一 圆周角定理
- 格式:ppt
- 大小:1.43 MB
- 文档页数:33
圆周角定理的证明圆周角定理是现代初等几何学中的一个重要定理,它是指:同一个圆周上的两个弧所对的圆周角相等。
这个定理在初等几何中具有非常重要的地位,并且可以应用到各种各样的几何问题中。
下面我们来简要地介绍一下这个定理的证明过程。
首先,我们需要给出圆周角的定义。
圆周角是指以圆心为顶点,以圆周上的两条弧为两条边的角。
圆周角的单位是度或弧度。
接下来,我们来证明圆周角定理。
假设有一个圆,其半径为r,圆心角为θ。
那么我们可以把圆心角分成n个小角度,每个小角度的大小为θ/n,则整个圆周角的大小为θ。
接下来我们将圆分成n个扇形,每个扇形的圆心角为θ/n。
由于圆的周长为2πr,而每个扇形的弧长为(θ/n)r,因此整个圆周被分成了n个弧段,每个弧段的长度为(θ/n)r。
由于n很大,因此这些弧段可以被视为非常小的弧元,于是我们可以将圆周上的弧看成无数个非常小的弧元构成的。
现在,我们来证明同一圆周上的两个弧所对的圆周角相等。
假设我们有两个位于同一个圆周上的弧AB和CD,它们所对的圆周角分别为α和β。
我们可以将这些弧按照相对大小进行排序,即假设AC>BD。
然后我们取一个非常小的弧元E,它在弧AB的右侧。
我们再取一个点F,它在弧CD的右侧,这样E和F可以被视为同一位置的点。
接下来,我们将圆周上从E到F的这段弧分成n个弧元,每个弧元的长度为(α+β)/n。
然后我们用连线将圆周上的每个弧元都连接起来,最后我们得到的是一个角度接近于α+β的扇形。
由于这个扇形的圆心角为α+β,而且它趋近于一个极小角度,因此α+β=2π,即α=β。
综上所述,我们证明了同一个圆周上的两个弧所对的圆周角相等。
这个结论在数学和物理学等各个领域都有广泛的应用。
无论是在平面几何中还是在空间几何中,圆周角定理都是我们解决许多几何问题的重要工具。
圆周角定理及其推论圆周角定理是一个重要的几何定理,它规定了三角形内角之和与圆周角之间的关系,从而形成一种经典的几何定理,被广泛应用于几何学和数学中。
关于圆周角定理的历史有很多,就其本身的来源来说,圆周角定理的最早证明可以追溯到古希腊数学家阿基米德,而后经过不同数学家的发展、研究和思考,使得圆周角定理的结构更加完善。
一般来说,圆周角定理讲的是三角形内角之和与圆周角之间的关系,而所指的圆周角是指由三角形所在的圆上某点到另一点之间的弧度,它可以用角度来表示。
圆周角定理用数学语言记述就是,如果把圆上的任一点当作三角形的顶点,将其余两点当作边的端点,此时此三角形的内角之和为180°,这就是圆周角定理的本质。
从实际几何中得出的圆周角定理,有利于我们更深入地理解几何中涉及到的三角形,有助于推理类题目的解答,这种推理关系也被称作三角恒等式,表示两等腰三角形两个内角之和等于三角形外角之和,即内角和=外角,这是圆周角定理的推论之一。
圆周角定理的另一个推论就是全等三角形恒等式,即三角形内角两两等边的三角形,它的三个角的大小相等,即相等的三角形的三个内角之和也等于180°,这是圆周角定理的另一个推论,又称为“全等三角形定理”。
圆周角定理的发现和研究对几何学的发展有重要意义,它为几何学到达发展的新高度和完善提供了重要的理论基础,同时也为数学建立了一种经典的定理模型,并且广泛应用于几何学和数学中。
因此,圆周角定理被广泛应用于几何学和数学中,它影响着我们对几何定理的理解,以及在几何学里面的推理思维,它也是我们几何学课本里面比较重要的定理,引用它可以使我们更好的理解几何形式和推理思维的重要性。
圆周角定理的发现,让我们更好地理解几何,使得更多的几何问题得到解决,从而为我们几何学的发展提供更多有利的条件。
它也为数学研究提供了一种经典的定理结构,从而推动了数学自身的发展和提高,使得数学越来越完善。
归纳总结,圆周角定理的本质是三角形内角之和为180°,它有两个推论:三角形恒等式和全等三角形恒等式,它是几何学和数学中经典的定理,并且对几何学的发展和完善有重要的意义,对数学也起到了推动作用。
圆的十八个定理圆的十八个定理包括:1.圆心角定理:在同圆或等圆中,相等的圆心角所对弧相等,所对的弦相等,所对的弦的弦心距相等。
2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
3.垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。
4.切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。
5.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点与圆心的连线平分这两条切线的夹角。
6.公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。
如果他们相交,那么交点一定在两圆的连心线上。
7.相交弦定理:圆内两条弦相交,被交点分成的两条线段长的乘积相等。
8.切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。
9.割线长定理:从圆外一点向圆引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
10.切线的性质定理:圆的切线垂直于经过切点的半径。
11.弦切角定理:弦切角等于它所夹的弧对的圆周角。
12.定理:相交两圆的连心线垂直平分两圆的公共弦。
13.把圆分成n(n≥3)个等分:依次连结各分点所得的多边形是这个圆的内接正n边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
14.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
15.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
16.圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
17.两圆的半径分别为R、r,圆心距为d:两圆外离d>R+r;两圆外切d=R+r;两圆相交R-r<dr);两圆内切d=R-r(R>r);两圆内含d<R-r(R>r)。
18.圆锥曲线:圆是一种特殊的圆锥曲线,它是由一个固定点(焦点)和一个固定直线(准线)上的所有点的轨迹组成的。
一圆周角定理课标解读1.了解圆心角定理.2.理解圆周角定理及其两个推论,并能解决有关问题.1.圆周角定理及其推论(1)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半.(2)推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(3)推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 2.圆心角定理圆心角的度数等于它所对弧的度数. 1.圆的一条弦所对的圆周角都相等吗?【提示】 不一定相等.一般有两种情况:相等或互补,弦所对的优弧与所对劣弧上的点所成的圆周角互补,所对同一条弧上的圆周角都相等,直径所对的圆周角既相等又互补.2.在推论1中,把“同弧或等弧”改为“同弦或等弦”的话,结论还成立吗? 【提示】 不成立.因为一条弦所对的圆周角有两种可能,在一般情况下是不相等的. 3.“相等的圆周角所对的弧相等”,正确吗?【提示】 不正确.“相等的圆周角所对的弧相等”是在“同圆或等圆中”这一大前提下成立的,如图.若AB ∥DG ,则∠BAC =∠EDF ,但BC ≠EF .利用圆周角定理和圆心角定理进行计算在半径为5 cm 的圆内有长为5 3 cm 的弦,求此弦所对的圆周角.【思路探究】 过圆心作弦的垂线构造直角三角形.先求弦所对的圆心角度数,再分两种情况求弦所对的圆周角的度数.【自主解答】 如图所示,过点O 作OD ⊥AB 于点D . ∵OD ⊥AB ,OD 经过圆心O , ∴AD =BD =532 cm.在Rt △AOD 中,OD =OA 2-AD 2=52cm ,∴∠OAD =30°,∴∠AOD =60°. ∴∠AOB =2∠AOD =120°. ∴∠ACB =12∠AOB =60°.∵∠AOB =120°,∴劣弧AEB 的度数为120°,优弧ACB 的度数为240°. ∴∠AEB =12×240°=120°,∴此弦所对的圆周角为60°或120°.1.解答本题时应注意弦所对的圆周角有两个,它们互为补角.2.和圆周角定理有关的线段、角的计算,不仅可以通过计算弧、圆心角、圆周角的度数来求相关的角、线段,有时,还可以通过比例线段,相似比来计算.图2-1-1已知如图2-1-1,△ABC 内接于⊙O ,AB =AC ,点D 是BC 上任意一点,AD =6 cm ,BD =5 cm ,CD =3 cm ,求DE 的长.【解】 ∵AB =AC , ∴∠ADB =∠CDE . 又∵BD =BD , ∴∠BAD =∠ECD . ∴△ABD ∽△CED . ∴AD CD =BD ED .即63=5ED. ∴ED =2.5 cm.与圆周角定理相关的证明如图2-1-2,△ABC 的角平分线AD 的延长线交它的外接圆于点E .图2-1-2(1)证明:△ABE ∽△ADC ;(2)若△ABC 的面积S =12AD ·AE ,求∠BAC 的大小.【思路探究】 (1)通过证明角相等来证明三角形相似.(2)利用(1)的结论及面积相等求sin ∠BAC 的大小,从而求∠BAC 的大小.【自主解答】 (1)由已知条件,可得∠BAE =∠CAD . 因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD . 故△ABE ∽△ADC .(2)因为△ABE ∽△ADC ,所以AB AE =ADAC,即AB ·AC =AD ·AE . 又S =12AB ·AC sin ∠BAC 且S =12AD ·AE ,故AB ·AC sin ∠BAC =AD ·AE ,则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90°.1.解答本题(2)时关键是利用AB ·AC =AD ·AE 以及面积S =12AB ·AC sin ∠BAC 确定sin∠BAC 的值.2.利用圆中角的关系证明时应注意的问题(1)分析已知和所求,找好所在的三角形,并根据三角形所在圆上的特殊性,寻求相关的圆周角作为桥梁;(2)当圆中出现直径时,要注意寻找直径所对的圆周角,然后在直角三角形中处理相关问题.如图2-1-3,△ABC 内接于⊙O ,高AD 、BE 相交于H ,AD 的延长线交⊙O 于F ,求证:BF =BH .图2-1-3【证明】 ∵BE ⊥AC ,AD ⊥BC , ∴∠AHE =∠C .∵∠AHE =∠BHF ,∠F =∠C , ∴∠BHF =∠F . ∴BF =BH .直径所对的圆周角问题 如图2-1-4所示,AB 是半圆的直径,AC 为弦,且AC ∶BC =4∶3,AB =10 cm ,OD ⊥AC 于D .求四边形OBCD 的面积.【思路探究】 由AB 是半圆的直径知∠C =90°,再由条件求出OD 、CD 、BC 的长可得四边形OBCD 的面积.【自主解答】 ∵AB 是半圆的直径,∴∠C =90°. ∵AC ∶BC =4∶3,AB =10 cm , ∴AC =8 cm ,BC =6 cm. 又∵OD ⊥AC ,∴OD ∥BC . ∴OD 是△ABC 的中位线,∴CD =12AC =4 cm ,OD =12BC =3 cm.∴S 四边形OBCD =12(OD +BC )·DC=12(3+6)×4=18 cm 2. 在圆中,直径是一条特殊的弦,其所对的圆周角是直角,所对的弧是半圆,利用此性质既可以计算角大小、线段长度又可以证明线线垂直、平行等位置关系,还可以证明比例式相等.图2-1-5如图2-1-5,已知等腰三角形ABC 中,以腰AC 为直径作半圆交AB 于点E ,交BC 于点F ,若∠BAC =50°,则EF 的度数为( )A .25°B .50°C .100° D.120° 【解析】 如图,连接AF . ∵AC 为⊙O 的直径, ∴∠AFC =90°, ∴AF ⊥BC , ∵AB =AC ,∴∠BAF =12∠BAC =25°,∴EF 的度数为50°. 【答案】 B(教材第26页习题2.1第3题)图2-1-6如图2-1-6,BC 为⊙O 的直径,AD ⊥BC ,垂足为D ,AB =AF ,BF 和AD 相交于E ,求证:AE =BE .(2013·陕西高考)如图2-1-7,弦AB 与CD 相交于⊙O 内一点E ,过E作BC 的平行线与AD 的延长线交于点P ,已知PD =2DA =2,则PE =________.图2-1-7【命题意图】 本题主要考查圆周角定理、三角形相似等知识,证明三角形相似考查了逻辑推理能力,求线段的长度考查了知识的应用能力及转化意识.【解析】 ∵BC ∥PE ,∴∠C =∠PED . ∵∠C =∠A ,∴∠A =∠PED . 在△PED 和△PAE 中, ∠PED =∠A ,∠P =∠P , ∴△PED ∽△PAE ,∴PE PA =PD PE. ∵PA =PD +DA =3,PD =2, ∴PE 2=PA ·PD =3×2=6, ∴PE = 6. 【答案】61.如图2-1-8,在⊙O 中,∠BAC =60°,则∠BDC =( )图2-1-8A .30°B .45°C .60° D.75°【解析】 ⊙O 中,∠BAC 与∠BDC 都是BC 所对的圆周角,故∠BDC =∠BAC =60°. 【答案】 C2.在△ABC 中,AB =AC ,AB ⊥AC ,⊙O 是△ABC 的外接圆,则AB 所对的圆心角为( ) A .22.5° B.45° C .90° D.不确定【解析】 ∵∠ACB =45°,∴AB 所对的圆心角为2∠ACB =90°. 【答案】 C3.(2013·焦作模拟)如图2-1-9,A 、B 、C 是⊙O 的圆周上三点,若∠BOC =3∠BOA ,则∠CAB 是∠ACB 的________倍.图2-1-9【解析】∵∠BOC=3∠BOA,∴BC=3AB,∴∠CAB=3∠ACB.【答案】 34.如图2-1-10所示,两个同心圆中,CmD的度数是30°,且大圆半径R=4,小圆半径r=2,则AnB的度数是________.图2-1-10【解析】AnB的度数等于∠AOB,又CmD的度数等于∠AOB,则AnB的度数是30°.【答案】30°一、选择题图2-1-111.如图2-1-11所示,若圆内接四边形的对角线相交于E,则图中相似三角形有( ) A.1对B.2对C.3对 D.4对【解析】由推论知:∠ADB=∠ACB,∠ABD=∠ACD,∠BAC=∠BDC,∠CAD=∠CBD,∴△AEB∽△DEC,△AED∽△BEC.【答案】 B2.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30° B.30°或150°C.60° D.60°或120°【解析】弦所对的圆心角为60°,又弦所对的圆周角有两个且互补,故选B.【答案】 B3.如图2-1-12所示,等腰△ABC 内接于⊙O ,AB =AC ,∠A =40°,D 是BC 的中点,E 是AC 的中点,分别连接BD 、DE 、BE ,则△BDE 的三内角的度数分别是( )图2-1-12A .50°,30°,100° B.55°,20°,105° C .60°,10°,110° D.40°,20°,120° 【解析】 如图所示,连接AD . ∵AB =AC ,D 是BC 的中点, ∴AD 过圆心O . ∵∠A =40°,∴∠BED =∠BAD =20 °, ∠CBD =∠CAD =20°. ∵E 是AC 的中点, ∴∠CBE =12∠CBA =35°,∴∠EBD =∠CBE +∠CBD =55°. ∴∠BDE =180°-20°-55°=105°, 故选B. 【答案】 B4.如图2-1-13,点A 、B 、C 是圆O 上的点,且AB =4,∠ACB =30°,则圆O 的面积等于( )图2-1-13A .4π B.8π C .12π D.16π 【解析】 连接OA ,OB . ∵∠ACB =30°, ∴∠AOB =60°, 又∵OA =OB ,∴△AOB 为等边三角形. 又AB =4,∴OA =OB =4.∴S ⊙O =π·42=16π. 【答案】 D 二、填空题图2-1-145.(2013·平顶山模拟)如图2-1-14,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3 cm ,4 cm ,以AC 为直径的圆与AB 交于点D ,则BDDA=________. 【解析】 连接CD ,∵AC 是⊙O 的直径,∴∠CDA =90°.由射影定理得BC 2=BD ·BA ,AC 2=AD ·AB ,∴BC 2AC 2=BD DA ,即BD DA =169. 【答案】1696.如图2-1-15,AB 为⊙O 的直径,弦AC ,BD 交于点P ,若AB =3,CD =1,则sin ∠APD =__________.图2-1-15【解析】 由于AB 为⊙O 的直径,则∠ADP =90°, 所以△APD 是直角三角形. 则sin ∠APD =AD AP ,cos ∠APD =PD AP, 由题意知,∠DCP =∠ABP ,∠CDP =BAP , 所以△PCD ∽△PBA . 所以PD AP =CD AB ,又AB =3,CD =1,则PD AP =13.∴cos ∠APD =13.又∵sin 2∠APD +cos 2∠APD =1,∴sin ∠APD =223.【答案】223三、解答题7.如图2-1-16,已知A 、B 、C 、D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD 、AD .(1)求证:DB 平分∠ADC ;(2)若BE =3,ED =6,求AB 的长.图2-1-16【解】 (1)证明:∵AB =BC ,∴AB =BC , ∴∠BDC =∠ADB , ∴DB 平分∠ADC . (2)由(1)可知AB =BC . ∴∠BAC =∠ADB . ∵∠ABE =∠ABD .∴△ABE ∽△DBA .∴AB BE =BD AB. ∵BE =3,ED =6,∴BD =9. ∴AB 2=BE ·BD =3×9=27. ∴AB =3 3.8.如图2-1-17, △ABC 是圆O 的内接等边三角形,AD ⊥AB ,与BC 的延长线相交于点D ,与圆O 相交于点E ,若圆O 的半径r =1,求DE 的长度.图2-1-17【解】 连接BE ,∴AD ⊥AB , ∴BE 为⊙O 的直径,且BE =2r =2. 又∵∠AEB =∠ACB =60°, ∴∠ABE =30°,∠EBD =30°. 又∵∠ABD =60°, ∴∠D =∠EBD =30°, ∴DE =BE =2.9.如图2-1-18①所示,在圆内接△ABC 中,AB =AC ,D 是BC 边上的一点,E 是直线AD 和△ABC 外接圆的交点.图2-1-18(1)求证:AB 2=AD ·AE ;(2)如图2-1-18②所示,当D 为BC 延长线上的一点时,第(1)题的结论成立吗?若成立请证明;若不成立,请说明理由.【解】 (1)证明:如右图①,连接BE.∵AB=AC,∴∠ABC=∠ACB.∵∠ACB=∠AEB,∴∠ABC=∠AEB.又∠BAD=∠EAB.∴△ABD∽△AEB.∴AB∶AE=AD∶AB,即AB2=AD·AE.(2)如图②,连接BE,结论仍然成立,证法同(1).10.已知:如图,BC为半圆O的直径,F是半圆上异于B、C的一点,A是BF的中点,AD ⊥BC于点D,BF交AD于点E.(1)求证:BE·BF=BD·BC;(2)试比较线段BD与AE的大小,并说明道理.【解】(1)证明:连接FC,则BF⊥FC.在△BDE和△BCF中,∵∠BFC=∠EDB=90°∠FBC=∠EBD,∴△BDE∽△BFC.∴BEBC=BDBF.即BE·BF=BD·BC.(2)连接AC、AB,则∠BAC=90°.∵AF=AB,∴∠1=∠2.又∵∠2+∠ABC=90°,∠3+∠ABD=90°,∴∠2=∠3,∴∠1=∠3.∴AE=BE.在Rt△EBD中,BE>BD,∴AE>BD.。
圆周角的定理及推论的应用圆周角是数学中的一个重要概念,掌握圆周角的定理及其推论,对于解决许多几何问题非常有帮助。
本文将围绕圆周角的定理及推论的应用展开阐述。
一、圆周角的定义圆周角是指落在圆周上的两条弧所对的角,即两个弧之间的角度量。
一般用大写字母表示圆周角,如∠ABC。
二、圆周角的定理1、相等圆周角定理:在同一个圆周上,所对的圆周角相等。
证明:作弦AB、CD相交于点E,则∠AEB=∠CED。
由于AE、BE、CE、DE均是从一个圆心O引出的弦,故∠AEB=∠CEB,∠CED=∠BED,又因为OE=OE,故OEB≌OED,由此可得∠OEB=∠OED,即∠AEB=∠CED。
2、圆心角的定理:在同一个圆中,所对的圆心角相等。
证明:连接圆心O到AB的中垂线OH,H为AB的中点。
则OH垂直于AB,因此∠AOH、∠BOH均为直角,所以∠AOB=2∠AOH=2∠BOH。
3、正弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:sinA=a/2R,sinB=b/2R,sinC=c/2R证明:如下图所示,以AB、BC、CA为边作三角形ABC的外接圆,设圆心为O。
连接AO、BO、CO,过O点作弦AD、BE、CF,则OD=OE=OF=R,所以AOD、BOE、COF都是等边三角形。
因此,∠OAB=∠CFO、∠OBA=∠CEO、∠OBC=∠AEO、∠OCB=∠AFO。
设∠BAC=x,∠ABC=y,∠ACB=z,由三角形内角和公式得:x+y+z=180又由圆周角定理得:∠BOC=2y,∠AOC=2z,∠AOB=2x于是:∠AOB+∠BOC+∠AOC=3602x+2y+2z=360,即x+y+z=180。
将sinA、sinB、sinC带入上述公式中,可得:sinA/BC=sinB/CA=sinC/AB=1/2R即sinA=a/2R,sinB=b/2R,sinC=c/2R。
4、余弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab证明:将ABC的外接圆的半径延长到BC、AC和AB上分别交于点D、E、F。
圆周角定理及其推论一、圆周角定理圆周角定理是几何学的重要定理,它源于古希腊数学家弥尔顿(Archimedes)的研究。
圆周角定理规定:任何两个正夹角的正弦之积等于它们之间的乘积,也就是学术上说的“正夹角全乘积等于余弦。
”以上是圆周角定理的文字表示,而在数学上,圆周角定理又有如下式子体现:Sin(α+β)= Sinα×Cosβ+Cosα×Sinβ二、圆周角定理的推论1、正弦定理:一个三角形角α,β,γ的正弦值分别为Sinα,Sinβ,Sinγ,那么有Sinα:Sinβ:Sinγ=a:b:c;2、余弦定理:每个三角形角α,β,γ的余弦值分别为Cosα,Cosβ,Cosγ,那么有a2+b2=c2-2abCosγ;3、正切定理:任一三角形角α,β,γ的正切值分别为tanα,tanβ,tanγ,那么有tanα×tanβ=tanγ/1-tanαtanβ;4、正割定理:一个三角形角α,β,γ的正割值分别为cotα,cotβ,cotγ,那么有cotα+cotβ=cotγ/1+cotα cotβ;5、互补定理:任一角α,它的余角β满足Cosα=Sinβ;Cosβ=Sinα;6、倒数定理:对一角α,其余角β均有Secα=1/Cosα;Secβ=1/Cosβ;7、士角定理:一角α,其余角β乘积等于正弦定理,那么Sinα×Sinβ=Cos角γ/2;8、三边定理:任一三角形角α,β,γ的边长分别为a,b,c,那么有a/(Sinα)=b/(Sinβ)=c/(Sinγ);9、兰勃托定理:一个等腰三角形,其底边和对边相较于当前对角之正弦的比值之和等于1,也就是说:Sinα/(a/2)+Sinβ/(a/2)=1;10、马克斯定理:一个三角形边长abc,那么有cosA+cosB+cosC=4cosA/2cosB/2cosC/2=3/2。
圆相交弦定理
圆相交弦定理,又称为“圆周角定理”,是指在一个圆中,如果两条弦相交,则它们所对应的圆周角相等。
具体来说,如果在一个圆中,有两条弦AB和CD相交于点E,那么角AEC和角BED的度数相等。
即:∠AEC = ∠BED。
这个定理可以通过数学证明来得出。
我们可以先证明一下当两条弦在圆上互不相交时,它们所对应的圆周角不相等。
然后再通过对弦的延长,将它们变成相交的弦,最终得出上述结论。
这个定理在实际应用中有很多用途。
例如,在计算圆的面积时,我们可以使用圆相交弦定理来确定圆心角的度数,从而计算出圆的面积。
此外,这个定理还可以用于解决各种几何问题,例如计算圆的切线长度、确定圆心位置等等。
- 1 -。