一阶系统的时域分析
- 格式:ppt
- 大小:1.53 MB
- 文档页数:67
1.已知一单位负反馈系统的单位阶跃响应曲线如下图所示,求系统的闭环传递函数。
解答:①max ()100100()X X %%e %X δ-∞=⨯=⨯∞由2.1820.090.6082eξ-==⇒=②0.8 4.946m n t ω==⇒= ③2222224.4648.9222 6.01424.46 6.01424.46n B n n W K s s s s s s ωωω=⋅=⨯=++++++2.已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。
解答:()()()2101101061010.511B s s W s s s s s +==+++++3.16n ω==, 260.95n ξωξ=⇒()()1sin n t c X t ξωωθ-=,arctg θ=()31 3.2sin 0.98718.19t e t -=-+︒ (5分)系统根为1,2632P j -±==-±,在左半平面,所以系统稳定。
3.一阶系统的结构如下图所示。
试求该系统单位阶跃响应的调节时间t s ;如果要求t s (5%)≤ 0.1(秒),试问系统的反馈系数应取何值?(1)首先由系统结构图写出闭环传递函数得 T =0.1(s )因此得调节时间 t s =3T =0.3(s),(取5%误差带)(2)求满足t s (5%) ≤0.1(s )的反馈系数值。
假设反馈系数K t (K t >0),那么同样可由结构图写出闭环传递函数由闭环传递函数可得 T = 0.01/K t100()10()100()0.1110.1c B r X s s W s X s s s ===++⨯1001/()1000.0111t B t tK s W s K s s K ==+⨯+根据题意要求 t s (5%) ≤ 0.1(s )则 t s = 3T = 0.03/K t ≤ 0.1(s)所以 K t ≥ 0.34.已知某装置的电路如题图所示。
一阶系统的时域响应实验报告实验目的:通过实验观察一阶系统的时域响应情况,掌握一阶系统的传递函数及其参数对响应的影响。
实验器材:示波器、信号发生器、直流电源、一阶滤波器。
实验原理:一阶系统的传递函数为H(s)=K/(Ts+1),其中K为系统的增益,T为系统的时间常数。
系统的单位阶跃响应为h(t)=K(1-e^(-t/T))。
实验步骤:1、按照实验电路连接图连接电路。
2、将示波器接在电路输出端,用信号发生器产生一个频率为1kHz的正弦波作为输入信号,调节直流电源,使得输入信号幅值为1V。
3、测量电路输出波形,记录幅值、峰值、频率等数据。
4、将输入信号改为单位阶跃信号,在示波器上观察并记录输出信号的响应过程,测量电路的时间常数T。
实验结果及分析:1、在实验中,我们按照传统的RC低通滤波器的电路连接方式,将滤波器动态系统搭建起来。
2、对于一个RC电路,可以证明其传递函数为H(s)=1/(RCs+1)。
因此在实验中,我们可以通过改变RC电路的$RC$值来改变系统的时间常数,并观察其对系统响应的影响。
3、实验中我们观察到,当输入信号为正弦波时,系统能够对信号进行较好的滤波,输出信号幅值与频率的比例关系为a1=f^-1。
4、当输入信号为单位阶跃信号时,我们能够观察到系统的单位阶跃响应。
在实验中,我们通过观察输出信号的时间常数,可以得到系统的时间常数T。
5、实验中,我们还观察到了系统的过渡过程。
在输入信号发生变化后,系统的输出信号不会立即改变,而是经过一段时间才能够达到稳态。
在实验中,我们通过调节系统的时间常数来观察过渡过程的变化,从而获得了对一阶系统的更深刻的认识。
实验结论:通过本实验,我们详细地了解了一阶系统的时间常数、单位阶跃响应等数学概念,同时还深入掌握了一阶系统的响应机理。
此外,我们还利用实验数据验证了一阶系统的传递函数的正确性,并进一步掌握了如何通过调节时间常数来改变系统响应的技巧。
控制系统的时域分析_一二阶时间响应讲述时域分析是控制系统理论中的重要内容,主要用于分析系统的时间响应。
在时域分析中,我们会关注系统的输入和输出之间的关系,并研究系统在时间上的性能指标和特征。
本文将重点讲述一阶和二阶系统的时间响应。
一、一阶系统的时间响应一阶系统是指系统的传递函数中只有一个一阶多项式的系统,其传递函数形式为:G(s)=K/(Ts+1)其中,K是系统的增益,T是系统的时间常数。
一阶系统的单位阶跃响应是常用的时间响应之一,通过对系统施加一个单位阶跃输入,可以得到系统的响应曲线。
单位阶跃输入可以表示为:u(t)=1由于一阶系统的传递函数是一个一阶多项式,因此它的拉普拉斯变换可以通过部分分式展开得到:G(s)=K/(Ts+1)=A/(s+1/T)通过进行拉普拉斯逆变换,可以得到系统的单位阶跃响应函数y(t):y(t) = K(1 - exp(-t/T))其中,exp(-t/T)为底数为e的指数函数,表示系统的响应曲线在t时刻的衰减程度。
从单位阶跃响应函数可以看出,一阶系统的时间常数T决定了系统的响应速度和衰减程度。
时间常数越小,系统的响应越快速,衰减程度也越快。
二、二阶系统的时间响应二阶系统是指系统的传递函数中有一个二阶多项式的系统,通常可以表示为:G(s) = K / (s^2 + 2ξω_ns+ω_n^2)其中,K是系统的增益,ξ是系统的阻尼比,ω_n是系统的自然频率。
二阶系统的时间常数和质量阻尼比是描述系统性能的重要参数。
时间常数决定了系统响应的速度,质量阻尼比则影响了系统的稳定性和衰减程度。
对于二阶系统的单位阶跃响应,可以通过拉普拉斯逆变换得到响应函数y(t):y(t) = K*(1 - (1-ξ^2)^0.5 * exp(-ξω_nt) * cos((1-ξ^2)^0.5 * ω_nt + φ))其中,φ为相位角,由初始条件和变量确定。
从单位阶跃响应函数可以看出,二阶系统的阻尼比ξ决定了系统的过阻尼、临界阻尼和欠阻尼的响应形式。
3.2 一阶系统的时域分析用一阶微分方程描述的系统,称为一阶系统。
实际控制系统中一阶系统不乏其例。
下面分析一阶系统对单位阶跃函数、单位脉冲函数、单位斜坡函数、单位加速度函数的响应。
在分析过程中,设初始条件等于零。
3.2.1 一阶系统的数学模型图3-3所示RC 滤波电路是一阶系统,其运动微分方程为图3- 3 RC 滤波电路)()()(t r t c dt t dc RC =+ (3-2) 式中c(t)为电路输出电压,r(t)为电路输入电压。
令T=RC ,则一阶系统运动方程具有如下一般形式)()()(t r t c dtt dc T =+ (3-3) 式(3-3)是一阶系统的一般表达式,式中T 为时间常数,r(t)和c(t)分别是系统的输入、输出信号。
若图3-3滤波电路的初始条件为零,一阶系统的传递函数为11)()()(+==ΦTs s R s C s (3-4)其方框图如图3-4或图3-5所示。
图3-4 一阶系统 图3-5 单位反馈一阶系统下面就一阶系统对某些典型输入信号的响应进行分析,在分析过程中,设初始条件为零。
此外,不同的系统如果传递函数相同,则对同一输入信号的响应也是相同的,只是不同系统响应的数学表达式具有不同的物理意义。
3.2.2 一阶系统的单位阶跃响应输入信号r(t)=1(t)时,系统响应c(t)为单位阶跃响应。
将输入信号的拉氏变换s s R 1)(=代入式(3-4),得sTs s R s s C 111)()()(⋅+=Φ= (3-5) 对式(3-5)进行拉氏反变换,得一阶系统的单位阶跃响应为T t e t c /1)(--= (t ≥0) (3-6) 由式(3-6)可以看出,一阶系统单位阶跃响应的初始值为零,终值为1。
根据式(3-6)绘出的响应曲线如图3-6所示,其响应为非周期曲线,具有如下两个特点:(1)当时间t 等于时间常数T 的整数倍,即t=T ,2T ,3T ,4T 时,响应c(t)的数值分别为总变化量的0.632、0.865、0.95、0.982倍,根据这个特点可以判断系统是否为一阶系统。
第三章 线性系统的时域分析法分析控制系统的第一步是建立模型,数学模型一旦建立,就可求出已知输入信号作用下系统的输出响应。
第二步分析控制性能,即对系统做定性的分析和定量的计算。
分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。
第一节 控制系统的性能指标一、典型输入信号1.阶跃信号 数学表达式: 拉氏变换:当R 0=1,称为单位阶跃信号,记为)(t ε。
2.斜坡信号 数学表达式: 拉氏变换:当v 0=1,称为单位斜坡信号。
3.抛物线(等加速度)信号数学表达式: 拉氏变换:当a 0=1,称为单位抛物线函数。
4.脉冲信号 数学表达式:拉氏变换:当a 0=1,称为单位抛物线函数。
5.正弦信号 数学表达式: 拉氏变换:二、系统性能指标:控制系统的性能指标分为动态性能指标和稳态性能指标。
动态性能指标又分为跟随性能指标和扰动性能指标。
一般讨论的是跟随性能指标,即在给定信号作用下,有系统输出导出的性能指标。
常用的性能指标:1. 上升时间t r :响应曲线从零开始,第一次上升到稳态值所需的时间。
上升时间越短,⎩⎨⎧≥<=000)(0t R t t r ,,为常数。
,00)(R s R s R =为常量。
,020)(v s v s R =⎩⎨⎧≥<=000)(0t t v t t r ,,为常量。
,030)(a sa s R =⎪⎩⎪⎨⎧≥<=02100)(20t t a t t r ,,为常量。
,030)(a s a s R =数。
,称为单位理想脉冲函。
若令脉宽时,记为,当,,,0)(10/00)(→=⎩⎨⎧≤≤><=εδεεεt H t H t t t r 22)(ωω+=s A s R ⎩⎨⎧≥<=0sin 00)(t t A t t r ,,ω响应速度越快 。
2. 峰值时间tp :响应曲线达到过调量的第一个峰值所需要的时间。
3. 调节时间t s :响应曲线达到并永远保持在稳态值的误差范围内,即响应进入并保持在所需的误差带之内所需的时间。
自动控制实验一一阶系统的时域分析二阶系统的瞬态响应实验目的:1.了解一阶系统的时域分析方法。
2.掌握二阶系统的瞬态响应特性。
3.学习使用实验仪器进行实验操作。
实验仪器和材料:1.一台一阶系统实验装置。
2.一台二阶系统实验装置。
3.示波器、函数发生器等实验仪器。
实验原理:一阶系统的时域分析:一阶系统的传递函数形式为:G(s)=K/(Ts+1),其中K为增益,T为系统的时间常数。
一阶系统的单位阶跃响应可以用下式表示:y(t)=K(1-e^(-t/T)),其中t为时间。
通过绘制单位阶跃响应曲线的方法可以得到一阶系统的时域参数。
二阶系统的瞬态响应:二阶系统的传递函数形式一般为:G(s) = K/(s^2 + 2ξωns +ωn^2),其中K为增益,ξ为阻尼系数,ωn为自然频率。
二阶系统的单位阶跃响应可以用下式表示:y(t) = (1 - D)e^(-ξωnt)cos(ωnd(t - φ)),其中D为过渡过程的衰减因子,φ为过渡过程的相角。
实验步骤:一阶系统的时域分析:1.将一阶系统实验装置连接好,并接通电源。
2.设置函数发生器的输出信号为单位阶跃信号,并将函数发生器连接到一阶系统实验装置的输入端。
3.调节函数发生器的幅值和时间参数,使得单位阶跃信号满足实验要求。
4.将示波器的探头连接到一阶系统实验装置的输出端。
5.调节示波器的时间和幅值参数,观察并记录单位阶跃响应信号。
6.根据记录的单位阶跃响应信号,计算得到一阶系统的时域参数。
二阶系统的瞬态响应:1.将二阶系统实验装置连接好,并接通电源。
2.设置函数发生器的输出信号为单位阶跃信号,并将函数发生器连接到二阶系统实验装置的输入端。
3.调节函数发生器的幅值和时间参数,使得单位阶跃信号满足实验要求。
4.将示波器的探头连接到二阶系统实验装置的输出端。
5.调节示波器的时间和幅值参数,观察并记录单位阶跃响应信号。
6.根据记录的单位阶跃响应信号,计算得到二阶系统的瞬态响应特性,包括过渡过程的衰减因子和相角。