7.4 由三角函数值求锐角
- 格式:doc
- 大小:327.50 KB
- 文档页数:3
【学习目标】1、掌握已知三角函数值求角的解题步骤;2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合【要点梳理】要点一:反正弦,反余弦,反正切函数的定义(1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ⎡⎤-⎢⎥⎣⎦上有唯一的x 值和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ⎡⎤-⎢⎥⎣⎦上正弦等于y的那个角.(2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =.(3)一般地,如果tan ()x y y R =∈,且,22x ππ⎛⎫∈- ⎪⎝⎭,那么对每一个正切值y ,在开区间,22ππ⎛⎫- ⎪⎝⎭内,有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22x y x ππ=∈-.要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步:第一步,决定角可能是第几象限角.第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x .第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果.【典型例题】类型一:已知正弦值、余弦值,求角例1.已知sin x =,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】(1)由sin x =知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 4π=,所以第三象限的那个角是544πππ+=,第四象限的角是7244πππ-=. (2)在R 上符合条件的角是所有与54π终边相同的角和所有与74π终边相同的角.因此x 的取值集合为57|2()|2()44x x k k z x x k k z ππππ⎧⎫⎧⎫=+∈=+∈⎨⎬⎨⎬⎩⎭⎩⎭. 【总结升华】(1)定象限,根据三角函数值的符号确定角是第几象限角.(2)找锐角;如果三角函数值为正,则可直接求出对应的锐角1x ,如果三角函数值为负,则求出与其绝对值对应的锐角1x . (3)写形式.根据 ±,2 - 的诱导公式写出结果.第二象限角:1x π-;第三象限角:1x π+第四象限角:12x π- .如果要求出[ 0 ,2 ]范围以外的角则可利用终边相同的角的三角函数值相等写出所有结果.例2.(1)已知cos x =-0.7660,且x ∈[0,π],求x ; (2)已知cos x =-,且x ∈[0,2π],求x 的取值集合.【思路点拨】因为所给的余弦值是负数,所以先求出其绝对值对应的锐角,然后再求出其他象限的角. 【解析】(1)由余弦曲线可知y =cos x 在[0,π]上是减函数 又由已知cos x =-<0 得x 是一个钝角又由cos(π-x )=-cos x =0.7660利用计算器求得π-x =29π∴79x π=∴符合条件的有且只有一个角79π.(2)∵cos x =-0.7660<0,所以x 是第二或第三象限角,由y =cos x 在[0,π]上是减函数 y =cos x 在[π,2π]上是增函数 因为cos(π+29π)=cos(π-29π)= -.可知:符合条件的角有且只有两个,即第二象限角79π或第三象限角119π.∴所求角x 的集合是{79π,119π}.举一反三:【变式1】已知sinX= - ,且X ∈[ 0 ,2π] ,求角X 的取值集合. 【答案】arcsin0.3332π+或2arcsin0.3332π- 【变式2】根据下列条件,求△ABC 的内角A(1)23cos -=A (2)3sin 5A =【思路点拨】因为∠A 为△ABC 的内角,所以0<A <π.根据余弦函数在),0(π内是单调递减的,故符合条件的∠A 只有一个,而根据正弦函数的单调性,在),0(π中符合条件的有两个. 【解析】(1)∠A 为△ABC 的内角 ∴0<A <π∵余弦函数在区间),0(π中为减函数,所以符合条件23cos -=A 的角A 只有一个 ∵236cos=π∴2365cos -=π ∴π65=∠A(2)∵0<A <π,根据正弦函数的单调性,在),0(π内符合条件3sin 5A =的角A 有两个 ∵53sin )sin(==-A A π ∴53arcsin 53arcsin -=∠=∠πA A 或类型二:已知正切值,求角例3.已知.,)3( ]2,0[)2( )2,2()1(.2tan ααπαππαα求角若R ∈∈-∈-= 【思路点拨】由正切函数的单调性可知,在开区间)2,2(ππ-内,符合条件2tan -=α的角只有一个,而在]2,0[πα∈内,符合条件2tan -=α的就有两个.再根据正切函数的周期性可知,第(3)题中符合条件的角α就有无穷多个了.【解析】(1)由正切函数在开区间)2,2(ππ-上是增函数可知;符合2tan -=α的角只有一个,即arctan(2)α=-(2)∵,02tan <-=α∴α是第二或第四象限角,又∵]2,0[πα∈,由正切函数在区间),2(ππ、]2,23(ππ上是增函数知,符合2tan -=α的角有两个. ∵,2tan )2tan()tan(-==+=+ααπαπ且)0,2()2arctan(π-∈-∴)2arctan(2)2arctan(-+=-+=παπα或(3)∵正切函数的最小正周期为π∴只需在长为一个周期的区间上求出满足条件的α,再加上πk 即可 在(1)中,)2arctan( )2,2(-=-∈αππα ∴Z R ∈-+=∈k k ),2arctan(,παα 举一反三:【变式1】(1)已知tan x =31,x ∈(-2π,2π),求x . (2)已知tan x =31,且x ∈[0,2π],求x 的取值集合. 【思路点拨】(1)由正切曲线可知y =tan x 在(-2π,2π)上是增函数;可知符合条件的角有且只有一个,利用计算器可求得x =10π=18°26′ (2)由正切函数的周期性,可知当x =10π+π时,tan x =31 且10π+π=1011π∈[0,2π] ∴所求x 的集合是{10π,1011π}类型三:反三函数的综合应用例4.已知θθπθcos sin ],2,0[和∈分别是方程012=++-k kx x 的两个根,求θ. 【思路点拨】利用一元二次方程的根与系数的关系和同角三角函数关系式1cos sin 22=+αα求k ,然后利用θθcos sin 和的值求θ.【解析】∵θθcos sin 和是方程012=++-k kx x 两个根∴⎩⎨⎧+=⋅=+1cos sin cos sin k k θθθθ①2–②×2,得:)1(2cos sin 222+-=+k k θθ整理得:0322=--k k 解得:31=-=k k 或又∵0)1(42≥--k k ∴2222-≤+≥k k 或 ∵22322+<<- ∴k =3应舍去,k = –1当k =–1时,原方程为02=+x x ∴⎩⎨⎧-==⎩⎨⎧-==1sin 0cos 1cos 0sin θθθθ或 ∵)2,0[πθ∈ ∴πθπθ23==或 例5.求证arctan1+arctan2+arctan3=π【思路点拨】由于等式右边的三个角都在开区间)2,0(π内,故三个角的和在开区间(0,π23)内,若解求得这三角和的正切为0,那么证明就算完成了.证明:令,3arctan ,2arctan ,1arctan ===γβα则α、β、)2,0(πγ∈∴3tan 2tan 4===γβπα① ②∵tan tan 23tan()11tan tan 123βγβγβγ+++===---⨯而),0(πγβ∈+ ∴πγβ43=+ ∴πππγβα=+=++434 即arctan1+arctan2+arctan3=π。
求锐角三角函数值常用方法求锐角三角函数值,是“锐角三角函数”一节中重要内容,也是中考中常见的题型.现将求锐角三角函数值的常用方法总结如下,供同学们在学习时参考.一、直接用锐角三角函数的定义例1 在△ABC 中,∠C = 900,AC =6,BC =8.则sinA = ( ). A 、54 B 、53C 、43 D 、34分析 由定义知锐角A 的正弦等于角A 的对边比斜边,只要求出斜边AB 即可. 解:由勾股定理知,AB =22BC AC + = 10, ∴sinA =54 故选A.二、用同角三角函数间的关系 例2 若∠A 为锐角,且sinA = 23,则cosA = ( ) A 、1 B 、23 C 、22D 、21分析 本题可由sin 2A + cos 2A = 1直接求得.cosA = A 2sin 1- = 2)23(1-= 21故选D.(注:本题也可用三角函数的定义求解) 例3 已知 tanA =32, 则cotA =析解:由tanA ×cotA = 1.得 cotA =即cotA = 32.三、用等角来替换例4如图1,在Rt △ABC 中,∠ACB = 900,CD ⊥AB 于D,BC=3,AC = 4,设∠BCD = a,求sina.析解 :由题意可知,∠BCD = ∠A ,sin a =sinA = AB BC,只要求出AB 即可.在Rt △ABC 中,BC = 3,AC = 4,∴AB = 5.∴sinA =53 ∴sina = 53四、构造直角三角形例5 如图2,已知 △ABC 中,D 是AB 的中点,DC ⊥AC,且cotA = 23,求∠BCD 的四个三角函数值.分析 为了求出∠BCD 的三角函数值,必须构造一个以∠BCD 为锐角的直角三角形,可作DE ⊥CD,接下来的关键是求出Rt △CDE 的三边长或三边之比.在Rt △CDE 中,由cotA =23,可设AC = 3a, CD = 2a,而DE= 21AC = 23a .在Rt △CDE 中,利用勾股定理可求出CE,故∠BCD 的四个三角函数值可求出.解:过D 点作DE ⊥CD 交BC 于点E. ∵∠ACD = ∠CDE = 900 ∴AC ∥DE 又∵D 为AB 的中点,∴DE 为△ABC 的中位线. 在Rt △ACD 中,由cotA =23,可设AC = 3a ,CD = 2a , ∴ DE = 23a. 在Rt △CDE 中,由勾股定理CE =22DE CD += 22)23()2(a a +=25a , ∴sin ∠BCD =CE DE = 53,cos ∠BCD =CE CD =54tan ∠BCD =CD DE =43, cot ∠BCD =DE CD =34巧记特殊角的三角函数值特殊角的三角函数值有着广泛的应用,要求大家必须熟记,为了帮助记忆,可采用下面的方法.1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=21 sin45°=cos45°=22 tan30°=cot60°=33tan 45°=cot45°=12、列表法:说明:正弦值随角度变化,即0˚→30˚ →45˚ →60˚ →90˚变化;值从0→21 →22 →23 →1变化,其余类似记忆. 30˚12 3 145˚ 1212 60˚ 33、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。
苏科版九年级数学下册《由三角函数值求锐角》说课稿一、教材分析1.1 教材背景《由三角函数值求锐角》是苏科版九年级数学下册的一章内容。
本章主要是帮助学生通过已知三角函数值来求解锐角,进一步加深学生对三角函数的理解和运用能力。
1.2 教学目标•理解三角函数值的定义和性质。
•掌握由三角函数值求解锐角的方法和技巧。
•提高运用三角函数进行实际问题求解的能力。
1.3 教学重点•三角函数值的定义和性质。
•由已知三角函数值求解锐角的方法和步骤。
1.4 教学难点•利用已知三角函数值求解锐角的实际问题。
二、教学准备2.1 教具准备•黑板、白板及相应书写工具•教科书和作业本•三角函数表2.2 学生准备•所需教材及学习资料三、教学过程3.1 导入与引入首先,我会通过引入实际问题让学生了解本章的学习内容。
例如,通过给出一个建筑物的高度和角度,让学生思考如何利用三角函数值求解出这个角度的具体数值。
3.2 知识点讲解3.2.1 三角函数值的定义和性质首先,我们回顾一下三角函数的定义和性质。
三角函数包括正弦函数、余弦函数和正切函数,它们分别表示一个角的对边、邻边和斜边之间的关系。
我们会通过示意图和数学公式来详细讲解三角函数的定义和性质,让学生对其有一个清晰的认识。
3.2.2 由已知三角函数值求解锐角的方法和步骤接着,我们将重点教授由已知三角函数值求解锐角的方法和步骤。
我们会先介绍如何通过三角函数表查找对应的角度值,然后通过一些例题来演示具体的求解过程。
我们会提供不同难度的例题,从简单到复杂逐步引导学生掌握方法和技巧。
3.3 讲解例题在讲解方法和步骤后,我将给学生提供一些例题进行练习。
这些例题将涵盖不同的应用场景,如建筑、航空导航等,让学生能够将所学知识应用到实际问题中。
3.4 小结与拓展在讲解完成后,我会对本节课的重点内容进行小结,并与学生一起总结掌握的方法和技巧。
然后,我会提供一些拓展问题,让学生进一步运用所学知识解决更复杂的问题,培养他们的思维能力和创新能力。
九年级数学知识点:由三角函数值求锐角知识点
(2)arcsin(-a)=-arcsina,arccos(-a)=π-arccosa,arctan(-a)=-arctana;
(3)arcsina+arccosa=
(4)arcsin(sinx)=x,只有当x在
内成立;同理arccos(cosx)=x只有当x在闭区间[0,π]上成立。
已知三角函数值求角的步骤:
(1)由已知三角函数值的符号确定角的终边所在的象限(或
终边在哪条坐标轴上);
(2)若函数值为正数,先求出对应锐角α1,若函数值为负数,先求出与其绝对值对应的锐角α1;
(3)根据角所在象限,由诱导公式得出0~2π间的角,如果适合条件的角在第二象限,则它是π-α1;如果适合条件的角在第三象限,则它是π+α1;在第四象限,则它是2π-α1;如果是-2π到0的角,在第四象限时为-α1,在第三象限为-π+α1,在第二象限为-π-α1;
(4)如果要求适合条件的所有角,则利用终边相同的角的表达式来写出。
由三角函数值求锐角知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!。
由三角函数值求锐角一.选择题(共12小题)1.已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是()A.B.C.D.sin52°,正确的按键顺序是()2.利用我们数学课本上的计算器计算12A.B.C.D.3.已知tanα=6.866,用计算器求锐角α(精确到1″),按键顺序正确的是()A.B.C.D.4.按键,使科学记算器显示回后,求sin90°的值,以下按键顺序正确的是()A.B.C.D.5.如图是我们数学课本上采用的科学计算器面板,利用该型号计算器计算1sin52°,按键顺序正确的是()2A.B.C.D.6.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()A.B.C.D.7.如图,△ABC中,∠ACB=90°,BC=2,AC=3,若用科学计算器求∠A的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是()A.B.C.D.8.用计算器求sin50°的值,按键顺序是()A.B.C.D.9.已知sinA=0.1782,则锐角A的度数大约为()A.8°B.9°C.10°10.按键MODE MODE1,使科学记算器显示D回后,求sin90°的值,以下按键顺序正确的是()A.sin 9 0 0′″=B.9 sin=C.sin 9 0′″=D.9 0′″sin=11.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()A.5÷tan26°=B.5÷sin26°=C.5×cos26°=D.5×tan26°=12.若计算器的四个键的序号如图所示,在角的度量单位为“度的状态下”用计算器求sin47°,正确的按键顺序是()A.(1)(2)(3)(4)B.(2)(4)(1)(3)C.(1)(4)(2)(3)D.(2)(1)(4)(3)二.填空题(共12小题)13.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有条.B.用计算器计算:√7•tan63°27′≈(精确到0.01).14.用科学计算器计算:373cos81°23'≈.(结果精确到1)15.用科学计算器计算√5−1sin37.5°(比较大小)216.请从下列两个小题中任选一个作答,若多选,则按第一个计分.A.用4个全等的正八边形进行拼接,使相邻的内个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1.用n个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则n的值为.B.用科学计算器计:√31+3tan56°≈(结果精确到0.01).17.如果3sinα=√3+1,则∠α=.(精确到0.1度)18.用科学计算器计算:√8−tan65°≈(精确到0.01)19.用科学记算器计算:2×sin15°×cos15°=.20.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.若正多边形的一个内角等于140°,则这个正多边形的边数是.B.用科学计算器计算:13×√13×sin14°≈(结果精确到0.1)21.请从以下面个小题中任选一个作答,若多选,则按所选的第一题计分.A.若一个正多边形的一个外角等于36°,则这个正多边形有条对角线.B.用科学计算器计算:135×√13sin13°≈.(精确到0.1).22.若一个正多边形的一个外角等于36°,则这个正多边形有条对角线;用科学计算器计算:135×√13sin13°≈.(精确到0.1)23.运用科学计算器计算:2√3cos72°=.(结果精确到0.1)24.用科学计算器计算:√31+3tan56°≈.(结果精确到0.01)三.解答题(共6小题)25.求下列正切值(精确到0.0001).然后用“<”把它们连接起来.tan53°49',tan14°32',tan89°43'22″,tan60°,tan7°.26.根据条件求锐角:(1)sinA=0.753,求∠A;(2)cosB=0.0832,求∠B;(3)tanC=45.8.求∠C.27.已知三角函数值,用计算器求锐角A.(角度精确到1″).(1)sinA=0.3035;(2)cosA=0.1078;(3)tanA=7.5031.28.计算:3tan10°﹣2sin20°+cos60°(精确到0.001).29.根据下列三角函数值,求锐角A(精确到0.01°):(1)sinA=0.82;;(2)cosA=37(3)tanA=20.330.利用计算器求下列各角(精确到1″)(1)sinA=0.75,求A;(2)cosB=0.8889,求B;(3)tanC=45.43,求C;(4)tanD=0.9742,求D.。
初三数学家庭作业第七章 锐角三角函数7.4 由三角函数值求锐角一、知识要点1、利用计算器,可以由一个锐角的三角函数值求这个角的______.2、已知sinA =135,用计算器求∠A 的大小,依次按键为:___、___、____、___、___、___、___、___,则∠A =____°.二、基础训练1、若α为锐角,tan α=0.2,则α=______2、若α为锐角,cos α=0.5127,则α=______3、已知斜坡AB 的高为3m ,长为15m ,则斜坡AB 的倾斜角为______4、用计算器比较两个锐角α,β的大小(1)sin α=0.55,tan β=0.68,α_____β(2)sin α=0.47,cos β=0.89,α_____β5、一架梯子斜靠在一面墙上,已知梯长5m ,梯子位于地面上的一端离墙壁25m ,则梯子与地面所成的锐角为______6、如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,若AD =4,BD =1,则∠A =__(精确到0.1°)7、如图,桌球台上有一只小球A ,按图中的路线击打小球,撞击台边C 后反弹入B 洞,则小球撞击台边时的入射角θ=______(精确到0.1°)8、已知sinA =0.6820,利用计算器求出锐角∠A 的值约为( )A 、43°B 、42°C 、41°D 、44°9、若三个锐角α、β、γ,满足sin α=0.8480,cos β=0.4540,tan γ=1.8040,则α、β、γ的大小关系是( )A 、β<α<γB 、α<β<γC 、α<γ<βD 、β<γ<α10、比较tan10°,sin10°,cos10°的大小关系为( )A 、tan10°<sin10°<cos10°B 、tan10°>sin10°>cos10°C 、sin10°<tan10°<cos10°D 、sin10°>tan10°>cos10°11、大楼每层的高度为6m ,若选用长14m 的直型手扶电梯通向上一层,则电梯的倾斜角约为( )A 、62°B 、28°C 、25°D 、65°12、如图,在距离高为30m 的灯塔48m 处观察灯塔,塔顶的仰角为( )A 、39°B 、32°C 、51°D 、58°13、用计算器求下列各式中的锐角α(精确到0.1°)(1)sin α=0.8936 (2)cos α=0.0794 (3)tan α=0.86314、如图,在离旗杆6m 的A 处,用测角仪测得旗杆顶端C 的仰角为50°,已知测角仪高AD =1.5m ,求旗杆BC 的高(结果是近似数,请你自己选择合适的精确度).如果你没有带计算器,也可选用如下:sin50°≈0.7660 cos50≈0.6428 tan50°≈1.192三、能力提升1、用计算器探索:按一定规律排列的一组数:201,191,,121,111,101 ,如果从中选出若干个数,使它们的和大于0.5,那么至少要选_____个数.2、用计算器探索规律:3、如图,小明准备测量学校旗杆AB 的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC =20米,斜坡坡面上的影长CD =8米,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面所成的锐角为30°,求旗杆AB 的高度.(精确到1米)4、已知:如图,C为半圆上一点,,过点C作直径AB的垂线CP,P为垂足,弦AE分别交PC,CB于点D,F.(1)求证:AD=CD;5、如图,H是⊙O的内接锐角△ABC的高线AD、BE的交点,过点A引⊙O的切线,与BE的延长线相交于点P,若AB的长是关于x的方程x2-63x+36(cos2C-cosC+1)=0的实数根.(1)求:∠C=____度;AB的长等于____(直接写出结果).★(2)若BP=9,试判断△ABC的形状,并说明理由.四、预习感知1、阅读课本P51-522、如图,在直角三角形中,∠C为直角,除直角外三边之间的关系是_____________锐角之间的关系是_____________边角之间的关系是_____________3、由直角三角形的_______,求出__________,叫做解直角三角形.4、已知条件中至少有一个是______,才能求出其它未知元素.5、在Rt△ABC中,∠C=90°,∠A=60°,b=3,解这个直角三角形.。
课题7.1正切(1) 自主空间学习目标知识与技能:1.理解正切的概念, 能通过画图求出一个角的正切的近似值。
能运用正切解决与直角三角形有关的简单问题。
过程与方法:1.经历探索表示物体倾斜程度, 形成正切的概念的过程, 练就创造性解决问题的能力。
1.经历探索表示物体倾斜程度,形成正切的概念的过程,练就创造性解决问题的能力。
学习重点理解并掌握正切的含义, 会在直角三角形中求出某个锐角的正切值。
学习难点计算一个锐角的正切值的方法。
教学流程预习导航观察回答: 如图某体育馆, 为了方便不同需求的观众设计了多种形式的台阶。
下列图中的两个台阶哪个更陡?你是怎么判断的?图(1)图(2)[点拨]可将这两个台阶抽象地看成两个三角形答: 图的台阶更陡, 理由合作探究一、新知探究:1.思考与探索一:除了用台阶的倾斜角度大小外, 还可以如何描述台阶的倾斜程度呢?可通过测量BC与AC的长度,再算出它们的比, 来说明台阶的倾斜程度。
(思考: BC与AC长度的比与台阶的倾斜程度有何关系?)答: _________________. 讨论: 你还可以用其它什么方法?能说出你的理由吗?答: ________________________. 2.思考与探索二:(1)如图, 一般地, 如果锐角A的大小已确定,我们可以作出无数个相似的RtAB1C1, RtAB2C2, RtAB3C3……, 那么有: Rt△AB1C1∽_____∽____……根据相似三角形的性质,得: =_________=_________=……(2)由上可知:如果直角三角形的一个锐角的大小已确定, 那么这个锐角的对边与这个角的邻边的比值也_________。
3.正切的定义如图, 在Rt △ABC 中, ∠C =90°, a 、b 分别是∠A 的对边和邻边。
我们将∠A 的对边a 与邻边b 的比叫做∠A_______, 记作______。
即: tanA =________=__________(你能写出∠B 的正切表达式吗? )试试看.4.思考: 当锐角α越来越大时, α的正切值有什么变化? 二. 例题分析:例1:⑴某楼梯的踏板宽为30cm, 一个台阶的高度为15cm, 求 楼梯倾斜角的正切值。
第七章锐角三角函数(1)正切函数班级_________姓名_________学习目标1、认识锐角的正切的概念。
2、会求一个锐角的正切值。
3、经历操作观察思考求解等过程,感受数形结合的数学思想方法。
学习重点:锐角的正切的概念学习难点:锐角的正切的概念,感受数形结合的数学思想方法知识要点在Rt△ABC中,∠C=90°,∠A的对边与邻边的比值是∠A的正切,记作一、情境创设问题1. 我们从家到学校,免不了要爬坡,有些坡好爬,有些坡爬起来很累,这是为什么?观察斜坡的倾斜程度,你有什么发现?如何刻画斜坡的倾斜程度?如上图,这两个直角三角形中,∠C=∠C′=90°,且有一条直角边相等,但斜边不相等,哪个坡更陡?①本节课我们研究两直角边的比值与锐角的关系,因此同学们首先应思考:当锐角固定时,两直角边的比值是否也固定?tan.②给出正切概念:如图,在Rt△ABC中,,把∠A的对边与邻边的比叫做∠A的正切,记作:ABCA二、典型例题例1.根据下列图中所给条件分别求出下列图中∠A、∠B的正切值。
BCA113A2C1BB AC35通过上述计算,你有什么发现?互余两角的正切值.例2.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,AB=5,求∠ACD 、∠BCD的正切值。
结论:等角的正切值.例3.如图(1),∠A=30°,∠C=90°,根据三角函数定义求出30°、45°、60°的正切值.BCA(1)(2)(3)例4.如图,∠A=15°,∠C=90°,求出15°正切值.例5、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若BD:AD=1:4,试求tan∠BCD的值。
例6、如图,△ABC中,AE⊥BC于E,D是AC边上的一点,DH⊥BC于H,BD交AE于F。
已知DH:BD=3:4,求∠BFE的正切值.分析求tan∠BFE,在△BFE任何一边长都不知的情况下,很是困难。
求锐角三角函数值常用方法求锐角三角函数值,是“锐角三角函数”一节中重要内容,也是中考中常见的题型.现将求锐角三角函数值的常用方法总结如下,供同学们在学习时参考.一、直接用锐角三角函数的定义例1 在△ABC 中,∠C = 900,AC =6,BC =8.则sinA = ( ). A 、54 B 、53C 、43 D 、34分析 由定义知锐角A 的正弦等于角A 的对边比斜边,只要求出斜边AB 即可. 解:由勾股定理知,AB =22BC AC + = 10, ∴sinA =54 故选A.二、用同角三角函数间的关系 例2 若∠A 为锐角,且sinA = 23,则cosA = ( ) A 、1 B 、23 C 、22D 、21分析 本题可由sin 2A + cos 2A = 1直接求得.cosA = A 2sin 1- = 2)23(1-= 21故选D.(注:本题也可用三角函数的定义求解) 例3 已知 tanA =32, 则cotA = 析解:由tanA ×cotA = 1.得 cotA =即cotA = 32.三、用等角来替换例4如图1,在Rt △ABC 中,∠ACB = 900,CD ⊥AB 于D,BC=3,AC = 4,设∠BCD = a,求sina.析解 :由题意可知,∠BCD = ∠A ,sin a =sinA = ABBC,只要求出AB 即可.在Rt △ABC 中,BC = 3,AC = 4,∴AB = 5.∴sinA =53 ∴sina = 53四、构造直角三角形例5 如图2,已知 △ABC 中,D 是AB 的中点,DC ⊥AC,且cotA = 23,求∠BCD 的四个三角函数值.分析 为了求出∠BCD 的三角函数值,必须构造一个以∠BCD 为锐角的直角三角形,可作DE ⊥CD,接下来的关键是求出Rt △CDE 的三边长或三边之比.在Rt △CDE 中,由cotA =23,可设AC = 3a, CD = 2a,而DE= 21AC = 23a .在Rt △CDE 中,利用勾股定理可求出CE,故∠BCD 的四个三角函数值可求出.解:过D 点作DE ⊥CD 交BC 于点E. ∵∠ACD = ∠CDE = 900 ∴AC ∥DE 又∵D 为AB 的中点,∴DE 为△ABC 的中位线. 在Rt △ACD 中,由cotA =23,可设AC = 3a ,CD = 2a , ∴ DE = 23a. 在Rt △CDE 中,由勾股定理CE =22DE CD +=22)23()2(a a +=25a , ∴sin ∠BCD =CE DE = 53,cos ∠BCD =CE CD =54 tan ∠BCD =CD DE =43, cot ∠BCD =DE CD =34锐角三角函数走进中考一、利用概念进行判断在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则sinA=c a ,cosA=c b ,tanA=ab 。