激光光谱--绪论
- 格式:pdf
- 大小:825.50 KB
- 文档页数:27
激光光谱学的介绍一、引言光谱学是研究物质和电磁波相互作用的科学,而激光光谱学是对在激光器发明之后,使用激光作为光源来进行的原子、分子的发射光谱、吸收光谱以及非线性效应所做研究的通称。
激光光谱学是自激光技术出现以来在传统光谱学基础上发展起来的一门新兴学科。
传统光谱学已有300多年的历史。
1666年伟大的科学家牛顿用棱镜发现了光的色散现象,由此开始了光谱学的发展,不过在起初的一百多年内,其发展极为缓慢,直到1814年著名的物理学家夫琅和费用他发明的棱镜光谱仪观察到太阳谱线开始,才逐渐进入光谱学发展的盛期,除了对吸收与发射光谱的研究外,还相应发展了对散射光谱的研究,特别是喇曼散射的发现,即在光发生散射时,除了原有频率之外,散射光中还有一些其它频率的光出现,通过喇曼散射可以研究物质的结构与组成等!其实光谱学作为一门实用性学科是由物理学家和化学家共同开创起来的。
到20世纪初,传统光谱学已经十分成熟并在冶金、电子、化工、医药、食品等工业部门都成为相当重要的分析手段。
尽管传统的光谱学在物质研究中获得了多方面的应用,但在激光问世之前,它的进一步发展已经面临着不可逾越的鸿沟。
首先传统光谱学使用普通光源,探测分辨率低,而增强其单色性,又不得不以降低光强为代价,这样又会影响到探测的灵敏度,此外,在弱光辐射下光谱中的许多非线性效应表现不出来,因此包含物质结构深层次的信息被阻断。
60年代高强度、高单色性激光的出现给光谱学这门学科注入了新的活力,在其后发展的激光光谱学中,激光光源的优越性被发挥的淋漓尽致。
比如激光的单色性使分光器件分辨率提高,高强度提高了探测的灵敏度,而且强光与物质粒子的相互作用中,产生了各种可观测的非线性光谱效应;此外激光的高度方向性又使对微区或定点的光谱分析成为可能。
在激光光谱学中,作为光谱分析手段的激光光谱技术由于其高空间分辨率、高时间分辨率、高光谱分辨率也倍受重视,在许多科学技术领域有着非常广泛的应用前景!二、激光光谱学技术的应用1、化学把激光光谱技术与光化学结合,工艺技术简单、设备小、效率高、成本低。
激光光谱学研究综述摘要:激光光谱学技术是六十年代初发展起来的一门以原子理论、量子理论、光学技术和电子技术为基础的一门高新技术。
目前激光光谱学技术已经被推广应用于农业、工业、医疗、科学研究、军用武器及航天技术等多个领域,带来了巨大的效益。
本文将对这门新兴技术的形成、发展、种类、应用及前景进行一个简单的综述。
关键字:激光;光谱学;应用研究引言光谱学是研究物质和电磁波相互作用的科学。
光谱研究使人类获得了大量有关原子和分子结构方面的知识。
利用电磁辐射和物质相互作用时所观察的吸收光谱和发射光谱从多方面向人们提供了有关分子结构与周期环境相互作用的信息。
光谱学的发展可以分为两大阶段,它们的时间分界线为20世纪60年代激光问世之前和以后。
从1666年牛顿光谱到1960年美国人梅曼做成红宝石激光器之前,事实上已经形成了理论较为完善、分析技术较为成熟以及研究成果较为丰富的与原子分子线性相互作用的光谱学,通常称之为常规光谱学。
这种光谱学现在仍然是研究物质结构和成分的有力工具。
光谱定性、定量分析在化学研究、科学技术以及工业生产等方面都占有一定的地位。
自从激光问世之后,由于在常规光谱学领域引入激光,人们就可以用现代光谱学方法来深入研究物质的结构、能谱、瞬态变化和它们的微观动力学方程(包括弛豫规律),由此来获得用经典方法无法获得到的极为丰富的信息。
激光在光谱学领域引起了一场革命,形成一门新的学科——激光光谱学。
它既包括采用激光后获得新生的经典光谱学分支,还包括了一些新兴的分支,例如饱和吸收或双光子吸收的无多普勒光谱技术、时间分辨的弛豫测量以及相干拉曼散射光谱学等。
1激光光谱学的形成1.1激光原理“激光”是光受激辐射放大的简称,它是通过辐射的受激发射而实现光放大。
一个光子hv射入一个原子体系后,在离开该原子体系时,成了两个或更多个光子,而这些光子的特征是完全相同的。
这就是光放大。
但是光与原子体系相互作用时,总是同时存在着吸收、自发辐射与受激辐射三种过程,不可能要求只存在受激辐射过程。
激光光谱教学大纲一、课程名称:激光光谱 Laser Spectroscopy二、课程编码:三、学时与学分:40 学时/2.5学分四、先修课程:量子力学,光学,光电探测与信号处理五、课程教学目标光谱学是关于光吸收、发射过程的频域信息的一门学问,在原子分子物理、化学、光电子学、材料、等离子体物理以及天体物理等方面均有重要的应用。
激光的诞生,使光谱探测范围、灵敏度、分辨率等因素发生根本性的变化,极大地扩展了光谱分析的能力,形成了一门新兴的学科–激光光谱。
激光光谱课程的教学目标,是在掌握光谱学基本概念和原理、光谱分析测试基本技术手段的基础上,进一步学习激光光谱的原理和技术,掌握利用激光光谱技术研究物质结构、状态及其变化发展过程的技能。
通过本课程的学习,可望进一步巩固在光学理论及技术应用方面的基础,加强对光辐射的理解,提升光辐射探测和处理的能力。
课程具体包括光吸收与发射、光谱学基础、激光光谱中的激光器、激光吸收光谱、激光荧光光谱和激光等离子体发射光谱、无多普勒展宽光谱、激光拉曼光谱以及光电离光谱技术等多方面的内容。
六、适用学科专业:光信息科学与技术光电信息工程七、基本教学内容与学时安排第一章绪论光谱学与激光光谱技术的历史与发展状况(1学时)第二章光的吸收与发射(1学时)2.1 吸收、自发辐射与受激发射,偏振与相干性;2.2 半经典描述;2.3 线宽与线形。
第三章光谱学基础(6学时)3.1 分子对称性,群论初步;3.2 气体分子光谱:转动光谱、振动光谱、电子光谱。
第四章光谱仪与弱信号监测仪(4学时)4.1 光谱仪:光栅光谱仪、干涉仪;4.2 弱信号探测方法。
第五章光谱技术中的激光光源(4学时)5.1 光谱学中常用的激光光源;5.2 光源的非线性扩展;5.3 激光波长、线宽的测量。
第六章激光吸收光谱技术(6学时)6.1 基本吸收光谱技术;6.2 高灵敏度吸收光谱技术;6.3 耦合双共振与快速吸收光谱技术;6.4 外场扫描吸收光谱技术;6.5 光声与光热光谱技术。