圆周角定理
- 格式:ppt
- 大小:1.70 MB
- 文档页数:17
圆周角定理推论
中心角定理:如果一个三角形的三条边的长度都已知,则可以用这三条边到三角形的三个角的长度来求解出这个三角形的三个角的大小,这个定理又称为三角形钝角定理。
也可以称之为圆周角定理,它是圆周角的一种表示法,说明圆周角满足三角形的钝角定理。
即如果已知圆周角的三边长度,则可求出其三个内角。
例如,已知圆周角的三边长度分别为4,4,4,则可求出其三个内角分别为60°,60°,60°。
圆周角定理的公式是:若a、b、c分别为圆周角的三边长度,则有A = arccos((b2 + c2 - a2)/ 2bc),B = arccos((a2 + c2 - b2)/ 2bc),C = arccos((a2 + b2 - c2)/ 2bc)。
其中A,B,C分别为圆周角的三角形的三个内角。
圆周角定理及其证明圆周角定理是几何中的一个重要定理,它描述了一个圆的圆周角与其对应的弧度之间的关系。
这个定理在解决与圆相关的问题时具有重要的应用价值。
下面将对圆周角定理及其证明进行详细介绍。
我们需要明确什么是圆周角。
圆周角是指以圆心为顶点的角,其两条边分别为相切于圆的两条弦。
在圆周角中,我们可以观察到一个有趣的现象:无论弦的长度如何变化,圆周角的大小始终保持不变。
这个现象被称为圆周角的度量唯一性。
为了形式化地描述圆周角定理,我们引入以下定义:当圆周角的两条弦分别与圆的直径相交时,这个圆周角被称为直径角。
根据圆周角的度量唯一性,我们可以得出结论:直径角恒等于180度或π弧度。
接下来,我们将证明圆周角定理。
证明:设圆的半径为r,圆周角对应的弧长为l,直径角对应的弧长为L。
根据圆的性质,我们知道圆的周长C等于2πr。
由于直径角等于半圆,所以L等于半圆的弧长,即L等于πr。
根据圆周角的度量唯一性,我们可以得出以下等式:l / C = L / 2πr将C和L的值代入上述等式,我们得到:l / 2πr = πr / 2πr经过简化后,我们得到:l / 2r = r / 2r进一步简化,我们得到:l = r由此可见,圆周角对应的弧长等于圆的半径。
这个结论可以推广到任意圆周角,无论弦的长度如何变化,圆周角的度量始终等于圆的半径。
通过上述证明,我们可以得出圆周角定理的结论:圆周角的度量等于圆的半径。
这个定理在解决与圆相关的问题时非常有用,可以帮助我们计算圆周角的度量,从而解决各种几何问题。
总结起来,圆周角定理描述了圆周角与其对应的弧度之间的关系。
通过证明,我们可以得出结论:圆周角的度量等于圆的半径。
这个定理在几何学中有重要的应用价值,可以帮助我们解决与圆相关的各种问题。
在实际应用中,我们可以根据圆周角定理来计算圆周角的度量,从而得到所需的几何信息。
圆周角定理和圆内四边形的性质典例精析一圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
二 圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠利用圆周角定理的推论求角的度数BABA O例1 (2016·四川眉山)如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A.64° B.58° C.72° D.55°【分析】先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.例2 (2016海南)如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.【考点】圆周角定理;垂径定理.【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.例3(2016·山东省滨州市)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD 分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.利用圆周角定理的推论进行推理论证例4 (2015•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.例5 如图所示,BC是⊙O的直径,AD⊥BC,垂足为D,AB=AF,BF和AD相交于点E;求证:BE=AE.分析:由BC是⊙O的直径,根据直径所对的圆周角是直角,可得∠BAC=90°,又由AD⊥BC,即可得∠BAD=∠C,又由AB=AF,根据圆周角定理,易得∠ABF=∠F=∠C,则可证得∠ABF=∠BAD,继而证得结论.利用圆内接四边形的性质求度数例6(2015湖南邵阳第7题3分)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC 的大小是()利用圆内接四边形的性质进行推理证明 例 7 (2015南京)(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1) 求证:∠A=∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.圆周角定理与相似三角形的综合例 8 (2016·天津市南开区·一模)如图,AB 是⊙O 的直径,C ,P 是上两点,AB=13,AC=5.(1)如图(1),若点P 是的中点,求PA 的长; (2)如图(2),若点P 是的中点,求PA 的长.(第26题)例 9 (肇庆市2012)如图7,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D ,连结BE 、AD 交于点P . 求证: (1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)AB ⋅ CE=2DP ⋅AD .圆内接四边形性质的综合应用例10 (2009•内江)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB =AD ,∠BFC =∠BAD =2∠DFC =β.求证:(1)∠ABD =90°-β (2)CD ⊥DF ; (3)BC=2CD .圆周角定理与函数的综合例 1 1 如图,AB 是圆O 的直径,CD 是弦,CD ⊥AB 于点E ,(1)求证:△ACE ∽△CBE ;(2)若AB=4,设OE=x (0<x <2),CE=y ,请求出y 关于x 的函数解析式图7。
圆周角定理的三种证明方法
圆周角定理是几何中著名的定理,亦即“每个三角形的外接圆的内切圆与它的最大外接圆所成的圆周角相等”。
此定理由古希腊数学家艾西法 (Euclid) 于其《几何原本》第六章首次提出数千年前,随着数学的发展,有许多其他的证明方法也被提出:
1、几何距离证明法:两个圆的圆心距离为2R的话,就可以让它们的相切线同时证明最大外接圆的圆周角和最小内切圆的圆周角相等。
可以用两等腰直角三角形向根据勾股定理来演算出,两个圆周角的圆心角度都是相等的。
2、数学归纳法:也就是艾西法于其《几何原本》所作的证明,即归纳法可以证明不论外接圆的半径有什么样的大小它们所成的圆周角都是相等的。
3、几何投影证明法:几何投影证明法通过找到三角形它的内切圆和最大外接圆,把两个圆投影到平面上,将圆心连线作为投影线,使投影线在它们之间形成一条射线,然后可以推出它们所成的圆周角相等。
初三数学圆周角知识点初三数学圆周角知识点初三数学圆周角知识点11、定义:顶点在圆上,角的两边都与圆相交的角。
(两条件缺一不可)2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。
(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)4、圆内接四边形的性质定理:圆内接四边形的对角互补。
(任意一个外角等于它的内对角)补充:1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。
2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角最大其次是圆周角,最小的是圆外角。
初三数学圆周角知识点2一、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆 )b.它们对着同一条弧或者对的两条弧是等弧c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.二、圆周角定理的推论推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等推论2:半圆(或直径)所对的`圆周角等于90°;90°的圆周角所对的弦是直径推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形三、推论解释说明圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.。
1 圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE=弧BF .例2 如图,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD .例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径.例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE .2 三、苏州市中考例举1、如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点线段DA 与y 轴交于点E ,则△ABE 面积的最小值是2、如图,已知A 、B两点的坐标分别为()、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为3、如图.AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD=BD ,∠C=70°.现给出以下四个结论:①∠A=45° ②AC=AB ③AE BE = ④CE ·AB=2BD 2.4、如图,在△ABC 中,∠BAC=90°,BM 平分∠ABC 交AC 于M ,以A 为圆心,AM 为半径作OA 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交OA 于P 、K 两点.作MT ⊥BC 于T(1)求证AK=MT ;(2)求证:AD ⊥BC ;(3)当AK=BD 时,求证:BN AC BP BM=.。