);```运行上述代码,将会显示出频率响应曲线,并且可以通过该函数的增益曲线和相位曲线来分析系统在不同频率下的响应特性。
3. 伯德图法(Bode Plot Method):Bode图可以直观地表示系统的频率响应曲线。
在MATLAB中,可以使用bode函数绘制系统的Bode图。
例如,假设有一个传递函数G(s) =1/(s^2 + s + 1),可以用以下代码绘制其Bode图:```matlabG = tf([1], [1, 1, 1]);bode(G);```运行上述代码,将会显示出Bode图,并且可以通过该图来分析系统在不同频率下的增益和相位特性。
闭环频率特性的基本特点1.在低频段Φ(jω)≈1(或Φ(jω)≈1/H(jω))通常在低频段其幅值A(ω)>>1 。
于是对于单位反馈系统,由式(5.28) 可得在低频段其闭环频率特性为上式表明:在闭环频率特性的低频段,由于这时开环幅值远大于1,故单位反馈系统的闭环频率特性Φ(jω)≈1。
一般来说:一个系统的开环频率特性保持高增益的频率范围越宽,其(闭环)输出复现输入信号就越好。
这就是所谓的“高增益原则”。
对于非单位反馈系统,由式(5.26)可得在低频段其闭环频率特性为这说明: 在低频段由于 A(ω)=|G(jω)H(jω)|>>1,故非单位反馈系统的闭环频率特性近似等于反馈通道频率特性的倒数。
2. 在高频段Φ(jω) ≈G(jω)系统的开环频率特性在高频段 |G k (jω)|<< 1 ,于是有上式表明:在高频段,由于开环频率特性的幅值很小,故反馈控制系统的闭环频率特性与前向通道的频率特性几乎重合。
3. 在中频段闭环频率特性中频段的形状对系统暂态特性的影响很大,通常用两组特征量:带宽频率ωb 和谐振峰值M r 、谐振频率ωr ,来加以刻画。
(1) 带宽频率与带宽闭环幅频特性的幅值下降到零频幅值的 0.707( 即 0.707M(0))、或闭环对数幅频特性的增益下降到零频增益值以下 3 分贝时,其对应的频率ωb 称为带宽频率 ( 或系统的截止角频率 );闭环对数幅频特性的增益不低于 -3 分贝时所对应的频率范围,即 0 ≤ω≤ωb ,称为系统的带宽 ( 或通频带 ) 。
带宽与系统暂态响应速度之间的关系控制系统的带宽与暂态响应的速度具有密切的关系。
一般来说:系统的带宽越大,暂态响应的速度就越快;而且对于低价系统,它们之间还具有确定的函数关系。
对于一阶系统,带宽越大,即带宽频率ωb越高( 系统极点p=-1/T=- ωb离虚轴越远) ,相应的时间常数T 便越小,系统响应的速度就越快。