正反转星三角启动电路
- 格式:docx
- 大小:212.98 KB
- 文档页数:2
电动机星三角启动原理电动机是现代工业生产中的重要设备,它在各行各业都有着广泛的应用。
电动机的启动方式有很多种,其中最常用的是星三角启动方式。
本文将从电动机的基本原理、星三角启动方式的原理和优缺点、星三角启动方式的应用等方面进行详细介绍。
一、电动机的基本原理电动机是一种将电能转化为机械能的装置。
它的基本原理是利用磁场作用于电流产生的力来实现机械运动。
电动机的主要构成部分包括定子、转子、电枢、磁极等。
其中,定子是电动机的静止部分,它由铁心和绕组构成;转子是电动机的旋转部分,它由铁心和绕组构成;电枢是电动机的直流电源,它提供电能以使电机正常运转;磁极是电动机的磁场来源,它产生磁场以使电机正常运转。
电动机的工作原理是利用电磁感应的原理,即当电流通过绕组时,会产生磁场,磁场会作用于铁心上的铁芯,使得铁芯受力而产生转动。
当电流方向改变时,磁场也会随之改变,使得铁芯产生反向转动。
这样,电动机就可以实现正反转的运动。
二、星三角启动方式的原理和优缺点1. 原理星三角启动方式是一种常见的电动机启动方式。
它的原理是在电动机启动时,先通过星型连接将三个绕组的末端连接在一起,形成一个星形连接点,然后将绕组的起始端通过三个接触器连接到电源上,以形成一个三角形连接点。
在启动过程中,由于星型连接的绕组电阻较大,电流较小,从而减小了电动机启动时的冲击电流,使得电动机的启动更加平稳。
当电动机启动到一定转速时,再通过接触器将星型连接切换为三角形连接,此时电动机的启动过程就完成了。
2. 优缺点星三角启动方式的优点是启动电流小、转矩平稳、噪音低、寿命长、维护方便等。
它可以有效地减小电动机启动时的冲击电流,降低电网电压波动和电机电磁噪声,延长电机寿命,同时还可以方便地进行维护和检修。
但是,星三角启动方式也存在一些缺点。
首先,它不能适用于大功率电动机的启动,因为大功率电动机启动时需要较大的启动电流和转矩,而星三角启动方式的启动电流和转矩都较小。
各种电动机启动电气原理图图集
编制说明:本人整理收集了各种电动机启动电路图;以及消防水泵、双速风机控制图、低压柜典型三投二电气原理图、电容主辅柜原理图等;均为成套电器制造行业常用控制图纸;
电动机直接启动
电动机正反转控制图
电动机自耦降压启动原理图
电动机星三角降压启动原理图
电动机软启动电路图
消防水泵一用一备控制原理图
“三投二”一号进线柜原理图
“三投二”二号进线柜原理图
“三投二”联络柜原理图
电容补偿柜—主柜原理图
电容补偿柜-辅柜原理图。
星三角工作原理
星三角起动是一种电动机起动方式,它通过改变电动机的绕组连接方式来实现。
星三角起动原理基于电动机的绕组结构。
电动机的绕组被连接为三角形或星形,这两种连接方式分别称为星型连接和三角形连接。
在星型连接时,电动机的三个绕组的首端依次连接,形成一个闭合的回路,而尾端则被连接到电源供电。
在三角形连接时,电动机的首端和尾端均依次连接,形成一个闭合的回路。
星三角起动方式通过将电动机的绕组连接方式从星型变为三角形来实现。
其起动过程可分为两个阶段。
第一阶段是星型连接阶段。
电动机的绕组被连接为星型,将首端依次连接,将尾端连接到电源。
此时,电流会在电动机的三个绕组中流动,但由于绕组之间的连接方式,电动机的起动转矩较小。
第二阶段是三角形连接阶段。
当电动机的绕组连接达到一定时间后,将绕组从星型连接方式改为三角形连接方式。
此时,电动机的绕组首端和尾端会依次连接,形成一个闭合的回路。
这种连接方式可以提供更大的起动转矩,可以顺利将电动机起动。
星三角起动方式的原理是利用起始时较小的起动转矩来降低电动机的起动电流,从而保护电源和电动机本身。
一旦电动机成功起动,它就可以运行在较高的效率和性能下。
需要注意的是,星三角起动方式只适用于对起动转矩要求不高的电动机。
对于某些特殊负载,可能需要使用其他起动方式,以确保电动机能够正常启动并满足负载要求。
实验三三相异步电动机的星三角换接启动控制实验三三相异步电动机的星/三角换接启动控制在三相异步电动机的星/三角换接启动控制实验区完成本实验注意:(本实验只能在实验台上完成),由于电机正反转换接时,有可能因为电动机容量较大或操作不当等原因,使接触器主触头产生较为严重的起弧现象,如果电弧还未完全熄灭时,反转的接触器就闭合,则会造成电源相间短路。
用PLC来控制电机则可避免这一问题。
实验目的1、掌握电机星/三角换接启动主回路的接线。
2、学会用可编程控制器实现电机星/三角换接降压启动过程的编程方法。
实验要求合上启动按钮后,电机先作星形连接启动,经延时6秒后自动换接到三角形连接运转。
三相异步电动机星/三角换接启动控制的实验面板图:图6-3-1所示三相异步电动机的星/三角换接启动控制面板上图下框中的SS、ST、FR分别接主机的输入点I0.0、I0.1、I0.2;将KM1、KM2、KM3分别接主机的输出点Q0.1、Q0.2、Q0.3;COM端与主机的1L端相连;本实验区的+24V端与主机的L+端相连。
KM1、KM2、KM3的动作用发光二极管来模拟。
实验装置已将三个CJ0-10接触器的触点引出至面板上。
学生可按图示的粗线,用专用实验连接导线连接。
380V电压已引至三相开关SQ的U、V、W端。
A、B、C、X、Y、Z与三相异步电动机(400W)的相应六个接线柱相连。
将三相闸刀开关拨向“开”位置,三相380V///电即引至U、V、W三端。
to prevent the accumulation of air, both ends of the tube are required the Center to bake. 6.2.5 sets should be at the bottom 200mm lashing cable head is fixed rung, with a similar cable color of plastic lashings. Cable head using "equal-width stacked" layout, or according to the size and space within the enclosure cable volume adjust, but you must ensure uniform, neat and elegant. 6.2.6 disc cabinet within cable shield layer requirements注意:接通电源之前,将三相异步电动机的星/三角换接启动实验模块的开关置于“关”位置(开关往下扳)。
电机星三角启动原理
电机星三角启动原理是一种将电动机从星型接线进行启动,然后在运行过程中切换到三角型接线的方法。
这种启动方式适用于较大功率的交流电动机。
电机星三角启动的原理如下:
1. 首先将电机的定子绕组的三个相线分别连接到电源的三个相线上,形成星型接线。
这种接线方式使得电机的起动电流较小。
2. 当电源通电后,通过控制器将三个相线的电压逐步增加到额定电压的三分之一,使电机旋转速度逐渐增加。
3. 待电机达到一定转速后,控制器切换电机的接线方式,将电机的三个相线重新连接成三角型接线。
这时电机的起动电流会增加,但由于转速已经达到一定值,所以电机能够顺利运行。
通过星三角启动方式,电机的起动电流相对较小,能够有效地减少对电网的冲击,避免了启动时电流过大造成的问题。
同时,由于电机在运行过程中能够实现平稳的切换到三角型接线,保证了电机运行的稳定性和可靠性。
需要注意的是,电机星三角启动方式适用于较大功率的交流电动机,在实际应用中需要根据电机的额定功率和负载特性进行选择和调整。
电机与拖动综合实践小型三相异步电动机电力拖动系统设计指导教师:时间:2018 年01 月05 日目录一、设计任务与要求 (1)二、方案比较 (1)三、电路图和电路原理说明 (1)四、调试问题分析和结果记录 (1)五、电气控制柜电气接线 (1)六、收获体会 (1)七、小组分工 (1)一、设计要求1、用PLC对异步电动机拖动系统进行控制。
实现星三角降压启动、调速、正反转换向、能耗制动——整个工作流程的设计。
拖动系统除了能完成以上基本功能外,还要有短路保护、过载保护设计。
2、选用额定电压为220V,额定电流为0.5A的交流异步电动机作为控制对象。
要求带一直流发电机负载进行实验。
二、方案比较本课程设计中,设计要求中已限定了采用星三角降压启动方式启动电机,正反转方案可以采用交换三相中两相接线来实现,而制动方案题中要求采用能耗制动,结合实验室所有设备,采用220V交流电经过变压器降压至26V后通过整流桥转换为直流电源,串制动电阻作为能耗制动的电路设计。
故本设计中,需解决解决的为调速方案的选取,方案比对和选取如下。
方案一:调压调速。
这种方式为通过异步电动机的定子三相交流电压大小来调节转子转速。
实验室中主要有两种电机,一种为鼠笼式异步电动机,一种为绕线式异步电动机。
不同于绕线式电动机,鼠笼式异步电动机应采用此种调速方案。
方案二:转子串电阻调速。
实验室中绕线式电机可采用此方案。
转子上串入电阻越大,转速越低,转差率就越大,机械功率在电磁功率中所占比率就越低,效率越低。
本实验中可采用的电阻为100Ω左右。
方案三:交流变频调速。
实验室中提供了变频器供变频调速使用。
变频调速具有如下优点:1调速范围宽,可以使普通异步电机实现无极调速;2启动电流小,启动转矩大;3起动平稳,清楚机械的冲击力,保护机械设备;4对电动机具有保护功能,降低电动机的维修费用;5具有显著的节电效果;6通过调节电压和频率的关系方便地实现恒转矩或者恒功率调速。
三相异步电动机正反转接线图
三相异步电动机正反转接线图
这个是手动控制的接线图,主线部分的接线一定要注意相序,启动时电机星型接法,运行的时候是三角形接法。
右边的控制线部分,KMY和
KM△要互锁,启动按钮SB2按下去以后,KM一直是自锁状态,几秒延时以后我们手动按下SB3,这时候KMY线圈失电,同时KM△自锁。
SB3的按钮开关常开点串KM△的线圈常闭点串KMY的线圈。
这个是带延时继电器的星三角带延时继电器的星三角更加方便,接线和上图的手动控制类似,只不过把按钮开关换成了延时继电器。
按钮开关
SB2按下去以后KM1自锁,同时延时继电器的线圈得电启动,延时继电器KT常闭点串KM2线圈,KT常开点串KM3线圈,延时时间到了以后KM3
自锁。
KM3的辅助常闭点串延时继电器的线圈,所以启动完成后,延时继电器也会断电。
控制电机正反转完整接线。
这个电路用的非常多,其实就是接触器自锁和互锁的结合应用。
KM1和KM2的线圈分别串彼此的辅助常闭点。
一般
实际应用的时候,SB2和SB3两个按钮也要机械互锁。
双重互锁更加的安全。
。
实验四三相异步电动机的星/三角换接启动控制在三相异步电动机的星/三角换接启动控制实验区完成本实验注意:(本实验只能在实验台上完成),由于电机正反转换接时,有可能因为电动机容量较大或操作不当等原因,使接触器主触头产生较为严重的起弧现象,如果电弧还未完全熄灭时,反转的接触器就闭合,则会造成电源相间短路。
用PLC来控制电机则可避免这一问题。
一、实验目的1、掌握电机星/三角换接启动主回路的接线。
2、学会用可编程控制器实现电机星/三角换接降压启动过程的编程方法。
二、实验要求合上启动按钮后,电机先作星形连接启动,经延时6秒后自动换接到三角形连接运转。
三、三相异步电动机的星/三角换接启动控制的实验面板图6-3-1上图下框下的SS、ST、FR分别接主机的输入点I0.0、I0.1、I0.2;将KM1、KM2、KM3分别接主机的输出点Q0.1、Q0.2、Q0.3;M端与主机的1L端相连;本实验区的+24V端与主机的L+相连,主机的1M与主机的M相连。
KM1、KM2、KM3的动作用发光二极管来模拟。
实验装置已将三个CJ0-10接触器的触点引出至面板。
学生可按图示的粗线,用专用实验连接导线连接。
380V电压已引至三相开关SQ的U、V、W端。
A、B、C、X、Y、Z与三相异步电动机(400W)的相应六个接线柱相连。
将三相闸刀开关拨向“开”位置,三相380V电即引至U、V、W三端。
注意:接通电源之前,将三相异步电动机的星/三角换接启动实验模块的开关置于“关”位置(开关往下扳)。
因为一旦接通三相电,只要开关置于“开”位置(开关往上扳),这一实验模块中的U、V、W端就已得电。
所以,请在连好的实验接线后,才将这一开关接通,请千万注意人身安全。
四、编制梯形图并写出程序实验参考程序梯形图如下图所示:五、动作过程分析启动:按启动按钮SS,I0.0的动合触点闭合,M10.0线圈得电,M10.0的动合触点闭合,Q0.1线圈得电,即接触器KM1的线圈得电,1秒后Q0.3线圈得电,即接触器KM3的线圈得电,电动机作星形连接启动;同时定时器线圈T37得电,当启动时间累计达6秒时,T37的动断触点断开,Q0.3失电,接触器KM3断电,触头释放,与此同时T37的动合触点闭合,T38得电,经0.5秒后,T38动合触点闭合,Q0.2线圈得电,电动机接成三角形,启动完毕。
星三角起动与自耦降压起动星三角启动星三角启动又叫降压启动,多用于20KW以上电机的空载启动。
星形运行实际上就是把三角形的尾巴连在一起。
因为三相电流相加等于0。
这时线圈承受的电压为实际上比正常电压低根号3。
380V的额定电压,在星形运行时的电压为220V,电流也就同比下降。
星形运行,也并不是改变相序,而是改变线圈绕组的接法,电机的六根线,也就是三个独立绕组线圈的引出线,有的电机只有三根线,这只是把其中的三个头接电机里面了。
星三角启动电路图,据我所知,最少有五种接法。
但都以达到最终目的为准。
我做的星三角启动方式为:先吸合星形接触器,再吸合主接触器,再延时断开星形,然后接能三角形。
对于我的这种接法有优点,(1)星形接触器可以选用小型号的。
(2)星形接触器的寿命很高,因为在吸合的时候没有火花产生,不容易烧触头,虽然火花是放开的时候最大,但最少减少一个吸合时产生火花机会。
U1-V2,V1-W2,W1-U2。
对于这种接法,可以换一下,但是1是指一个方向,比如1是头,那2就是尾。
一般头尾最好不要搞乱了。
如果要正反转,这就只能控制主回路,也不是控制星三角电动机自耦降压启动电动机自耦降压启动(自动控制电路)电动机自耦降压起动(自动控制)电路原理图上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故控制过程如下:1、合上空气开关QF接通三相电源。
2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。
3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。