信号幅频相频特性的画法(频率响应法)
- 格式:pdf
- 大小:874.36 KB
- 文档页数:46
1、频率响应法•基本思想是把系统中的信号分解为多种不同频率的正弦信号,这些信号经过控制系统时,会以一定的规律产生幅值和相位的变化,通过分析这些变化规律就能得出关于系统运动的性能指标。
•由于幅值和相位的变化称频率特性函数可以绘制在图形上,因此该方法非常直观。
另外,可以用实验法建立系统的模型,也可以据开环频率特性分析闭环系统的特性。
该方法具有很高的工程价值,深受工程技术人员欢迎。
6 频率响应分析法22、频率特性的图示方法•为了直观地分析系统的特性,通常把幅频和相频特性以图形的形式表示出来:1.幅相频率特性(奈氏图)2.对数频率特性(Bode图)3.对数幅相特性(尼氏图)6 频率响应分析法52.1 幅相频率特性图•极坐标图:奈奎斯特(Nyquist)图,幅相特性图,当频率连续变化时,频率特性函数在复平面的运动轨迹。
G(jω)=x(ω)+ j y(ω)ω:0→+∞6 频率响应分析法62.2 对数频率特性(Bode图)•对数坐标图:伯德(Bode)图,由两辐图组成。
对数幅频特性图+对数相频特性图,横坐标为频率的(以10为底数)对数,单位是10倍频程(dec)。
–对数幅频图的纵坐标为幅频的对数,单位为分贝(dB)–对数相频图的纵坐标为相频值,单位为弧度6 频率响应分析法86 频率响应分析法10伯德(Bode)图的优点•对数坐标图有如下优点:–把乘、除的运算变成加、减运算。
串联环节的Bode 图为单个环节的Bode图迭加。
–K 的变化对应于对数幅频曲线上下移动,而相频曲线不变。
–一张图上可以同时画出低、中、高频的特性。
•因此在工程上得到了广泛的应用6 频率响应分析法112.3 对数幅相特性(尼氏图)对数幅相图•尼科尔斯(Nichols)图,以对数幅频特性为纵坐标(分贝),相频特性为横坐标,频率ω为参变量。
6 频率响应分析法126 频率响应分析法146 频率响应分析法203.7 用Matlab绘制频域特性图•sys = tf(num,den);•伯德图–bode(sys); [mag,phase,w] = bode(sys);•奈奎斯特图–nyquist(sys); [re,im,w] = nyquist(sys);•尼科斯图–nichols(sys); [mag,phase,w] = nichols(sys);6 频率响应分析法23对数频域特性图与频域性能指标分贝对应的频率:截止频率-3分贝对应的频率:带宽6 频率响应分析法5. 开环传递函数的频率特性5.1 开环对数频率特性的绘制①以典型环节的频率特性为依据进行迭加;②首先考虑积分环节和比例环节;③充分利用环节的特征点。
频率响应法一、概述频率响应法(Frequency Response Method)是一种用于分析和设计线性时不变系统的方法。
它通过研究系统对不同频率的输入信号的响应来揭示系统的特性和行为。
频率响应法广泛应用于信号处理、控制系统、通信系统等领域。
二、频率响应的基本概念2.1 频率响应函数频率响应函数是描述系统对不同频率输入信号响应的函数。
通常用H(ω)表示,其中ω为角频率。
频率响应函数可以分为幅频特性和相频特性两个部分。
2.2 幅频特性幅频特性描述了系统对不同频率输入信号的幅度变化情况。
常见的表示幅频特性的方法有Bode图和Nyquist图。
Bode图将系统的增益和相位角随频率变化的曲线绘制在共享横轴的图上,直观地展示了系统的频率响应特性。
Nyquist图则是将系统的频率响应绘制在复平面上,可以用于分析系统的稳定性和相位裕度等指标。
2.3 相频特性相频特性描述了系统对不同频率输入信号的相位差变化情况。
相频特性通常用Bode图来表示,通过绘制系统的相位角随频率变化的曲线,可以分析系统的相位延迟、相位裕度等指标。
三、频率响应法的应用3.1 系统分析频率响应法可以用于对系统进行稳定性分析、频率特性分析等。
通过分析系统的频率响应曲线,可以判断系统是否稳定、是否存在共振现象,从而指导系统的设计和调整。
3.2 控制系统设计频率响应法在控制系统的设计中起到重要作用。
通过分析系统的频率响应特性,可以选择合适的控制器参数,设计出满足性能要求的控制系统。
3.3 信号处理在信号处理领域,频率响应法广泛应用于滤波器设计和信号增强等方面。
通过分析信号在系统中的频率响应,可以设计出满足要求的滤波器,对信号进行有效处理和增强。
3.4 通信系统频率响应法在通信系统中的应用也非常广泛。
通过分析通信系统的频率响应特性,可以优化系统的传输性能,提高信号的传输质量和可靠性。
四、频率响应法的优缺点4.1 优点•频率响应法可以直观地展示系统的频率响应特性,便于分析和设计。
第五章 频域响应法5-1 频率特性一. 频率特性的基本概念1. 所谓频率特性,即在零初始条件下,系统输入在正弦信号的控制下,其稳态输出C(t) 的被控制量信号的幅值A(ω)和相角ψ(ω)随r(t)信号的角频率ω变化的规律,记为G(j ω)。
G(j ω)=G(S)| s=j ω C(j ω) C(s)G(j ω)== R(j ω) R(s)| s=j ωb 0(j ω) m +b 1(j ω) 1+m +……+b 1-m (j ω)+b m G(j ω)=( j ω) n +a 1(j ω) 1-n +……a 1-n (j ω)+a n2、G(j ω)的数模表达式有两种标准式: (1)Nyquist 标准式:G(j ω)=︱G(j ω)︱e)(jw G j ∠=u(ω)+jv(ω)其中A(j ω)= ︱G(j ω)︱称为幅频特性,是ω的偶函数。
ψ(ω)= ∠G(j ω) 称为相频特性,是ω的奇函数。
u(ω)=Re [G(j ω)]为实部; v(ω)=Im [G(j ω)]为虚部。
(2)Bode 表达式:L (ω)=20lg [A(j ω) ] 称为对数幅频,ψ(ω)= ∠G(j ω) 称为对数相频。
二. 频率特性的图解表示法在工程分析和设计中,通常把频率特性画成曲线,从这些频率特性曲线出发研究。
现以RC 网络为例。
如图5-2。
其频率特性为G(j ω)=)(11jw T +(T=RC )。
A(ω)= G(j ω)=2)(11TW +;ψ(ω)=-arctg(T ω)1.极坐标图----Nyquist图当ω=0→∞变化时,A(ω)和φ(ω)随ω而变,以A(ω)作幅值,φ(ω)作相角的端点在s平面上形成的轨迹,称Nyquist曲线(幅相频率特性曲线)简称幅相曲线即Nyquist图,是频率响应法中常用的一种曲线。
2、对数坐标图----Bode图对数频率特性曲线又称Bode曲线,包括对数幅频和对数相频两条曲线。
如何进行电路的频率响应分析电路的频率响应分析是电子工程领域中非常重要的一项技术。
通过对电路在不同频率下的响应进行分析,可以了解电路的频率特性及其对输入信号的处理能力。
本文将介绍如何进行电路的频率响应分析,包括频率响应的定义、常用的分析方法以及实际应用。
一、频率响应的定义频率响应是指电路在不同频率下对输入信号的响应情况。
它是衡量电路对频率变化的敏感程度的指标。
频率响应一般用传递函数来描述,传递函数是输出信号与输入信号的比值。
传递函数通常用H(jω)表示,其中j为虚数单位,ω为角频率。
二、频率响应的分析方法1. Bode图法Bode图法是一种常用的频率响应分析方法。
它通过绘制幅频特性曲线和相频特性曲线,直观地展示电路在不同频率下的响应情况。
幅频特性曲线表示电路的增益与频率之间的关系,相频特性曲线表示电路的相位与频率之间的关系。
2. 频谱分析法频谱分析法是将信号变换到频域进行分析的方法。
通过对输入信号经过电路处理后的频谱进行分析,可以得到电路的频率特性。
常用的频谱分析方法有傅里叶变换和快速傅里叶变换等。
3. 极坐标法极坐标法是一种通过绘制幅相特性曲线来描述电路频率响应的方法。
这种方法可以直观地表示电路的增益和相位差与频率之间的关系,有助于分析电路对不同频率信号的处理特性。
三、频率响应分析的应用1. 滤波器设计频率响应分析可以用于滤波器的设计。
通过分析电路在不同频率下的增益特性,可以选择合适的频率范围,设计出具有理想滤波效果的滤波器。
2. 信号传输分析频率响应分析可以用于分析信号在电路中的传输情况。
通过分析电路的频率响应,可以判断信号在不同频率下是否存在失真和衰减等问题,为信号传输提供参考。
3. 损耗分析频率响应分析可以用于分析电路中的损耗情况。
通过绘制幅频特性曲线,可以直观地了解不同频率下电路的增益衰减情况,为电路性能的优化提供参考。
四、总结电路的频率响应分析是电子工程中非常重要的一项技术。
通过对电路在不同频率下的响应进行分析,可以了解电路的频率特性,并为滤波器设计、信号传输分析和损耗分析等提供依据。
第五章频率特性1.本章的教学要求1) 掌握频率特性的基本概念、性质及求取方法;2)掌握典型环节及系统的频率特性图—奈奎斯特(Nyquist)图的绘制方法;3)掌握典型环节及系统的对数频率特性图—波德图(Bode)图的绘制方法;4)使学生掌握频率特性的实验测定法。
5)使学生掌握奈奎斯特(Nyquist)稳定性判据应用;6)掌握对数频率稳定性判据(Bode判据)应用;7)掌握相对稳定性的基本概念,相位裕量Υ、幅值裕量K g定义、计算、在Nyquist图与Bode图上的表示。
2.本章讲授的重点本章讲授的重点是掌握频率特性的基本概念、求取方法;奈奎斯特(Nyquist)图的绘制方法;波德图(Bode)图的绘制方法;利用频率特性分析控制系统。
3.本章的教学安排本课程预计讲授14个学时第一讲5.1 频率特性1.主要内容:1)频率响应和频率特性2)频率特性的求取方法3)频率特性的表示方法2.讲授方法及讲授重点:本讲首先给出频率响应定义,用图说明线性系统稳态响应曲线的特点,由此引出幅频特性、相频特性的概念,然后给出频率特性的定义及数学表达式,利用图及公式说明幅频特性、相频特性、实频特性、虚频特性的关系。
在介绍频率特性的求取方法时,首先说明频率特性一般有三种求法:利用定义求取、根据系统的传递函数来求取、通过实验测得。
在此主要说明和推导根据系统的传递函数来求取的方法, 第三种方法后面介绍。
在介绍频率特性的表示方法时,首先说明频率特性的表示方法主要有如下几种:幅频特性和相频特性图、幅相频率特性图、对数频率特性图、对数幅相频率特性图、实频特性图和虚频特性图,分别简单介绍各自特点,然后强调本章重点介绍幅相频率特性(Nyquist)图和对数频率特性(Bode)图。
3.教学手段:Powerpoint课件与黑板讲授相结合。
4.注意事项:在讲授本讲时,频率特性概念比较抽象,同学不好理解,但此概念在本门课中又非常重要,可以联系实际举几个简单例子说明此概念。
自动控制原理频率响应方法知识点总结自动控制原理是现代控制工程中的重要学科,频率响应方法是其中的一种重要方法。
本文将对自动控制原理频率响应方法的相关知识点进行总结。
一、频率响应方法简介频率响应方法是一种通过研究系统的输入和输出响应在频域上的特性,来进行系统分析和设计的方法。
它以系统对输入信号的幅频特性和相频特性为研究对象,通过频率曲线和相频曲线来描述系统的频率特性。
二、频率响应的基本概念1. 幅频特性:幅频特性是指系统输出信号幅度随输入信号频率变化的规律。
常用的幅频特性曲线有Bode图和Nyquist图。
2. 相频特性:相频特性是指系统输出信号相位随输入信号频率变化的规律。
相频特性曲线常用的表示方法是Bode图。
三、频率响应的测量方法1. 振荡法:通过改变系统的增益,在系统中引入正反馈,使得系统产生自激振荡的方法。
根据系统的振荡频率和衰减因子可以得到系统的频率响应特性。
2. 步变法:通过给系统输入单位阶跃信号或单位脉冲信号,观察系统的响应曲线,根据响应曲线确定系统的频率响应特性。
四、频率响应的稳定性分析1. 稳定性判据:频率响应的稳定性分析可以通过判断系统增益曲线和相频曲线的特性来实现。
常用的稳定性判据有:相角曲线通过180度时,增益曲线不等于0dB,且通过0dB时,相角曲线大于-180度。
2. 稳定性分析方法:可以通过频率响应曲线上的特征点来判断系统的稳定性:幅频特性曲线通过0dB时的频率为系统的临界频率,临界频率越大,系统的稳定性越好;相频特性曲线上的相角曲线通过-180度的频率为系统的相交频率,相交频率越小,系统的稳定性越好。
五、频率响应的设计方法1. 改善系统的稳定性:可以通过增加系统的增益来提高系统的稳定性,常用的方法有增加增益裕度和相移裕度。
2. 改善系统的性能:可以通过调整系统的频率响应特性来改善系统的性能,如改变系统的临界频率、带宽等。
六、频率响应方法在实际工程中的应用频率响应方法广泛应用于自动控制系统的分析和设计中。
1、频率响应法
•基本思想是把系统中的信号分解为多种不同频率的正弦信号,这些信号经过控制系统时,会以一定的规律产生幅值和相位的变化,通过分析这些
变化规律就能得出关于系统运动的性能指标。
•由于幅值和相位的变化称频率特性函数可以绘制在图形上,因此该方法非常直观。
另外,可以用实验法建立系统的模型,也可以据开环频率特性分析闭环系统的特性。
该方法具有很高的工程价值,深受工程技术人员欢迎。
6 频率响应分析法2
2、频率特性的图示方法
•为了直观地分析系统的特性,通常把幅频和相频特性以图形的形式表示出来:
1.幅相频率特性(奈氏图)
2.对数频率特性(Bode图)
3.对数幅相特性(尼氏图)
6 频率响应分析法5
2.1 幅相频率特性图
•极坐标图:奈奎斯特(Nyquist)图,幅相特性图,当频率连续变化时,频率特性函数在复平面的运动轨迹。
G(jω)=x(ω)+ j y(ω)
ω:0→+∞
6 频率响应分析法6。