2019-2020石家庄市中考数学模拟试卷(含答案)
- 格式:doc
- 大小:521.50 KB
- 文档页数:16
2019年河北省石家庄市桥西区中考数学模拟试卷(二)一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(3分)比1小3的数是()A.﹣1B.﹣2C.﹣3D.22.(3分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形3.(3分)近似数5.10精确到()A.个位B.十分位C.百分位D.十位4.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的左视图是()A.B.C.D.5.(3分)下列等式成立的是()A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a26.(3分)下列图形中,能确定∠1>∠2的是()A.B.C.D.7.(3分)下列赋予4m实际意义的叙述中不正确的是()A.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额B.若m表示一个正方形的边长,则4m表示这个正方形的周长C.将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力D.若4和m分别表示一个两位数中的十位数字和个位数字,则4m表示这个两位数8.(3分)下列说法中正确的个数是()①0的相反数是0;②(﹣1)2=2;③4的平方根是2;④是无理数;⑤(﹣2x)3•x=﹣8x4.A.1个B.2个C.3个D.4个9.(3分)如图,将边长为3a的正方形沿虚线剪成两个正方形和两个长方形.若去掉边长为2b的小正方形后,再将剩余部分拼成一个矩形,则矩形的周长为()A.3a+2b B.6a+4b C.12a D.12a﹣4b 10.(3分)下表是某学习小组一次数学测验的成绩统计表:分数70 80 90 100人数1 3 x 1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分11.(2分)已知,则A=()A.B.C.D.x2﹣112.(2分)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°13.(2分)如图,在平面直角坐标系中,函数y=kx与的图象交于A,B两点,过A 作y轴的垂线,交函数的图象于点C,连接BC,则△ABC的面积为()A.1B.2C.3D.414.(2分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则cos∠BDE的值是()A.B.C.D.15.(2分)某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.3216.(2分)如图,抛物线y=ax2+bx+c的顶点坐标为(1,n),与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)比较大小:32.18.(3分)若a,b互为相反数,则a2b+ab2=.19.(4分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O 夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是;…按此规律运动到点A2019处,则点A2019与点A0间的距离是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?21.(9分)修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地到B地的路程.已知:从A到C坡面的坡度i=1:,从B到C坡面的坡角∠CBA=45°,BC=4公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.01)(≈1.414,≈1.732)22.(9分)我市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是;三等奖的人数是人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为1:1,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?23.(9分)如图1,菱形ABCD中,∠ABC=120°,P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F,连接CE.(1)证明:△ADP≌△CDP;(2)判断△CEP的形状,并说明理由;(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接写出线段AP与线段CE的数量关系.24.(10分)如图1,在直角坐标系中,一次函数的图象l1与y轴交于点A(0,2),与一次函数y=x﹣3的图象l2交于点E(m,﹣5).(1)求m的值及l1的表达式;(2)直线l1与x轴交于点B,直线l2与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l1或l2有交点,直接写出a的取值范围.25.(11分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.26.(12分)探究:已知二次函数y=ax2﹣2x+3经过点A(﹣3,0).(1)求该函数的表达式;(2)如图所示,点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接AC,P A,PC.①求△ACP的面积S关于t的函数关系式;②求△ACP的面积的最大值,并求出此时点P的坐标.拓展:在平面直角坐标系中,点M的坐标为(﹣1,3),N的坐标为(3,1),若抛物线y=ax2﹣2x+3(a<0)与线段MN有两个不同的交点,请直接写出a的取值范围.2019年河北省石家庄市桥西区中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(3分)比1小3的数是()A.﹣1B.﹣2C.﹣3D.2【分析】根据题意列出算式,再依据减法法则计算可得.【解答】解:比1小3的数是1﹣3=﹣2,故选:B.【点评】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则.2.(3分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形【分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断.【解答】解:A、等边三角形由3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误;故选:C.【点评】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.3.(3分)近似数5.10精确到()A.个位B.十分位C.百分位D.十位【分析】根据近似数的精确度求解.【解答】解:近似数5.10精确到百分位.故选:C.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的左视图是()A.B.C.D.【分析】找到几何体从左面看所得到的图形即可.【解答】解:从左面可看到1列小正方形的个数为:2.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3分)下列等式成立的是()A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a2【分析】直接利用平方差公式以及科学记数法、积的乘方运算法则分别计算得出答案.【解答】解:A、x2+3x2=4x2,故此选项错误;B、0.00028=2.8×10﹣4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(﹣a+b)(﹣a﹣b)=a2﹣b2,故此选项错误;故选:C.【点评】此题主要考查了平方差公式以及科学记数法、积的乘方运算,正确掌握运算法则是解题关键.6.(3分)下列图形中,能确定∠1>∠2的是()A.B.C.D.【分析】分别根据对顶角相等、平行线的性质、三角形外角的性质对四个选项进行逐一判断即可.【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项错误;B、若两条直线平行,则∠1=∠2,若所截两条直线不平行,则∠1与∠2无法进行判断,故本选项正确;C、∵∠1是∠2所在三角形的一个外角,∴∠1>∠2,故本选项正确;D、∵已知三角形是直角三角形,∴由直角三角形两锐角互余可判断出∠1=∠2.故选:C.【点评】本题考查的是对顶角相等、平行线的性质、三角形外角的性质及直角三角形的性质,熟知以上知识是解答此题的关键.7.(3分)下列赋予4m实际意义的叙述中不正确的是()A.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额B.若m表示一个正方形的边长,则4m表示这个正方形的周长C.将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力D.若4和m分别表示一个两位数中的十位数字和个位数字,则4m表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额,正确;B、若m表示一个正方形的边长,则4m表示这个正方形的周长,正确;C、将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力,正确;D、若4和m分别表示一个两位数中的十位数字和个位数字,则(4×10+m)表示这个两位数,则此选项错误;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.8.(3分)下列说法中正确的个数是()①0的相反数是0;②(﹣1)2=2;③4的平方根是2;④是无理数;⑤(﹣2x)3•x=﹣8x4.A.1个B.2个C.3个D.4个【分析】直接利用相反数的定义以及有理数的定义和积的乘方运算法则分别判断得出答案.【解答】解:①0的相反数是0,正确;②(﹣1)2=1,故此选项错误;③4的平方根是±2,故此选项错误;④是有理数,故此选项错误;⑤(﹣2x)3•x=﹣8x4,正确.故选:B.【点评】此题主要考查了相反数的定义以及有理数的定义和积的乘方运算,正确掌握相关运算法则是解题关键.9.(3分)如图,将边长为3a的正方形沿虚线剪成两个正方形和两个长方形.若去掉边长为2b的小正方形后,再将剩余部分拼成一个矩形,则矩形的周长为()A.3a+2b B.6a+4b C.12a D.12a﹣4b【分析】根据题意,先将剩余部分拼成长方形,再根据图形的边长关系将新矩形的长和宽表示出来,就可以计算周长.【解答】解:如下图所示,可以将图①拼到到图②的位置,就构成了长方形:该长方形的长为:3a+2b,宽为:3a﹣2b,则周长为:(3a+2b+3a﹣2b)×2=12a,故选:C.【点评】本题考查了正方形的性质,矩形周长的计算,题目较简单,解题的关键是能够用剩余部分图形拼出矩形.10.(3分)下表是某学习小组一次数学测验的成绩统计表:分数70 80 90 100人数1 3 x 1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分【分析】先通过平均数求出x的值,再根据众数的定义就可以求解.【解答】解:根据题意得:70+80+80+80+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选:D.【点评】通过列方程求出x是解答问题的关键.11.(2分)已知,则A=()A.B.C.D.x2﹣1【分析】根据已知得出A=•(1+),先算括号内的加法,再算乘法即可.【解答】解:∵,∴A=•(1+)=•=,故选:B.【点评】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键.12.(2分)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°【分析】根据题意可知DE是AC的垂直平分线,由此即可一一判断.【解答】解:∵∠ACB=90°,∠B=34°,∴∠A=56°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=56°,∴∠BCD=90°﹣56°=34°,∴∠BDC=180°﹣34°﹣34°=112°,故选:B.【点评】本题考查作图﹣基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.13.(2分)如图,在平面直角坐标系中,函数y=kx与的图象交于A,B两点,过A 作y轴的垂线,交函数的图象于点C,连接BC,则△ABC的面积为()A.1B.2C.3D.4【分析】如图,连接OC设AC交y轴于E.根据反比例函数k的几何意义求出△AOC的面积,再利用反比例函数关于原点对称的性质,推出OA=OB即可解决问题.【解答】解:如图,连接OC设AC交y轴于E.∵AC⊥y轴于E,∴S△AOE=,S△OEC=1,∴S△AOC=,∵A,B关于原点对称,∴OA=OB,∴S△ABC=2S△AOC=3,故选:C.【点评】本题考查反比例函数与一次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(2分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则cos∠BDE的值是()A.B.C.D.【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求cos∠BDE的值.【解答】解:∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴∴AF=2EF,∴AE=3EF=DE∴DF==2EF∴cos∠BDE=故选:A.【点评】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.15.(2分)某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.32【分析】根据题意可以设出二元一次方程组,然后变形即可解答本题.【解答】解:设方形巧克力每块x元,圆形巧克力每块y元,小明带了a元钱,,①+②,得8x+8y=2a,∴x+y=a,∵5x+3y=a﹣8,∴2x+(3x+3y)=a﹣8,∴2x+3×a=a﹣8,∴2x=,∴8x=a﹣32,即他只购买8块方形巧克力,则他会剩下32元,故选:D.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,利用方程的知识解答.16.(2分)如图,抛物线y=ax2+bx+c的顶点坐标为(1,n),与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由对称轴可知:=1,由开口方向可知:a<0,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,故①正确;②由于x=﹣1时,y=0,∴a﹣b+c=0,∴c=b﹣a=﹣2a﹣a=﹣3a,∵抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴2≤﹣3a≤3,∴﹣1≤a≤,故②正确;③由于顶点坐标为(1,n),∴当x=1时,n=a+b+c,当x=m时,此时y=am2+bm+c,∴a+b+c≥am2+bm+c,即a+b≥am2+bm总成立,故③正确;④当y=n时,此时直线y=n与抛物线y=ax2+bx+c只有一交点,当y=n﹣1时,此时直线y=n﹣1与抛物线y=ax2+bx+c两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确;故选:D.【点评】本题考查二次函数,解题的关键熟练运用二次函数的图象与性质,本题属于中等题型.二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)比较大小:3>2.【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.【解答】解:32=9,,∵9>8,∴3>2,故答案为:>.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.18.(3分)若a,b互为相反数,则a2b+ab2=0.【分析】根据互为相反数的定义,得a+b=0,再将代数式提取公因式,将a+b=0代入即可.【解答】解:根据题意,得:a+b=0,∴原式=ab(a+b)=ab×0=0,故答案为:0.【点评】本题主要考查相反数的定义及代数式求值,解决此类问题时,不一定要求出a、b的值各是几,可以将a+b作为一个整体代入.19.(4分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O 夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是;…按此规律运动到点A2019处,则点A2019与点A0间的距离是2.【分析】据题意求得A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…于是得到A2019与A3重合,即可得到结论.【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…∵2019÷6=336…3,∴按此规律运动到点A2018处,A2019与A3重合,∴A0A2019=A0A3=2,故答案为:2,2.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?【分析】(1)把?=5代入方程,进而利用解分式方程的方法解答即可;(2)设?为m,利用分式方程的增根解答即可.【解答】解:(1)方程两边同时乘以(x﹣2)得5+3(x﹣2)=﹣1解得x=0经检验,x=0是原分式方程的解.(2)设?为m,方程两边同时乘以(x﹣2)得m+3(x﹣2)=﹣1由于x=2是原分式方程的增根,所以把x=2代入上面的等式得m+3(2﹣2)=﹣1,m=﹣1所以,原分式方程中“?”代表的数是﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(9分)修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地到B地的路程.已知:从A到C坡面的坡度i=1:,从B到C坡面的坡角∠CBA=45°,BC=4公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.01)(≈1.414,≈1.732)【分析】(1)作CD⊥AB于点D,分别求出AD,BD即可解决问题.(2)求出AC+BC与AB的差即可解决问题.【解答】解:(1)作CD⊥AB于点D,在Rt△BCD中,∵∠CBA=45°,,∴CD=BD=4.在Rt△ACD中,∵,∴,∴公里.答:隧道打通后从A到B的总路程是公里.(2)在Rt△ACD中,∵,∴∠A=30°,∴AC=2CD=2×4=8,∴.∵,∴(公里).答:隧道打通后与打通前相比,从A地到B地的路程约缩短2.73公里.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是修改添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(9分)我市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是8%;三等奖的人数是16人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为1:1,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?【分析】(1)根据题意列式计算即可;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与选取的两人中恰为1男生1女生的情况,再利用概率公式即可求得答案;(3)设需要选取x人进行集训,根据题意列不等式即可得到结论.【解答】解:(1)一等奖所占的百分比是1﹣40%﹣20%﹣32%=8%,三等奖的人数是20÷40%×32%=16人,故答案为:8%,16;(2)20÷40%=50,50×8%=4,,画树状图如图:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P(1名男生和1名女生)=.(3)设需要选取x人进行集训,根据题意得:4+x≥2(10﹣x),解得,因为x是整数,所以x取6.答:至少需要选取6人进行集训.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(9分)如图1,菱形ABCD中,∠ABC=120°,P是对角线BD上的一点,点E在AD 的延长线上,且P A=PE,PE交CD于F,连接CE.(1)证明:△ADP≌△CDP;(2)判断△CEP的形状,并说明理由;(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接写出线段AP与线段CE的数量关系.【分析】(1)由菱形性质可得AD=CD,∠ADP=∠CDP,即可证明△ABP≌△CBP(SAS).(2)由△ABP≌△CBP可得P A=PC,∠BAP=∠BCP,再证明∠CPF=∠EDF=180°﹣∠ADC=60°,即可证明△EPC是等边三角形,(3)同理可证△CPE是等腰直角三角形三角形,即可得CE==;【解答】解:(1)在菱形ABCD中,AD=CD,∠ADP=∠CDP,在△ABP和△CBP中,,∴△ADP≌△CDP(SAS),(2)由(1)得:△ADP≌△CDP∴P A=PC,∠DAP=∠DCP,∵P A=PE,∴PC=PE,∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠CDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△CPE是等边三角形,(3)CE=,证明如下:如前同理可证:PC=PE,∠EPC=∠CDE,∵在正方形ABCD中,∠ADC=90°,∴∠EPC=∠CDE=90°,∴△CPE是等腰直角三角形三角形,∴CE==【点评】本题是四边形综合题,考查了正方形、菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.24.(10分)如图1,在直角坐标系中,一次函数的图象l1与y轴交于点A(0,2),与一次函数y=x﹣3的图象l2交于点E(m,﹣5).(1)求m的值及l1的表达式;(2)直线l1与x轴交于点B,直线l2与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l1或l2有交点,直接写出a的取值范围.【分析】(1)根据点E在一次函数图象上,求出m的值,利用待定系数法即可求出直线l1的函数解析式;(2)由(1)求出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【解答】解:(1)∵点E(m,﹣5)在一次函数y=x﹣3图象上,∴m﹣3=﹣5,∴m=﹣2;设直线l1的表达式为y=kx+b,∵直线l1过点A(0,2)和E(﹣2,﹣5),∴,解得.∴直线l1的表达式为.(2)由(1)可知:B点坐标为,C点坐标为(0,﹣3),∴S四边形OBEC=S△OBE+S△OCE=.(3)或3≤a≤6.当矩形MNPQ的顶点Q在l1上时,a的值为,矩形MNPQ向右平移,当点N在l1上时,,解得x=,即点N(,1),∴a的值为+2=,矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x﹣3=1,解得x=4,即点N(4,1),∴a的值4+2=6,综上所述,当或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点评】本题主要考查两条直线相交或平行、图形的平移等知识的综合应用,在解决第(3)小题时,只有求出各临界点时a的值,就可以得到a的取值范围.25.(11分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.【分析】(1)设BP=a,则PC=8﹣a,由△MBP~△DCP知=,代入计算可得;(2)分别求出⊙P与边CD相切时和⊙P与边AD相切时BP的长即可得;(3)①当PM=5时,⊙P经过点M,点C;②当⊙P经过点M、点D时,由PC2+DC2=BM2+PB2,可求得BP=7,继而知.据此可得答案.【解答】解:(1)设BP=a,则PC=8﹣a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴=,即=,解得a=,故答案为:.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2,当⊙P与边AD相切时,设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,.综上所述,BP的长为3或.(3)如图1,当PM=5时,⊙P经过点M,点C;如图3,当⊙P经过点M、点D时,∵PC2+DC2=BM2+PB2,∴42+BP2=(8﹣BP)2+82,∴BP=7,∴.综上,.【点评】本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.26.(12分)探究:已知二次函数y=ax2﹣2x+3经过点A(﹣3,0).(1)求该函数的表达式;(2)如图所示,点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接AC,P A,PC.①求△ACP的面积S关于t的函数关系式;②求△ACP的面积的最大值,并求出此时点P的坐标.拓展:在平面直角坐标系中,点M的坐标为(﹣1,3),N的坐标为(3,1),若抛物线y=ax2﹣2x+3(a<0)与线段MN有两个不同的交点,请直接写出a的取值范围.【分析】探究:(1)利用待定系数法求解可得;(2)①先求出直线AC解析式为y=x+3,设P(t,﹣t2﹣2t+3),Q(t,t+3),据此得=﹣t2﹣3t,根据可得答案;②根据二次函数的性质和①中所求代数式求解可得;拓展:先求出线段MN解析式,直线和抛物线有两个交点知﹣x+=ax2﹣2x+3有两个不相等实数根,利用根的判别式求得a的范围,再根据a<0时,抛物线与直线的交点在线段MN上得,解之可确定a的最终取值范围.【解答】解:探究:(1)∵抛物线y=ax2﹣2x+3经过点A(﹣3,0),∴0=a(﹣3)2﹣2×(﹣3)+3,解得a=﹣1.∴抛物线的表达式为y=﹣x2﹣2x+3.(2)①过点P作PN⊥AO于点N,交AC于点Q.设直线AC的解析式为y=kx+b(k≠0),将A(﹣3,0)、C(0,3)代入y=kx+b,,解得:,∴直线AC的解析式为y=x+3.∵点P在抛物线y=﹣x2﹣2x+3上,点Q在直线AC上,∴点P的坐标为(t,﹣t2﹣2t+3),点Q的坐标为(t,t+3),∴=﹣t2﹣3t,∴=.②∵,∴当时,,当时,.∴△ACP的面积的最大值是,此时点P的坐标为.拓展:设直线MN的解析式为y=kx+b,。
2023年河北省石家庄市第四十四中学中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法正确的是()A .“打开电视,正在播放动画片”是必然事件B .“明天太阳从西边升起”是必然事件C .“掷一枚质地均匀的骰子一次,向上一面的点数是5”是随机事件D .“1个大气压下水加热到100℃时开始沸腾”是不可能事件2.一元二次方程220x x -=其中一个根是0,则另一个根的值是()A .0B .1C .2D .2-3.下列各选项的两个图形中,不是位似图形的是()A .B .C .D .4.如图,在ABC 中,DE BC ∥,若2AD =,4DB =,则DEBC的值为()A .23B .14C .13D .125.验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为()近视眼镜的度数y (度)2002504005001000镜片焦距x (米)0.500.400.250.200.10A .100y x=B .100x y =C .400y x=D .400x y =6.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是()A .25°B .60°C .65°D .75°7.如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为()A .43B .34C .35D .458.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自己正前方的水果盘中,则这块西瓜的三视图是()A .B .C .D .9.一组数据2,3,5,,7,4,6,9x 的众数是4,则这组数据的中位数是()A .4B .92C .5D .11210.要判断命题“有两个角是直角的圆内接四边形是矩形”是假命题,下列图形可作为反例的是()A .B .C .D .11.两个反比例函数k y x =和1(0k y k x+=≠和1)-的交点个数为()A .0B .2C .4D .无数个12.如图,梯子(长度不变)跟地面所成的锐角为∠A ,关于∠A 的三角函数值与梯子的倾斜程度之间,叙述正确的是()A .sinA 的值越大,梯子越陡B .cosA 的值越大,梯子越陡C .tanA 的值越小,梯子越陡D .陡缓程度与∠A 的三角函数值无关13.张老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是()已知:如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE BC ∥,DF AC ∥.求证:ADE DBF ∽.证明:①又∵DF AC ∥,②∵DE BC ∥,③∴∠=∠A BDF ,④∴ADE B ∠=∠,⑤∴ADE DBF ∽.A .③②④①⑤B .②④①③⑤C .③①④②⑤D .②③④①⑤14.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF 的中心O 重合,且与边AB 、CD 相交于G 、H (如图).图中阴影部分的面积记为S ,三条线段GB 、BC 、CH 的长度之和记为l ,大正六边形在绕点O 旋转过程中,下列说法正确的是()A .S 变化,l 不变B .S 不变,l 变化C .S 变化,l 变化D .S 与l 均不变15.如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0;乙:若4b =,则点P 的个数为1;丙:若3b =,则点P 的个数为1.下列判断正确的是()A .乙错,丙对B .甲和乙都错C .乙对,丙错D .甲错,丙对16.九年级16班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A .方案1B .方案2C .方案3D .面积都一样二、填空题17.在一个不透明的袋子里,有2个黑球和1个白球,小球除了颜色外其余均相同,从中任意摸两个小球.由上面的树形图可知,共有_____种等可能的结果,其中恰有1黑1白的有_____种.18.如图是引拉线固定电线杆的示意图.已知:CD AB ⊥,CD =,60CAD CBD ∠=∠=,则拉线AC 的长是________m .19.如图,ABC 的周长为20,O 的半径为1,O 从与AB 相切于点D 的位置出发,在ABC 外部,按顺时针方向沿三角形作无滑动滚动,当滚动一周又回到与AB 相切于点D 的位置,O 的圆心O 点运动的长度_____(填写>或=或<)三角形的周长,运动长度为_____.三、解答题20.对于三个实数a ,b ,c ,用}{,,M a b c 表示这三个数的平均数,用}{min ,,a b c 表示这三个数中最小的数.例如:}{129,,3M a b c ++==4,}{min 1,2,33-=-,}{min 3,1,11=.请结合上述材料,解决下列问题:(1)}{min sin 30,cos 60,tan 45︒︒︒;(2)若}{22,,32M x x -=,求x 的值.21.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD=∠ABC .(1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE=6,tan ∠ABC=23,tan ∠AEC=53,求圆的直径.22.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?23.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数2100y x =-+.(利润=售价-制造成本)(1)写出每月的利润z (万元)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?24.阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图①,在ABC 中,AD 平分BAC ∠,则AB BDAC CD=.下面是这个定理的部分证明过程.证明:如图②,过点C 作CE DA ∥,交BA 的延长线于点E ……任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图③,在ABC 中,AD 是角平分线,5cm AB =,5cm AB =,7cm BC =.求BD 的长.25.已知:如图,一次函数y kx b =+的图象与反比例函数2y x=-的图象交于点()1,A m -,与x 轴正半轴交于点B ,()1,A m -轴于点P ,且2ABP S =△.(1)求点B 的坐标及一次函数的解析式;(2)设点C 是x 轴上的一个点,如果ACO BAO ∠=∠,求出点C 的坐标.26.一个直角锯齿卡尺(所有角均为直角),0K 、1K 、11K 都在圆上,且010115K K K K ==.且卡尺所有锯齿高度和水平长度都为1,如:12231K K K K ==.(1)圆心在卡尺内部还是外部,说明理由;(2)过0K 、1K 、11K 的圆的半径是多少;(3)以0K 为圆心,03K K 为半径画弧,判断7K 、9K 与0K 的位置关系;(4)8K 到圆的最近距离是多少.参考答案:1.C【分析】根据事件的分类,对每个选项逐个进行分类,判断每个选项是否为不可能事件.【详解】解:A .“打开电视,正在播放动画片”是随机事件,此选项不符合题意;B .“明天太阳从西边升起”是不可能事件,此选项不符合题意;C .“掷一次质地均匀的骰子,向上一面的点数是5”是随机事件,此选项符合题意;D .“1个大气压下水加热到100℃时开始沸腾”是必然事件,此选项不符合题意;故选:C .【点睛】本题考查的是理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.C【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵220x x -=,∴1a =,2b =-,0c =,设10x =,另一个根为2x ,∵202x +=,∴22x =,故选:C .【点睛】本题考查了一元二次方程根据系数的关系,熟练掌握12b x x a+=-,12cx x a =是解答本题的关键.3.C【分析】根据位似图形的定义判断即可.【详解】因为两个位似图形的对应点的连线所在的直线经过同一点,所以A ,B ,D 中的两个图形是位似图形,C 中的两个图形不是位似图形.故选C.【点睛】本题考查了位似图形的的定义,对应边互相平行(或共线)且每对对应顶点所在的直线都经过同一点的两个相似多边形叫做位似图形.4.C【分析】根据DE BC ∥,得出ADE ABC △△∽,再根据相似三角形的性质,得出DE ADBC AB=,然后根据2AD =,4DB =,求出DEBC的值即可.【详解】解:∵DE BC ∥,∴ADE ABC △△∽,∴21243DE AD BC AB ===+.故选:C .【点睛】此题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解本题的关键.相似三角形的判定:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.5.A【分析】直接利用已知数据可得xy =100,进而得出答案.【详解】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:100y x=.故选A .【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.6.C【分析】首先根据直径所对的圆周角是直角,可求得∠ACD =90°,又由圆周角定理的推论可得∠D =∠ABC =25°,继而求得答案.【详解】解:∵AD 是⊙O 的直径,∴∠ACD =90°,∵∠D =∠ABC =25°,∴∠CAD =90°﹣∠D =65°.故选:C .【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.7.D【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,∴AC ===AC 5.∴4sin 5CD BAC AC ∠==.故选D .【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.8.B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【详解】观察图形可知,这块西瓜的三视图是.故选B .【点睛】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.9.B【分析】先根据众数的定义求出x 的值,再根据中位数的定义求解即可.【详解】解: 这组数据的众数4,4x ∴=,将数据从小到大排列为:2,3,4,4,5,6,7,9则中位数为:4.5.故选B .【点睛】此题主要考查了众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10.D【分析】所给图形只需满足:是两个角是直角的圆内接四边形但不是矩形,据此逐项判断即可.【详解】解:A 、给出的图形有可能是矩形,不能作为命题的反例,所以本选项不符合题意;B 、给出的图形不是圆内接四边形,不能作为命题的反例,所以本选项不符合题意;C 、给出的图形不是圆内接四边形,不能作为命题的反例,所以本选项不符合题意;D 、给出的图形是圆内接四边形,且有两个直角,但明显不是矩形,能作为命题的反例,所以本选项符合题意.故选:D .【点睛】本题考查了用举反例的方法判断假命题以及矩形的定义和圆内接四边形的知识,属于常考题型,明确判断的方法是解题关键.11.A【分析】联立两函数解析式,得到关于k 的方程,求解后即可判断.【详解】解:联立1k y x k y x ⎧=⎪⎪⎨+⎪=⎪⎩,解得:1k k =+,无解,故选:A .【点睛】本题考查反比例函数图象上点的坐标特征,联立解析式组成方程组是解题的关键.12.A【分析】根据锐角三角函数值的变化规律判断即可;正弦值和正切值都是随着角的增大而增大,余弦值是随着角的增大而减小.【详解】解:A 选项,sin A 的值越大,∠A 越大,梯子越陡,A 正确;B 选项,cos A 的值越大,∠A 越小,梯子越缓,B 错误;C 选项,tan A 的值越小,∠A 越小,梯子越缓,C 错误;D 选项,根据∠A 的三角函数值可以判断梯子的陡缓程度,D 错误;故选:A .【点睛】本题考查了三角函数的增减性,熟练掌握锐角三角函数值的变化规律是解题关键.13.B【分析】由DE BC ∥,DF AC ∥,得出ADE B ∠=∠,∠=∠A BDF ,证出ADE DBF ∽.【详解】证明:②∵DE BC ∥,④∴ADE B ∠=∠,①又∵DF AC ∥,③∴∠=∠A BDF ,⑤∴ADE DBF ∽.故选:B .【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似.14.D【分析】如图,连接OA ,OC .证明△HOC ≌△GOA (ASA ),可得结论.【详解】解:如图,连接OA ,OC.∵∠HOG =∠AOC =120°,∠OCH =∠OAG =60°,∴∠HOC =∠GOA ,在△OHC 和△OGA 中,HOC GOA OC OA OCH OAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HOC ≌△GOA (ASA ),∴AG =CH ,∴S 阴=S 四边形OABC =定值,l =GB +BC +CH =AG +BG +BC =2BC =定值,故选:D .【点睛】本题考查正多边形与圆,旋转的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.C【分析】分别令x (4-x )的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P 的个数.【详解】当b =5时,令x (4-x )=5,整理得:x 2-4x +5=0,△=(-4)2-4×5=-6<0,因此点P 的个数为0,甲的说法正确;当b =4时,令x (4-x )=4,整理得:x 2-4x +4=0,△=(-4)2-4×4=0,因此点P 有1个,乙的说法正确;当b =3时,令x (4-x )=3,整理得:x 2-4x +3=0,△=(-4)2-4×3=4>0,因此点P 有2个,丙的说法不正确;故选:C .【点睛】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.16.C【分析】根据二次函数的性质,分别计算出三个方案的菜园面积进行比较即可.【详解】解:方案1:设AD x =米,则()82AB x =-米,则菜园面积()()228228228x x x x x =-=-+=--+,当2x =时,此时菜园最大面积为8平方米;方案2:解法一:如图,过点B 作BH AC ⊥于H ,则4BH AB ≤=,∵12ABC S AC BH =⋅ ,∴当4BH =时,ABC 的面积最大为14482⨯⨯=;解法二:过点A 作AD BC ⊥于D ,设CD x =,AD y =,则2216x y +=,∴11222S BC AD x y xy =⋅⨯⨯==,∵()2222-=+-≥0x y x y xy ,∴1620xy -≥,∴8xy ≤,∴当且仅当x y ==8平方米;方案3:半圆的半径为8π米,∴此时菜园最大面积28322πππ⎛⎫⨯ ⎪⎝⎭==(平方米)∵328π>,∴方案3的菜园面积最大,∴在三种方案中,最佳方案是方案3.故选:C .【点睛】本题考查了二次函数的应用、圆的面积、等腰三角形的性质、勾股定理、完全平方公式,根据题意计算三个方案的边长及半径是解本题的关键.17.64【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,即可求得答案.【详解】解:如图所示:共有6种等可能的结果,其中恰有1黑1白的有4种.故答案为:6,4.【点睛】本题考查的是用列表法与树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.18.6【分析】在直角△ACD 中,利用三角函数即可求解.【详解】在直角△ACD 中,sin ∠CAD=CD AC,则AC=CD sin CAD ∠=6.答:拉线AC 的长是6.【点睛】本题考查了三角函数,理解三角函数的定义是关键.19.>202π+##220π+【详解】画出图形,可知O 的圆心O 的运动的总长度为ABC 的周长再加上一个半径为1的圆的周长,可知,O 的圆心O 点运动的长度大于ABC 的周长,可以根据三角形的周长公式及圆的周长公式求得问题的答案.【分析】解:如图,四边形ABEL 、四边形BCGF 、四边形CAKH 都是矩形,根据题意可知,O 的圆心O 的运动的总长度为线段LE FG HK 、、及 EF GH KL、、的长度的和,∵LE AB FG BC HK CA ===,,,∴O 的圆心O 点运动的长度大于ABC 的周长,∵180ABC BCA CAB ∠+∠+∠=︒,∴3603906180360EBF GCH KAL ∠+∠+∠=︒⨯-︒⨯-︒=︒,∴ EF GH KL、、的长度和等于一个半径长为1的圆的周长,即212ππ⨯=,∵20LE FG HK AB BC CA ++=++=,∴圆心O 点运动长度为202π+,故答案为:>,202π+.【点睛】此题重点考查圆的周长公式、三角形的周长公式、三角形内角和定理等知识,将圆心的运动路径抽象为矩形的边和扇形的弧是解题的关键.20.(1)12(2)3或1-【分析】(1)根据特殊角的三角函数值,以及定义的新运算,即可解答;(2)根据定义的新运算可得22323x x -++=,然后进行计算即可解答.【详解】(1)解:}{min sin 30,cos 60,tan 45︒︒︒}11min ,22⎧=⎨⎩12=;(2)解:∵}{22,,32M x x -=,∴22323x x -++=整理得:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -,∴x 的值为3或1-.【点睛】本题考查了一元二次方程的解,实数大小比较,特殊角的三角函数值,理解定义的新运算是解题的关键.21.(1)证明见解析;(2)10【详解】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ABC+∠DCB=90°,∵∠ACD=∠ABC,∴∠ACD+∠DCB=90°,∴BC⊥CA,∴CA是圆的切线.(2)解:在Rt△AEC中,tan∠AEC=5 3,∴AC EC=53EC=53 AC,在Rt△ABC中,tan∠ABC=2 3,∴AC BC=23BC=32 AC,∵BC﹣EC=BE,BE=6,∴336 25AC AC-=,解得:AC=20 3,∴BC=32×203=10,答:圆的直径是10.22.(1)80;(2)①81;②85.【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为709080803++=(分);(2)①小张的期末评价成绩为70190280781127⨯+⨯+⨯=++(分);②设小王期末考试成绩为x分,根据题意,得:601752780127x ⨯+⨯+++ ,解得84.2x ,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.23.(1)221361800z x x =-+-(2)销售单价为25元或43元时,厂商每月能获得350万元的利润;当销售单价为34元时,每月能获得最大利润,最大利润是512万元【详解】解:(1)2(18)(18)(2100)21361800z x y x x x x =-=--+=-+-,z ∴与x 之间的函数解析式为221361800z x x =-+-;(2)由350z =,得235021361800x x =-+-,解这个方程得125x =,243x =,所以,销售单价定为25元或43元,将221361800z x x =-+-配方,得22(34)512z x =--+,因此,当销售单价为34元时,每月能获得最大利润,最大利润是512万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.24.(1)见解析(2)359cm 【分析】(1)过点C 作CE DA ∥,交BA 的延长线于点E ,由CE DA ∥,可求证BD BA CD EA=,CAD ACE ∠=∠,BAD E ∠=∠,可得AE AC =,即可求解;(2)根据(1)中的结论即可求解.【详解】(1)过点C 作CE DA ∥,交BA 的延长线于点E ,如图②,∵CE DA ∥,∴BD BA CD EA=,CAD ACE ∠=∠,BAD E ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴ACE E ∠=∠,∴AE AC =,∴AB BD AC CD=;(2)解:由(1)的结论,可得AB BD AC CD =,∵5cm AB =,5cm AB =,7cm BC =,∴547BD BD=-,解得:359BD =,经检验,359BD =是原方程的根,∴9cm 35BD =.【点睛】本题主要考查了平行线分线段成比例定理、角平分线的定义、解分式方程,熟练掌握平行线分线段成比例定理是解决问题的关键.25.(1)点()10B ,;1y x =-+;(2)()5,0,()7,0-【分析】(1)首先把()1,A m -代入2y x=-,即可求得m 的值,又由2ABP S =△,则可求得点B 的坐标,然后利用待定系数法即可求得此一次函数的解析式;(2)由(1)可求得OA =AB =C 在x 轴的正半轴上与当点C 在x 轴的负半轴上时去分析,利用相似三角形的对应边成比例,即可求得答案.【详解】(1)把()1,A m -代入2y x=-,得221m =-=-,即点A 的坐标为:()1,2-,即2AP =,1OP =,又∵12ABP S PB AP ⨯=V ,∴2212PB =⨯,∴2PB =,∴1OB PB OP =-=,∴点()10B ,;设直线AB 的解析式为()0y kx b k =+≠,把点A 、B 的坐标代入得:02k b k b =+⎧⎨=-+⎩,解得:11k b =-⎧⎨=⎩,故直线AB 的解析式为1y x =-+;(2)∵点A ()1,2-、()10B ,,∴OA =AB =当点C 在x 轴的正半轴上时,即点1C ,∵1AC O BAO ∠=∠,1AOC BOA ∠=∠,∴1OAC OBA ∽V V ,∴1OA OB OC OA=,∴1OC =∴15OC =,即点()15,0C ;当点C 在x 轴的负半轴上时,即点2C ,∵2AC O BAO ∠=∠,2AOC BOA ∠=∠,∴2ABC OBA ∽V V ,∴2AB OB BC AB=,∴2BC =∴28BC =,∴2817OC =-=,即点()27,0C -.综上,点C 的坐标为:()5,0,()7,0-.【点睛】此题考查了待定系数法求一次函数的解析式、相似三角形的判定与性质、反比例函数与一次函数的交点问题以及三角形面积问题.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.26.(1)圆心在卡尺内部,理由见解析(2)2(3)点7K 在0K 的内部,点9K 在0K 上(4)2【分析】(1)利用圆周角定理的推论可得111K K 为圆的直径,再根据等腰直角三角形的性质解答即可;(2)利用勾股定理可得111K K =再根据等腰直角三角形的性质和三角形的外接圆的性质解答即可;(3)分别求得03K K ,09K K ,07K K 的长度,利用点和圆的位置关系解答即可;(4)设过0K 、1K 、11K 的圆的圆心为O ,连接8OK 并延长交O 于点B ,过点8K 作897K C K K ⊥于点C ,利用等腰直角三角形的性质和勾股定理可求出8OK 的长,由此即可得出答案.【详解】(1)解:圆心在卡尺内部,理由如下:∵0K 、1K 、11K 都在圆上,110190K K K ∠=︒,∴111K K 为圆的直径,∴圆心在1110Rt K K K 的斜边111K K 上,∴圆心在卡尺内部.(2)解:∵010115K K K K ==,110190K K K ∠=︒,∴1011K K K 为等腰直角三角形,111K K ==∴斜边111K K 是过0K 、1K 、11K 的圆的直径,∴过0K 、1K 、11K 的圆的半径是111122K K =(3)解:如图,延长43K K 交10K K 于点A ,则四边形123K K K A 为矩形,∴1231K A K K ==,3121K A K K ==,∴00114K A K K K A -==.∴03K K ==同理可得:07K K ==09K K ==<∴0703K K K K <,∴点7K 在0K 的内部;0903K K K K == ∴点9K 在0K 上.(4)解:如图,设过0K 、1K 、11K 的圆的圆心为O ,连接8OK 并延长交O 于点B ,过点8K作897K C K K ⊥于点C ,则2OB =,圆心O 是57K K 的中点,757122OK K K ∴==,78897891,90K K K K K K K ==∠=︒ ,789K K K ∴ 为等腰直角三角形,7798221K C K K K C =∴===,77OC OK K C ∴=+=82OK ∴=,882K B OB OK ∴=-=,即8K .【点睛】本题主要考查了圆周角定理、等腰直角三角形的判定与性质、点和圆的位置关系、勾股定理、三角形的外接圆等知识点,熟练掌握圆的有关性质是解题关键.。
2019学年河北省石家庄市联考5月中考模拟数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 小明身高165cm,以小明身高为标准,小明爸爸身高175cm,记作+10cm,小明妈妈身高163cm,应记作()A.2cm B.12cm C.-2cm D.-12cm2. 把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理,正确的是()A.两点确定一条直线 B.两点之间线段最短C.垂线段最短 D.三角形两边之和大于第三边3. 下列图案中既是轴对称图形又是中心对称图形的是()4. 下列分解因式正确的是()A.-a+a3=-a(1+a2) B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2 D.a2-2a+1=(a-1)25. 把不等式的解集在数轴上表示出来,正确的是()6. 方程的解是()A.x=3 B.x=-2 C.x=2 D.x=57. 下列属于不可能事件的是()A.一个数和它的相反数之和等于B.一个有理数的绝对值是1C.掷一枚骰子点数是1D.一个角和它的补角的和是180°8. 小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为()A. B. C. D.9. 如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为()A.(6,6)B.(,2)C.(7,4)D.(8,2)10. 对于任意实数a、b,定义f(a,b)=a2+5a-b,如:f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是()A.1或-6 B.-1或6 C.-5或1 D.5或-111. 如图,平行四边形ABCD的对角线AC、BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是()A.8cm B.10cm C.12cm D.16cm12. 如图,在扇形OAB中,∠AOB=90°,半径OA=2,将扇形OAB沿过点B的直线折叠,使点O恰好落在弧AB上的点D处,折痕为BC,则图中阴影部分的面积是()A.π B.π- C.π- D.π-13. 关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解是()A.x1=-6,x2=-1 B.x1=0,x2=5C.x1=-3,x2=5 D.x1=-6,x2=214. 如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2 C.3 D.215. 如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个 B.3个 C.2个 D.1个16. 如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为()A.6cm B.4πcm C.2πcm D.3cm二、填空题17. 计算: .18. 某商场购进一品服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是元.19. 如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6米,则斜坡上相邻两树间的坡面距离是米(结果保留根号).20. 已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…依此类推,则a2015的值为 .三、解答题21. (1)先化简,再求值:,其中x=2015.(2)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC,点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面的距离为2米,OC=8米.①请建立适当的直角坐标系,求抛物线的函数解析式;(需要画出你建立的直角坐标系)②为了安全美观,现需要在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省时的点P?请写出找法.(无需证明)(支柱与地面、造型对接方式的用料多少问题暂不考虑)22. “爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表.23. 组别原因人数A不想改变传统风俗习惯650B增添节日喜庆气氛300C祈福运、求吉利、辟邪害mD没有可替代的庆祝方式150E为了孩子的玩耍和快乐nF其他100td24. 如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.25. 已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.26. 大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:27. x(天)123…50p(件)118116114…20td28. 如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。
2024年河北省石家庄市十八县部分学校中考数学模拟试卷(5月份)一、选择题:本题共16小题,共38分.在每小题给出的选项中,只有一项是符合题目要求的.1.如图,数轴上的点A ,B ,C ,D 表示的数与13-互为相反数的是( )A .AB .BC .CD .D2.把弯曲的河道改直,能够缩短航程,这样做的道理是( )A .两点之间,射线最短B .两点确定一条直线C .两点之间,直线最短D .两点之间,线段最短3.由5个大小相同的小正方体组成的几何体如图所示,若添加一个相同的小正方体,使组成的新几何体的主视图和左视图完全一样,则添加的小正方体应放在哪个位置上( )A .①B .②C .③D .④4.下列运算中,正确的是( )A .3243a a a -=B .0=C .321a a ¸=D .()2224ab a b =5.若一次函数()31y k x =+-的函数值y 随x 的增大而减小,则k 值可能是( )A .2B .32C .12-D .4-6.如图,货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,海岛B 在它北偏东40°方向上.则AOB Ð的度数是( )A .60°B .80°C .100°D .120°7.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是( )A .众数B .中位数C .平均数D .方差8.如图,直线a b ∥,将含有30°角的直角三角尺按如图所示的位置放置,若125Ð=°,那么2Ð的大小为( )A .60°B .55°C .45°D .35°9.如图,一条河两岸互相平行,为测得此河的宽度PT (PT 与河岸PQ 垂直),测P 、Q 两点距离为m 米,PQT a Ð=,则河宽PT 的长度是( )A .sin m aB .cos m aC .tan m aD .tan ma10.如图,⊙O 的半径为2,C 1是函数y =x 2的图象,C 2是函数y =﹣x 2的图象,则阴影部分的面积是( )A .πB .2πC .4πD .都不对11.如图,点A 为反比例函数()0,0k y k x x=<<的图象上一点,AB x ^轴于点B ,点C 是y 轴正半轴上一点,连接BC ,AD BC ∥交y 轴于点D ,若0.5ABCD S =四边形,则k 的值为( )A .1B .0.5C .0.5-D .1-12.如图,,AC BC 为O e 的两条弦,D ,G 分别为,AC BC 的中点,O e 的半径为2.若45C Ð=°,则DG 的长为( )A .2BC .32D 13.如图,60MON Ð=°,以点O 为圆心,2cm 长为半径画弧,交OM ,ON 于A ,B 两点,再分别以A ,B 为圆心,2cm 为半径画弧,两弧交于点C ,连接OC ,AB ,则OC 长为( )A .1cmBC .2cmD .14.如图,已知E 是ABC V 的外心,P Q 、分别是AB 、AC 的中点,连接EP 、EQ 交BC 于点F D 、,若5BF =,3DF =,4CD =,则ABC V 的面积为( )A .18B .24C .30D .3615.下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:x…3-035…y …165-8-0…则下列关于这个二次函数的结论中,正确的是( )A .图象的顶点在第一象限B .有最小值8-C .当9t >-时,二次函数的图象与y t =有2个交点D .当05x <<时,0y >16.我们知道,五边形具有不稳定性,正五边形OABCD 在平面直角坐标系中的位置如图1所示,A 在x 轴负半轴上,固定边AO ,将正五边形向右推,使点A ,B ,C 共线,且点C 落在y 轴上,如图2所示,此时CDO Ð的度数为( )A .108°B .120°C .135°D .150°二、填空题:本题共3小题,共10分.17.比较大小:18.如图,在ABC V 中,90B Ð=°,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向点B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以4mm/s 的速度移动,如果P 、Q 两点分别从A 、B 两点同时出发,设运动时间为s t ,那么PBQ V 的面积S 的最大值为 2mm .19.如图所示,某工厂生产镂空的铝板雕花造型,造型由A (绣球花)、B (祥云)两种图案组合而成,因制作工艺不同,A 、B 两种图案成本不同,厂家提供了如下几种设计造型,造型1的成本64元,造型2的成本42元,则造型3的成本为 元;若王先生选定了一个造型1作为中心图形,6个造型2分别位于中心图形的四周,其余部分用n 个造型3填补空缺,若整个画面中,图案B 个数不多于图案A 数的2倍,且王先生的整体设计费用不超过500元,写出一个满足条件的n 值 .三、解答题:本题共7小题,共72分.解答应写出文字说明,证明过程或演算步骤.20.在小学,我们学习过交换律、结合律以及乘法分配律,利用这些运算律可以使一些数学问题简化.例如:111111121212123261462462æö+-´=´+´-´=+-=-ç÷èø,请利用运算律解决下列问题:(1)计算:626175353æöæöæöæö-´-+-´+ç÷ç÷ç÷ç÷èøèøèøèø;(2)如图,点C 是线段AB 上任意一点,点E 是AC 的中点,点F 是CB 的中点,若AB m =,计算线段EF 的长度.21.图1是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2形状拼成一个正方形.(1)图2中阴影部分的正方形的边长是______;(用含a 、b 的式子表示)(2)观察图2,用一个等式表示下列三个整式:()2a b +、()2a b -、ab 之间的等量关系;(3)根据(2)问中的等量关系,解决如下问题:若8m n +=,12mn =,求m n -的值.22.“书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际.某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查.问卷设置了五种选项:A “艺术类”,B “文学类”,C “科普类”,D “体育类”,E “其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______ 名;(2)请直接补全条形统计图;(3)在扇形统计图中,A “艺术类”所对应的圆心角度数是______ 度;(4)据抽样调查结果,请你估计该校1800名学生中,有多少名学生最喜爱C “科普类”图书.23.在平面直角坐标系中,已知直线l :()=13y k x -+与y 轴交于点P ,矩形ABCD 的顶点坐标分别为()2,1A -,()2,2B --,()3,2C -.(1)若点D 在直线l 上,求k 的值;(2)若直线l 将矩形面积分成相等的两部分,求直线l 的函数表达式;(3)若直线l 与矩形ABCD 有交点(含边界),直接写出k 的取值范围.24.如图是从正面看到的一个“老碗”,其横截面可以近似的看成是如图(1)所示的以AB 为直径的半圆O ,MN 为台面截线,半圆O 与MN 相切于点P ,连接OP 与CD 相交于点E .水面截线CD =,MN CD ∥,12cm AB =.(1)如图(1)求水深EP ;(2)将图(1)中的老碗先沿台面MN 向左作无滑动的滚动到如图(2)的位置,使得A 、C 重合,求此时最高点B 和最低点P 之间的距离BP 的长;(3)将碗从(2)中的位置开始向右边滚动到图(3)所示时停止,若此时75BOP Ð=°,求滚动过程中圆心O 运动的路径长.25.【发现问题】小明和小强做弹球游戏,如图1,小明向斜坡抛一个乒乓球,乒乓球弹起的运行路线是一条抛物线,乒乓球落地后又弹起,第二次弹起的运行路线和第一次运行路线的抛物线形状相同,小强在地面立一块高度为0.4m 的木板,当乒乓球在第二次下落时能落在木板上,则小强获胜.【提出问题】小强将木板放在距斜坡底端多远,才能确保获胜?【分析问题】小强以斜坡底端O 为坐标原点,地面水平线为x 轴,取单位长度为1m ,建立如图2所示的平面直角坐标系,乒乓球的大小忽略不计,经测量发现,抛球点A 的坐标为()1,3.36-,第一次弹起的运行路线最高点坐标为()0.5,3.61-,第二次弹起的最大高度为1.21m ,小强通过这些数据,经过计算,确定了木板立的位置,从而确保自己获胜.【解决问题】(1)求乒乓球第一次弹起运行路线的抛物线的解析式;(2)求乒乓球第一次落地点B 距斜坡低端O 的距离;(3)小强将木板立在距斜坡底端O 多远的范围内,才能确保自己获胜?26.(1)【问题发现】如图1,在Rt ABC △中,AB AC =,90BAC Ð=°,点D 为BC 的中点,以BD 为一边作正方形BDEF ,点E 与点A 重合,易知ABF CBE V V ∽,则线段AF 与CE 的数量关系是________;(2)【拓展研究】在(1)的条件下,将正方形BDEF 绕点B 旋转至如图2所示的位置,连接BE ,CE ,AF .请猜想线段AF 和CE 的数量关系,并证明你的结论;(3)【结论运用】在(1)(2)的条件下,若ABC V 的面积为8时,当正方形BDEF 旋转到C 、E 、F 三点共线时,请直接写出线段AF 的长.1.D【分析】本题主要考查了相反数和数轴.根据相反数的定义和数轴的定义即可得出答案.【详解】解:1 3 -Q的相反数是13,\表示的数与13-互为相反数的是点D.故选:D.2.D【分析】根据两点之间线段最短即可得出答案.【详解】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故选:D.【点睛】本题考查了线段的性质,解题的关键是掌握两点之间线段最短.3.B【分析】本题考查简单组合体的三视图,正确掌握观察角度是解题关键.根据左视图是从左面看到的图形、主视图是从正面看到的图形判定则可.【详解】由题意,可知将小正方体放在②位置上,组成的新几何体的主视图和左视图都是:,故选B.4.D【分析】本题考查同底数幂的除法、合并同类项,积的乘方、零指数幂、熟练掌握运算法则是解题的关键.根据同底数幂的除法法则积的乘方、零指数幂法则以及合并同类项的方法进行解题即可.【详解】解:A、34a与2a不是同类项,不能进行合并,故该项不正确,不符合题意;B、01=,故该项不正确,不符合题意;C、32a a a¸=,故该项不正确,不符合题意;D、()2224ab a b=,故该项正确,符合题意;故选:D.5.D【分析】根据一次函数的性质可得30k +<,即可求解.【详解】解:∵一次函数()31y k x =+-的函数值y 随x 的增大而减小,∴30k +<.解得3k <-.观察各选项,只有D 选项的数字符合故选D .【点睛】本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.6.B【分析】本题考查了方向角,根据题目的已知条件找出相应的角是解题的关键.用平角减去两个角的和即可求解.【详解】解:由题意得,()180604080AOB Ð=°-°+°=°,故选:B .7.D【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得:原中位数为4,原众数为4,原平均数为2444645x ++++==,原方差为()()()()()2222222444444464855S éù-+-+-+-+-ëû==;去掉一个数据4后的中位数为4442+=,众数为4,平均数为244644x +++==,方差为()()()()222222444446424S éù-+-+-+-ëû==;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.8.B【分析】根据含有30°角的直角三角尺,得到4Ð的值,再利用平行线的性质得到3Ð的值,即可解答.【详解】解:Q 图中是含有30°角的直角三角尺,460135\Ð=°-Ð=°,a b ∥Q ,3435\Ð=Ð=°,218090355\Ð=°-°-Ð=°,故选:B .【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解题的关键.9.C【分析】结合图形利用正切函数求解即可.【详解】解:根据题意可得:tan PT PQa =,∴·tan tan PT PQ m a a ==,故选C .【点睛】题目主要考查解直角三角形的实际应用,理解题意,利用正切函数解直角三角形是解题关键.10.B【分析】根据函数y=x 2与函数y=-x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y=x 2的图象,C 2是函数y=-x 2的图象,∴两函数图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选B .【点睛】此题主要考查了二次函数的对称性,根据已知得出阴影部分面积即是半圆面积是解题关键.【分析】本题主要考查了求反比例函数解析式,解题的关键是熟练掌握系数k 的意义,设点A 坐标为(,)m n ,根据0.5ABCD S =四边形,求出k 的值即可.【详解】解:因为AD BC P ,AB CDP 所以四边形ABCD 是平行四边形,设点A 坐标为(,)m n ,0.5ABCD k m n S =×==平行四边形,∵反比例函数图象在第二象限,∴0.5k =-,故选:C .12.D【分析】连接,,OA OB AB ,圆周角定理得到290AOB C Ð=Ð=°,勾股定理求出AB ,三角形的中位线定理,即可求出DG 的长.【详解】解:连接,,OA OB AB ,∵O e 的半径为2.45C Ð=°,∴2,290OA OB AOB C ==Ð=Ð=°,∴AB ==∵D ,G 分别为,AC BC 的中点,∴DG 为ABC V 的中位线,∴12DG AB ==故选D .【点睛】本题考查圆周角定理和三角形的中位线定理.熟练掌握相关定理,并灵活运用,是解题的关键.【分析】如图,记AB ,OC 的交点为D ,证明四边形AOBC 是菱形,AOB V 是等边三角形,可得AB OC ^,AD BD =,2OC OD =,2AB OB ==,可得OD ==,从而可得答案.【详解】解:如图,记AB ,OC 的交点为D ,由作图可得:2OA OB AC BC ====,而60MON Ð=°,∴四边形AOBC 是菱形,AOB V 是等边三角形,∴AB OC ^,1AD BD ==,2OC OD =,∴OD ==,∴)c m OC =,故选D【点睛】本题考查的是作一条线段等于已知线段,菱形的判定与性质,等边三角形的判定与性质,勾股定理的应用,熟记菱形的性质是解本题的关键.14.B【分析】本题考查了三角形的外接圆和外心,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,考查了直角三角形的性质和勾股定理的逆定理,三角形的面积,连接AF ,AD ,由题意得出AF BF =,AD DC =,可证得90ADF Ð=°,根据三角形的面积公式可得出答案,熟练掌握知识点的应用是解题的关键.【详解】连接AF ,AD ,如图,∵E 是ABC V 的外心,P 、Q 分别是AB 、AC 的中点,∴EP AB ^,EQ AC ^,∴AF BF =,AD DC =,∵5BF =,4CD =,∴5AF =,4=AD ,∵3DF =,∴222DF AD AF +=,∴ADF △是直角三角形,90ADF Ð=°,∵53412BC BF DF DC =++=++=,∴111242422ABC S BC AD =×=´´=,故选:B .15.C【分析】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关键.依据题意,设二次函数为2y ax bx c =++,结合表格数据可得,59382550c a b c a b c =-ìï++=-íï++=î,从而可得二次函数为2245(2)9y x x x =--=--,再结合二次函数的性质即可逐个判断得解.【详解】解:由题意,设二次函数为2y ax bx c =++,结合表格数据可得,59382550c a b c a b c =-ìï++=-íï++=î,\145a b c =ìï=-íï=-î.\二次函数为2245(2)9y x x x =--=--.\顶点为(2,9)-在第四象限,故A 错误,故本选项不符合题意;又当2x =时,y 取最小值为9-,∴B 错误,故本选项不符合题意;又令245y x x t =--=,2450x x t \---=,其164(5)0t D =++>时,方程有两个不等的实数根,即9t >-时,方程有两个不等的实数根.\当9t >-时,二次函数的图象与y t =有2个交点,故C 正确,故本选项符合题意;令2450x y x --==,5x \=或=1x -.又抛物线开口向上,\当0y >时,1x <-或5x >,故D 错误,故本选项不符合题意.故选:C .16.B【分析】在变形后的图形中,连接OB .证明AOB V 是等边三角形,四边形OBCD 是菱形,利用等边三角形和菱形的性质求出变形后的OBC Ð度数,进一步可求解.【详解】解: 在图2中,连接OB .∵正五边形OABCD ,OA AB CB CD OD \====,∵=90AOC °∠,OA AB CB CD OD OB \=====,∴AOB V 是等边三角形,四边形OBCD 是菱形,∴60AOB ABO Ð=Ð=°,∴120CBO Ð=°,∵四边形OBCD 是菱形,∴120CDO CBO Ð=Ð=°.故选:B .【点睛】本题考查正多边的性质,直角三角形的性质,等边三角形判定与性质,菱的判定与性质,熟练掌握相关性质定理是解题的关键.17..>【分析】根据无理数的大小比较方法解答.【详解】解:==>\>故答案为.>【点睛】此题重点考查学生对无理数大小比较的认识,将根号外的系数转入根号内是解题的关键.18.36【分析】本题主要考查二次函数应用—动点问题,二次函数图象与性质等知识,理解动点运动中时间与PBQ V 的面积关系是解题的关键.根据题意得到2mm,4mm AP t BQ t ==,则()122mm BP t =-,有三角形的面积公式可得()()211S=12242440622BP BQ t t t t t ×=-´=-<<,利用二次函数的性质即可求得PBQ V 的面积S 的最大值.【详解】解:根据题意有:2mm,4mm AP t BQ t ==,∵12mm AB =,24mm BC =,∴()122mm BP t =-,∴()211S=122424422BP BQ t t t t ×=-´=-,∵40BQ t =>,1220BP t =->,∴06t <<,故S 关于t 的函数解析式为()224406S t t t =-<<;∵()222444336S t t t =-=--+,∵4<0-,∴当3t =时,PBQ V 的面积S 有最大值236mm .故答案为:36.19. 22 6(答案不唯一,6,7,8均可)【分析】设A 种图案成本每个x 元,B 种图案成本每个y 元,根据造型1的成本64元,造型2的成本42元,列方程组2464342x y x y +=ìí+=î,得出x 、y 的值,则由造型3的成本为()x y +元;再根据图案B 的个数不多于图案A 个数的2倍,且整体设计费用不超过500元,列不等式组()4632266442622500n n n ì+´+£++í+´+£î,求得46811n ££,然后由n 为整数,得出n 的值即可.【详解】解:设A 种图案成本每个x 元,B 种图案成本每个y 元,根据题意,得2464342x y x y +=ìí+=î,解得:1210x y =ìí=î,∴121022x y +=+=(元),即造型3的成本为22元;故答案为:22;根据题意得:()4632266442622500n n n ì+´+£++í+´+£î,解得:46811n ££,∵n 为整数,∴6n =,7,8,故答案为:6(答案不唯一,6,7,8均可).【点睛】本题考查二元一次方程组与一元一次不等式组的应用,理解题意,列出方程组与不等式组是解题的关键.20.(1)6-(2)2m【分析】此题考查了有理数的乘法运算律,有关线段中点的计算,解题的关键是熟练掌握以上知识点.(1)根据有理数的乘法运算律求解即可;(2)根据线段中点的概念求解即可.【详解】(1)626175353æöæöæöæö-´-+-´+ç÷ç÷ç÷ç÷èøèøèøèø6217533æöæö=-´-+ç÷ç÷èøèø655æö=-´ç÷èø6=-;(2)∵点E 是AC 的中点,点F 是CB 的中点,∴12EC AC =,12CF BC =∴()111122222m EF EC FC AC BC AC BC AB =+=+=+==.21.(1)a b-(2)22()4()a b ab a b +-=-(3)4或4-【分析】(1)根据图中给出的数据即可求得图乙中阴影部分正方形边长;(2)用两种不同方式求得阴影部分面积可得关于()2a b +、()2a b -、ab 的等式;(3)根据(2)中结论即可解题.【详解】(1)图中阴影部分边长为a b -,故答案为:a b -;(2)用两种不同的方法表示阴影的面积:方法一:阴影部分为边长a b =-的正方形,故面积()()()2a b a b a b =--=-;方法二:阴影部分面积a b =+为边长的正方形面积-四个以a 为长、b 为宽的4个长方形面积()24a b ab =+-;∴22()4()a b ab a b +-=-;(3)∵()22()4a b ab a b +-=-;∴()()224m n mn m n +-=-,∴()2644816m n -=-=,∴4m n -=或4-.【点睛】本题考查了完全平方公式的计算,考查了正方形面积计算,本题中求得22()4()a b ab a b +-=-是解题的关键.22.(1)100(2)见解析(3)36(4)720名【分析】(1)用B 的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D 类的人数,进而补全条形统计图;(3)用360乘A “艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C 类所占百分比即可;【详解】(1)此次被调查的学生人数为:2020%100(¸=名),故答案为:100;(2)D 类的人数为:100102040525(----=名),补全条形统计图如下:;(3)在扇形统计图中,A “艺术类”所对应的圆心角度数是:10360100%36100°´´=°,故答案为:36;(4)401800100%720100´´=(名),答:估计该校1800名学生中,大约有720名学生最喜爱C “科普类”图书.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小23.(1)13k =(2)73y x =-+(3)2k ³或13k £【分析】(1)求出点D 的坐标,代入函数解析式即可求出k 的值;(2)求出矩形对称中心的坐标,然后用待定系数法求解即可;(3)求出过点A 和点D 时k 的值即可求解.【详解】(1)∵()2,1A -,()3,2C -,∴点()3,1D ,将点()3,1D 代入直线()13y k x =-+中,1333k =-+,解得:13k =.(2)∵矩形是中心对称图形,直线l 将矩形分成面积相等的两部分.∴直线l 一定经过矩形的对称中心;∵矩形顶点()2,1A -,()3,2C -,∴其对称中心的坐标为11,22æö-ç÷èø,代入直线l :()13y k x =-+中,()111322k -=-+,解得6k =-,∴直线l 的函数表达式为73y x =-+.(3)∵直线l 过定点()0,3,∴当直线l 与线段AB 相交时,直线l 与矩形ABCD 有交点(含边界).把()2,1A -代入()13y k x =-+,得()1213k =--+,解得2k =.由(1)知当直线l 过点D 时,13k =,∴当直线l 与矩形ABCD 有交点(含边界)时,k 的取值范围是2k ³或13k £.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的图象与性质,矩形的性质,坐标与图形的性质等知识,数形结合是解答本题的关键.24.(1)3cmEP =(2)BP =(3)圆心O 运动的路径长为 AC 的长度3πcm 2【分析】本题考查圆的实际应用,涉及垂径定理、全等三角形的判定与性质、勾股定理、弧长公式等知识,熟练掌握圆的性质是解决问题的关键.(1)连接OC ,由垂径定理及勾股定理求解即可得到答案;(2)连接BP ,过B 点作AD BF ∥,与PO 的延长线相较于点F ,利用三角形全等的判定与性质,结合勾股定理求解即可得到答案;(3)根据题意可知,滚动过程中圆心O 运动的路径长为 AC 的长度,求 AC 出弧对的圆心角带入公式求解即可得到答案.【详解】(1)解:连接OC ,如图所示:Q 半圆O 与MN 相切于点P ,\OP MN ^,Q MN CD ∥,\OP CD ^,12CE CD \==,在Rt OCE V 中,由勾股定理可得3cm OE ===,633cm EP OP OE \=-=-=;(2)如图,连接BP ,过B 点作BF AD P ,与PO 的延长线相较于点F ,Q AD BF ∥,OAE OBF \Ð=Ð,在AOE △和BOF V 中,OAE OBF AO BOAOE BOF Ð=Ðìï=íïÐ=Ðî,()ASA AOE BOF \V V ≌,由(1)知3cm OE =,CE =,3cm OE OF \==,CE AE BF ===,\639PF OP OF cm =+=+=,在Rt BFP △中,由勾股定理可得BP ===;(3)如图所示:由(1)可知3cm OE =,6cm OC =,\在Rt COE △中,60COE Ð=°,Q 75BOP Ð=°,180607545AOC Ð=°-°-°=°\,由题意可得,圆心O 运动的路径长为 AC 的长度453π6πcm 1802´=.25.(1)21 3.36y x x =--+;(2)1.4m ;(3)1.6 3.4m OC ££.【分析】本题主要考查了待定系数法求二次函数,二次函数的图形及性质,二次函数与坐标轴的交点,二次函数的应用,熟练掌握待定系数法求二次函数以及二次函数的图形及性质是解题的关键.(1)根据待定系数法求解即可得解;(2)令10y =得2(0.5) 3.610x -++=,解方程即可得解;(3)利用待定系数法先求得第二次弹起的抛物线,再求出20.4y =时对应自变量的值即可求解.【详解】(1)解:乒乓球第一次弹起运行路线的抛物线顶点为()0.5,3.61-,过点()1,3.36A -,\设()210.5 3.61y a x =++.代入()1,3.36A -,()23.3610.5 3.61a =-++,解得1a =-,221(0.5) 3.61 3.36y x x x \=-++=--+,(2)解:令10y =,则2(0.5) 3.610x -++=解得1 1.4x =,2 2.4x =-(舍)1.4m OB \=,乒乓球第一次落地点B 距斜坡底端O 的距离为1.4m .(3)解:Q 乒乓球第二次弹起运行路线的抛物线与第一次形状相同,且最大高度为1.21m ,\设()22 1.21y x h =--+.代入()1.4,0B ,()20 1.4 1.21h \=--+.解得1 2.5h =,20.3h =(舍)()22 2.5 1.21y x \=--+.当20.4y =时,2( 2.5) 1.210.4x --+=,解得123.4, 1.6x x ==,木板到斜坡底端O 的距离为OC 的长度,当1.6 3.4m OC ££时,小强确保获胜.26.(1)CE =;(2)CE =,详见解析;(3)2-或2+【分析】(1)根据正方形的性质和勾股定理得到AB =即可求解;(2)根据等腰直角三角形和正方形的性质证得BC BE AB BF==,45CBE ABF ABE Ð=Ð=°-Ð,进而可证得CBE ABF △∽△,利用相似三角形的性质可得结论;(3)先利用等腰直角三角形的性质求得4AB =,BC ==EF BF AB ===AF x =,则CE =,根据题意分两种情况,利用勾股定理求解即可.【详解】(1)∵四边形BDEF 是正方形,∴EF BF =,90F Ð=°,∴AB ===,∵AB AC =,点E 与点A 重合,∴CE =,故答案为:CE =;(2)CE =,理由为:∵在Rt ABC △中,AB AC =,90BAC Ð=°,∴BC ==,∵四边形BDEF 是正方形,∴BE =,45FBE Ð=°,∴BC BE AB BF==45CBE ABF ABE Ð=Ð=°-Ð,∴CBE ABF △∽△,∴CE BC AF AB==,∴CE =;(3)∵在Rt ABC △中,AB AC =,90BAC Ð=°,ABC V 的面积为8,∴2182AB =,则4AB =(负值舍去),∴BC ==,由(1)知,EF BF AB ===设AF x =,则CE =,∵C 、E 、F 三点共线,∴有两种情况:①如图1,在Rt CFB △中,90BFC Ð=°,CF CE EF =+=+由222CF BF BC +=得((222++=,解得2x =-(负值舍去);②如图②,在Rt CFB △中,90BFC Ð=°,CF CE EF =-=-由222CF BF BC +=得((222-+=,解得2x =+(负值舍去);综上,满足条件的线段AF值为2或2.【点睛】本题考查正方形的性质、等腰直角三角形的性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握相似三角形的性质,以及分类讨论和方程的思想的运用是解答的关键.。
2020年中考数学模拟试卷一、选择题1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B..C..D..2.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106 3.如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④4.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 5.下列图形中,是中心对称图形的是()A.B.C.D.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.17.计算的结果为()A.B.C.D.8.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)9.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 10.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°11.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.30°B.40°C.35°D.45°12.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二.填空题(本大题共6小题,每小题3分,共18分)13.计算:3x2•5x3的结果为.14.已知点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,则a+b=.15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为16.若关于x、y的方程组的解是,则mn的值为.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0.其中正确结论的序号是.三.解答题(本大题共5小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C处测得教学横顶部D 处的仰角为18°,教学楼底部B处的俯角为20°,教学楼的高BD=21m,求实验楼与教学楼之间的距离AB(结果保留整数).(参考数据:tan18°≈0.32,tan20°≈0.36)21.如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.22.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为50元的护眼台灯以80元售出,平均每月能售出120盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式:(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?23.如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.(Ⅰ)求该抛物线的解析式和顶点坐标;(Ⅱ)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?(Ⅲ)在(Ⅱ)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程).四.选做题(本题不计入总成绩)24.如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.(1)直接写出点B1的坐标;(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.参考答案一、选择题1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B..C..D..【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:该立体图形主视图的第1列有1个正方形、第2列有1个正方形、第3列有2个正方形,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将163000用科学记数法表示为:1.63×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④【分析】利用反比例函数的图象及正比例函数的图象分别判断后即可确定正确的选项.解:当k>0时,反比例函数的图象位于一、三象限,正比例函数的图象位于一三象限,②正确;当k<0时,反比例函数的图象位于二、四象限,正比例函数的图象位于二四象限,④正确;故选:C.【点评】本题考查了反比例函数及正比例函数的图象,属于函数的基础知识,难度不较大.4.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念即可求解.解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点评】本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.1【分析】直接利用特殊角的三角函数值分别代入求出答案.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.7.计算的结果为()A.B.C.D.【分析】根据分式的运算法则即可求出答案.【解答】原式==,故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型8.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.解:抛物线y=﹣(x+2)2﹣3的顶点坐标是(﹣2,﹣3),向右平移3个单位后,所得抛物线的顶点坐标是(﹣2+3,﹣3),即(1,﹣3).故选:B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.10.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF 为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.【点评】本题考查旋转的性质和正方形的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.30°B.40°C.35°D.45°【分析】先撸垂径定理的推论得到CD⊥EF,再根据垂径定理得到=,然后利用圆周角定理确定∠EOD的度数.解:∵直径CD经过弦EF的中点G,∴CD⊥EF,∴=,∴∠EOD=2∠DCF=2×20°=40°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.12.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∴m=2.∴M(2,﹣8).故选:C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二.填空题(本大题共6小题,每小题3分,共18分)13.计算:3x2•5x3的结果为15x5.【分析】直接利用单项式乘以单项式运算法则求出即可.解:3x2•5x3=15x5.故答案是:15x5.【点评】此题主要考查了整式的乘法运算,熟练掌握相关运算法则是解题关键.14.已知点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,则a+b=7.【分析】直接利用关于原点对称点的性质得出a,b的值,即可得出答案.解:∵点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,∴a=5,3b=6,解得:b=2,故a+b=7.故答案为:7.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为m【分析】根据余弦的定义计算,得到答案.解:在Rt△ABC中,cos A=,∴AB==,故答案为:m.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度坡角的概念、锐角三角函数的定义是解题的关键.16.若关于x、y的方程组的解是,则mn的值为﹣2.【分析】将代入方程组即可求出m与n的值.解:将代入,∴,∴,∴mn=﹣2,故答案为:﹣2.【点评】本题考查二元一次方程组,解题的关键是正确理解二元一次方程组的解的定义,本题属于基础题型.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0.其中正确结论的序号是①②③.【分析】由抛物线对称轴的位置确定ab的符号,由抛物线与y轴的交点在x轴上方得c >0,则可对A进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),则可对B选项进行判断;由对称轴公式可结C进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解:①∵抛物线与y轴的交点在x轴上方,∴c>0,∵对称轴为直线x=1,∴ab<0,∴abc<0,所以此选项正确;②∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;所以此选项正确;③∵对称轴为直线x=1,∴﹣=1,b=﹣2a,∴2a+b=0,所以此选项正确;④∵当x=2时,y>0,∴4a+2b+c>0,所以此选项错误;其中正确结论的序号是①②③;故答案为:①②③.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c),熟练掌握二次函数的性质是关键.三.解答题(本大题共5小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤2;(Ⅱ)解不等式②,得x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.【分析】先求出不等式组中的每一个不等式的解集,然后取其交集即为不等式组的解集;最后根据在数轴上表示不等式的解集的方法将其表示在数轴上.解:(Ⅰ)解不等式①,得x≤2;(Ⅱ)解不等式②,得x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.故答案为:x≤2;x>﹣1;﹣1<x≤2.【点评】本题考查了在数轴上表示不等式的解集、解一元一次不等式组.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C处测得教学横顶部D 处的仰角为18°,教学楼底部B处的俯角为20°,教学楼的高BD=21m,求实验楼与教学楼之间的距离AB(结果保留整数).(参考数据:tan18°≈0.32,tan20°≈0.36)【分析】作CM⊥BD,在Rt△CDM中DM=CM tan∠DCM,在Rt△BCM中BM=CM tan ∠BCM,根据DM+BM=BD可得CM tan18°+CM tan20°=21,解之即可得.解:过点C作CM⊥BD于点M,在Rt△CDM中,∵tan∠DCM=,∴DM=CM tan∠DCM=CM tan18°;在Rt△BCM中,∵tan∠BCM=,∴BM=CM tan∠BCM=CM tan20°,∵DM+BM=BD,∴CM tan18°+CM tan20°=21,解得:CM=≈31(m),则AB=31m,答:AB的长约为31m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21.如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.【分析】(1)由于AC=AB,如果连接CD,那么只要证明出CD⊥AB,根据等腰三角形三线合一的特点,我们就可以得出AD=BD,由于BC是圆的直径,那么CD⊥AB,由此可证得.(2)连接OD,再证明OD⊥DE即可.【解答】证明:(1)如图1,连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)如图2,连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD为半径,∴DE是⊙O的切线.【点评】本题主要考查了切线的判定,等腰三角形的性质等知识点.要注意的是要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为50元的护眼台灯以80元售出,平均每月能售出120盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式:(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?【分析】(1)根据“总利润=单件利润×销售量”可得;(2)利用配方法求出二次函数最值即可得出答案.解:(1)设售价为x元/盏,月销售利润y元,根据题意得:y=(x﹣50)[120+10(80﹣x)]=﹣10x2+1420x﹣46000;(2)∵y=﹣10x2+1420x﹣46000=﹣10(x﹣71)2+96410,∴当销售价定为71元时,所得月利润最大,最大月利润为96410元.【点评】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.23.如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.(Ⅰ)求该抛物线的解析式和顶点坐标;(Ⅱ)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?(Ⅲ)在(Ⅱ)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程).【分析】(Ⅰ)把A、B两点坐标代入抛物线y=﹣x2+bx+c得关于b、c方程组,则解方程组即可得到抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标;(Ⅱ)先利用待定系数法求出直线AB的解析式为y=﹣x+2,设N(t,﹣t2+t+2)(0<t<4),则N(t,﹣t+2),则MN=﹣t2+t+2﹣(﹣t+2),然后利用二次函数的性质解决问题;(Ⅲ)由(Ⅱ)得N(2,5),M(2,1),如图,利用平行四边形的性质进行讨论:当MN为平行四边形的边时,利用MN∥AD,MN=AD=4和确定定义D点坐标,当MN为平行四边形的对角线时,利用AN∥MN,AN=MD和点平移的坐标规律写出对应D点坐标.解:(Ⅰ)把A(0,2)、B(4,0)代入抛物线y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+2;∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线的顶点坐标为(,);(Ⅱ)设直线AB的解析式为y=mx+n,把A(0,2)、B(4,0)代入得,解得,∴直线AB的解析式为y=﹣x+2,设N(t,﹣t2+t+2)(0<t<4),则N(t,﹣t+2),∴MN=﹣t2+t+2﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,MN有最大值,最大值为4;(Ⅲ)由(Ⅱ)得N(2,5),M(2,1),如图,当MN为平行四边形的边时,MN∥AD,MN=AD=4,则D1(0,6),D2(0,﹣2),当MN为平行四边形的对角线时,AN∥MN,AN=MD,由于点A向右平移2个单位,再向上平移3个单位得到N点,则点M向右平移2个单位,再向上平移3个单位得到D 点,则D3的坐标为(4,4),综上所述,D点坐标为(0,6)或(0,﹣2)或(4,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求函数解析式;会利用点平移的坐标规律求平行四边形第四个顶点的坐标;理解坐标与图形性质;会运用分类讨论的思想解决思想问题.四.选做题(本题不计入总成绩)24.如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.(1)直接写出点B1的坐标;(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.【分析】(1)过点B1作B1E⊥y轴于点E,根据△AOB绕点O逆时针旋转30°得到△A1OB1,即可求出点B1坐标;(2)根据题意可得OA1=OC=2,由旋转可得∠AOA1=30°,进而得∠A1OC=120°,所以可得∠A1CO=30°.从而可求出OD的长,即可得点D的坐标.解:(1)如图,过点B1作B1E⊥y轴于点E,∵△AOB绕点O逆时针旋转30°得到△A1OB1,∴∠BOB1=30°,∴∠B1OE=60°,∵B(﹣3,0),∴OB=OB1=3,∴OE=,B1E=,∴点B1的坐标为:(﹣,﹣);(2)∵点C(2,0),∴OC=2,∵A(0,2),∴OA=OA1=2,∴OA1=OC=2,∵∠AOA1=30°,∠DOC=90°,∴∠A1OC=120°,∴∠A1CO=30°.∴OD=OC•tan30°=2×=.∴点D的坐标为:(0,).【点评】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.。
河北省石家庄市九年级中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·交城期中) 一个正数的平方根是2a-3与5-a,则这个正数的值是()A . 64B . 36C . 81D . 492. (2分)(2017·柘城模拟) 下列运算正确的是()A . 3a+2b=5abB . 3a•2b=6abC . (a3)2=a5D . (ab2)3=ab63. (2分)(2018·平顶山模拟) 不等式组的解集在数轴上表示为()A .B .C .D .4. (2分)如右图所示,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,DE∥AB交BC于点E。
若AD=3,BC=10,则CD的长是()A . 7B . 10C . 13D . 145. (2分) (2019七上·榆次期中) 如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A .B .C .D .6. (2分)(2019·拉萨模拟) 某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为:6,10,5,3,4,8,4,这组数据的中位数和极差分别是()A . 4,7B . 7,5C . 5,7D . 3,77. (2分)如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A .B .C .D .8. (2分)等腰三角形底边与底边上的高的比是2:,则顶角为()A . 60°B . 90°C . 120°D . 150°9. (2分)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A . 8米B . 10米C . 12米D . 14米10. (2分)已知如图,DE∥BC,,则 =()A .B .C . 2D . 3二、填空题 (共7题;共11分)11. (1分) (2019七上·长春月考) -4的倒数是________.12. (1分)(2017·抚州模拟) 如果分式有意义,那么x的取值范围是________.13. (1分)如图,P是等边三角形ABC中的一个点,PA=2,PB=2, PC=4,则三角形ABC的边长为________14. (1分) (2019九下·镇原期中) 若α、β是一元二次方程x2+2x﹣3=0的两个不相等的根,则α2﹣2β的值是________.15. (1分)(2017·巴彦淖尔模拟) 如图,⊙O的半径为2,弦AB= ,点C在弦AB上,AC= AB,则OC的长为________.16. (5分) (2019·合肥模拟) 如图,每个图形都由同样大小的小正方形按照一定的规律组成,每个小正方形的面积是1,图①的面积6,图②的面积是12,图③的面积是20,以此类推.(1)观察以上图形与等式的关系,横线上应填________;(2)图ⓝ的面积为________(用含n的代数式表示).17. (1分)(2017·含山模拟) 如图,边长为1的正方形ABCD中,P为对角线AC上的任意一点,分别连接PB、PD,PE⊥PB,交CD与E.(1)求证:PE=PD;(2)当E为CD的中点时,求AP的长;(3)设AP=x(0<x<),四边形BPEC的面积为y,求证:y= (﹣x)2.三、解答题 (共8题;共82分)18. (10分) (2019七下·南通月考) 解下列方程(组)(1)(2)(3)(4) 9(3x+2)2﹣64=019. (5分) (2019八上·扬州期末) 学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD中,BC=8,AB=4,点E为AD的中点,BD和CE相交于点P.求△BPC 的面积. 小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:请你按照小明的思路解决这道思考题.20. (15分) (2018九上·台州期中) 已知矩形ABCD , AB=6,AD=8,将矩形ABCD绕点A顺时针旋转a(0°<a<360°),得到矩形AEFG.(1)如图1,当点E在BD上时.求证:FD=CD;(2)当a为何值时,GC=GB?画出图形,并说明理由;(3)将矩形ABCD绕点A顺时针旋转90°的过程中,求CD扫过的面积.21. (15分) (2017·东莞模拟) 商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.22. (10分)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N的俯角β=45°.已知MN所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽3米,背水坡FH的坡度为i=1:1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)23. (15分)(2019·昌图模拟) 如图,二次函数y=ax2+bx+ 的图象经过A(﹣1,0),B(3,0),与y 轴相交于点C.点P为第一象限的抛物线上的一个动点,过点P分别做BC和x轴的垂线,交BC于点E和F,交x轴于点M和N.(1)求这个二次函数的解析式;(2)求线段PE最大值,并求出线段PE最大时点P的坐标;(3)若S△PMN=3S△PEF时,求出点P的坐标.24. (6分)(2018·青岛) 已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).25. (6分)(2018·宜宾模拟) 如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、17-1、17-2、17-3、三、解答题 (共8题;共82分) 18-1、18-2、18-3、18-4、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、第21 页共21 页。
2022年河北省石家庄市中考数学模拟真题 (B )卷 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下四个选项表示某天四个城市的平均气温,其中平均气温最高的是( )A .3-℃B .15-℃C .10-℃D .1-℃ 2、若分式23x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x = C .3x < D .3x > 3、下列计算:① 0﹣(﹣5)=0+(﹣5)=﹣5; ② 5﹣3×4=5﹣12=﹣7;③ 4÷3×(﹣13)=4÷(﹣1)=﹣4; ④ ﹣12﹣2×(﹣1)2=1+2=3.其中错误的有( ) A .1个 B .2个 C .3个 D .4个 4、下列各式:22311,,,5,,7218a b x x y a x π++-中,分式有( ) A .1个 B .2个 C .3个 D .4个 5、有下列四种说法: ①半径确定了,圆就确定了;②直径是弦; ③弦是直径;④半圆是弧,但弧不一定是半圆. ·线○封○密○外其中,错误的说法有( )A .1种B .2种C .3种D .4种6(b ﹣5)2=0,那么这个等腰三角形的周长为( )A .13B .14C .13或14D .97、多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-8、如图所示,AB ,CD 相交于点M ,ME 平分BMC ∠,且104AME ∠=︒,则AMC ∠的度数为( )A .38︒B .30︒C .28︒D .24︒ 9、在2201922(8),(1),3,|1|,|0|,5--------中,负数共有( )个. A .4 B .3 C .2 D .110、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A .60006000405x x =+- B .60006000405x x =-- C .60006000405x x =++ D .60006000405x x =-+ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1cm ,则这个直角三角形的斜边长为________cm ,面积为________ 2cm .2、(1)定义“*”是一种运算符号,规定a b=2a b *-+2015,则()1*-2=________. (2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要___________________ 元.3、已知点O 在直线AB 上,且线段OA =4 cm ,线段OB =6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF =________cm.4、若不等式组220x a b x ->⎧⎨->⎩的解集是-1<x <1,则(a +b )2019=________.5、311,46y xy x xyz -,的最简公分母是_______________. 三、解答题(5小题,每小题10分,共计50分) 1、已知抛物线y =﹣12x 2+x . (1)直接写出该抛物线的对称轴,以及抛物线与y 轴的交点坐标;(2)已知该抛物线经过A (3n +4,y 1),B (2n ﹣1,y 2)两点.①若n <﹣5,判断y 1与y 2的大小关系并说明理由;②若A ,B 两点在抛物线的对称轴两侧,且y 1>y 2,直接写出n 的取值范围. 2、已知抛物线2y ax bx c =++的顶点为()3,4,且过点()0,13. (1)求抛物线的解析式; (2)将抛物线先向左平移2个单位长度,再向下平移()0m m >个单位长度后得到新抛物线. ·线○封○密·○外①若新抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),且3OB OA =,求m 的值;②若()11,P x y ,()25,Q y 是新抛物线上的两点,当11n x n -≤≤时,均有12y y ≤,请直接写出n 的取值范围.3、如图,在数轴上记原点为点O ,已知点A 表示数a ,点B 表示数b ,且a ,b 满足()2560a b ++-=,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A 与点B 之间的距离记作AB .(1)=a ______,b =______;(2)若动点P ,Q 分别从A ,B 同时出发向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,当点P 和点Q 重合时,P ,Q 两点停止运动.当点P 到达原点O 时,动点R 从原点O 出发,以每秒3个单位长度的速度也向右运动,当点R 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后再立即返,以同样的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点R 也停止运动,求在此过程中点R 行驶的总路程,以及点R 停留的最后位置在数轴上所对应的有理数;(3)动点M 从A 出发,以每秒1个单位的速度沿数轴在A ,B 之间运动,同时动点N 从B 出发,以每秒2个单位的速度沿数轴在A ,B 之间往返运动,当点M 运动到B 时,M 和N 两点停止运动.设运动时间为t 秒,是否存在t 值,使得OM ON =?若存在,请直接写出t 值;若不存在,请说明理由.4、如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系; (3)如图3若∠AOC =60°,将三角尺从图1的位置开始绕点O 以每秒5°的速度沿顺时针方向旅转.当ON 与OC 重合时,射线OC 开始绕点O 以每秒20°的速度沿顺时针方向旋转,三角尺按原来的速度和方向继续旋转,当三角板运动到OM 边与OA 第一次重合时停止运动.当射线OC 运动到与OA 第一次重合时停止运动.设三角形运动的时间为t .那么在旋转的过程中,是否存在某个时刻,使得ON ,OM 两条边所在的射线及射线OC ,三条射线中的某一条射线是另两条射线的角平分线?若存在,直接写出所有满足条件的t 的值,若不存在,请说明理由. 5、在平面直角坐标系中,抛物线222y x mx m =-+(m 为常数)的顶点为M ,抛物线与直线1x m =+交于点A ,与直线3x =-交于点B ,将抛物线在A 、B 之间的部分(包含A 、B 两点且A 、B 不重合)记作图象G . (1)当1m =-时,求图象G 与x 轴交点坐标. (2)当AB ∥x 轴时,求图象G 对应的函数值y 随x 的增大而增大时x 的取值范围. (3)当图象G 的最高点与最低点纵坐标的差等于1时,求m 的取值范围. (4)连接AB ,以AB 为对角线构造矩形AEBF ,并且矩形的各边均与坐标轴垂直,当点M 与图象G 的最高点所连线段将矩形AEBF 的面积分为1:2两部分时,直接写出m 值.-参考答案- 一、单选题1、D 【分析】 根据负数比较大小的概念逐一比较即可. 【详解】 ·线○封○密○外解析:131015->->->-℃℃℃℃.故选:D【点睛】本题主要考查了正负数的意义,熟悉掌握负数的大小比较是解题的关键.2、A【解析】试题解析:根据题意得:3-x≠0,解得:x≠3.故选A.考点:分式有意义的条件.3、C【分析】根据有理数的减法法则可判断①;先算乘法、再算减法,可判断②;根据有理数的乘除运算法则可判断③;根据有理数的混合运算法则可判断④,进而可得答案.【详解】解:()05055--=+=,所以①运算错误;5345127-⨯=-=-,所以②运算正确; 4÷3×(﹣13)=4×13×(﹣13)=﹣49,所以③运算错误;﹣12﹣2×(﹣1)2=-1-2×1=-3,所以④运算错误.综上,运算错误的共有3个,故选:C.【点睛】本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.4、B【分析】根据分式的定义判断即可.【详解】 解:3a ,11x 是分式,共2个, 故选B . 【点睛】 本题考查分式,解题的关键是正确理解分式的定义,本题属于基础题型. 5、B 【分析】 根据弦的定义、弧的定义、以及确定圆的条件即可解决. 【详解】 解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误; 直径是弦,直径是圆内最长的弦,是真命题,故此说法正确; 弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误; ④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确. 其中错误说法的是①③两个. 故选B . 【点睛】 本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆. 6、C·线○封○密·○外【分析】首先依据非负数的性质求得a ,b 的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【详解】解:根据题意得,a ﹣4=0,b ﹣5=0,解得a =4,b =5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,所以,三角形的周长为13或14.故选C .【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.7、B【分析】合并同类项后使得二次项系数为零即可;【详解】解析:()()23232835+3257=3(28)812x x x mx x x m x x -++-+++-+,当这个多项式不含二次项时,有280m +=,解得4m =-.故选B .【点睛】本题主要考查了合并同类项的应用,准确计算是解题的关键.8、C【分析】先求出76BME ∠=,再根据角平分线的性质得到76EMC BME ∠=∠=,由此即可求解.【详解】 解:∵104AME ∠=,180AME BME ∠+∠=, ∴18010476BME ∠=-=, ∵ME 平分BMC ∠, ∴76EMC BME ∠=∠=, ∴AMC AME EMC ∠=∠-∠1047628=-= 故选C . 【点睛】 本题主要考查了角平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 9、A 【分析】首先将各数化简,然后根据负数的定义进行判断.【详解】解:∵-(-8)=8,2019)1(1=--,293=--,-|-1|=-1,-|0|=0,224=-55-, ∴负数共有4个. 故选A . 【点睛】·线○封○密○外此题考查的知识点是正数和负数,关键是判断一个数是正数还是负数,要把它化简成最后形式再判断.负数是指小于0的数,注意0既不是正数,也不是负数.10、C【分析】首先设甲种陀螺单价为x 元,则乙种陀螺单价为(5)x +元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程60006000405x x =++. 【详解】首先设甲种陀螺单价为x 元,则乙种陀螺单价为(5)x +元, 根据题意可得:60006000405x x =++, 故选:C .【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程.二、填空题1、【详解】试题解析:由勾股定理得,直角三角形的斜边长=;直角三角形的面积=122.故答案为2、2019; 800.【分析】(1)利用已知的新定义计算即可得到结果;(2)根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求. 【详解】 解:(1)∵a b=2a b *-+2015 ∴()1*-2=2-(-2)+2015=2019; (2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米, ∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米, ∴买地毯至少需要20×40=800元. 故答案为:(1)2019;(2)800. 【点睛】 (1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键. (2)本题考查平移的性质,,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算. 3、1或5 【分析】 根据题意,画出图形,此题分两种情况; ·线○封○密○外①点O 在点A 和点B 之间(如图①),则1122EF OA OB =+;②点O 在点A 和点B 外(如图②),则1122EF OA OB =-. 【详解】如图,(1)点O 在点A 和点B 之间,如图①,则11522EF OA OB cm =+=.(2)点O 在点A 和点B 外,如图②, 则11122EF OA OB cm =-=.∴线段EF 的长度为1cm 或5cm.故答案为1cm 或5cm.【点睛】此题考查两点间的距离,解题关键在于利用中点性质转化线段之间的倍分关系.4、-1【解析】【分析】解出不等式组的解集,与已知解集﹣1<x <1比较,可以求出a 、b 的值,然后代入即可得到最终答案.【详解】解不等式x ﹣a >2,得:x >a +2,解不等式b ﹣2x >0,得:x 2b <.∵不等式的解集是﹣1<x <1,∴a +2=﹣1,2b=1,解得:a =﹣3,b =2,则(a +b )2019=(﹣3+2)2019=﹣1.故答案为:﹣1.【点睛】本题考查了解一元一次不等式组,已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数. 5、312x yz 【分析】 确定最简公分母的方法是: (1)取各分母系数的最小公倍数; (2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 解:311,46y xy x xyz ,的分母分别是xy 、4x 3、6xyz ,故最简公分母是312x yz . 故答案为312x yz . 【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 三、解答题 1、 (1)直线x =1,(0,0) ·线○封○密○外(2)①y1<y2,理由见解析;②﹣1<n<﹣1 5【分析】(1)由对称轴公式即可求得抛物线的对称轴,令x=0,求得函数值,即可求得抛物线与y轴的交点坐标;(2)①由n<﹣5,可得点A,点B在对称轴直线x=1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.(1)∵y=﹣12x2+x,∴对称轴为直线x=﹣112()2⨯-=1,令x=0,则y=0,∴抛物线与y轴的交点坐标为(0,0);(2)x A﹣x B=(3n+4)﹣(2n﹣1)=n+5,x A﹣1=(3n+4)﹣1=3n+3=3(n+1),x B﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).①当n<﹣5时,x A﹣1<0,x B﹣1<0,x A﹣x B<0.∴A,B两点都在抛物线的对称轴x=1的左侧,且x A<x B,∵抛物线y=﹣12x2+x开口向下,∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.∴y1<y2;②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得3412111(34)(21)1n n n n +<⎧⎪->⎨⎪-+<--⎩, ∴不等式组无解, 若点B 在对称轴直线x =1的左侧,点A 在对称轴直线x =1的右侧时, 由题意可得:3412111(21)341n n n n +>⎧⎪-<⎨⎪-->+-⎩, ∴﹣1<n <﹣15, 综上所述:﹣1<n <﹣15. 【点睛】 本题考查了抛物线与y 轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键. 2、 (1)2613y x x =-+ (2)①8m =②25n -≤≤ 【分析】 (1)二次函数的顶点式为224()24b ac b y a x a a -=++,将点坐标代入求解,,a b c 的值,回代求出解析式的表达式; (2)①平移后的解析式为()()2232414y x m x m =-++-=-+-,可知对称轴为直线1x =,设B 点坐标到对称轴距离为t ,有A 点坐标到对称轴距离为t ,1OA t =-,1OB t =+,可得()131t t +=⨯-,解得2t =,可知B 点坐标为()3,0,将坐标代入解析式解得m 的值即可;②由题意知该抛物线图像开口向·线○封○密○外上,对称轴为直线1x =,Q 点关于对称轴对称的点的横坐标为'x ,知'512x +=,解得'3x =-,由11n x n -≤≤时,均有12y y ≤可得315n n -≤-⎧⎨≤⎩计算求解即可 (1)解:∵2y ax bx c =++的顶点式为224()24b ac b y a x a a -=++ ∴由题意得23244413b a ac b a c ⎧-=⎪⎪-⎪=⎨⎪=⎪⎪⎩解得0a =(舍去),1a =,6b =-,13c =∴抛物线的解析式为2613y x x =-+.(2)解:①()234y x =-+平移后的解析式为()()2232414y x m x m =-++-=-+-∴对称轴为直线1x =∴设B 点坐标到对称轴距离为t ,A 点坐标到对称轴距离为t∴1OA t =-,1OB t =+∵3OB OA =∴()131t t +=⨯-解得2t =∴B 点坐标为()3,0 将()3,0代入解析式解得8m =∴m 的值为8.②解:由题意知该抛物线图像开口向上,对称轴为直线1x =,Q 点关于对称轴对称的点的横坐标为'x , ∴'512x += 解得'3x =- ∵11n x n -≤≤时,均有12y y ≤ ∴315n n -≤-⎧⎨≤⎩ 解得25n -≤≤ ∴n 的取值范围为25n -≤≤. 【点睛】 本题考查了二次函数的解析式、图象的平移与性质、与x 轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握. 3、 (1)5,6- (2)点R 行驶的总路程为25.5;R 停留的最后位置在数轴上所对应的有理数为17 (3)13t =或113或7或11 【分析】(1)根据非负数的意义分析即可;(2)根据题意,,,P Q R 三点重合,则只需计算P 点的位置以及运动时间即可;(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题.(1) ·线○封○密·○外()2560a b ++-=5,6a b ∴=-= 故答案为:5,6-(2)当点P 到达原点O 时,动点R 从原点O 出发,则P 到达O 点需要:52 2.5÷=秒则此时Q 点的位置为2.568.5+=设t 秒后停止运动,则28.5t t =+解得8.5t =此时P 点的位置在28.517⨯=,即R 点也在P 点位置,其对应的有理数为:17R 点的运动时间为8.5,速度为3个单位长度每秒,则总路程为8.5325.5⨯=(3)存在,t 的值为:111,7,1133, 理由如下:()6511--=,111÷11=∴11秒后,M N 点停止运动①当,O M 分别位于O 的两侧时,如图,此时,OM ON =M 表示的有理数为5t -+,N 表示的有理数为62t -5620t t ∴-++-= 解得13t = ②当,M N 重合时,即第一次相遇时,如图,则562t t -+=- 解得113t = ③当N 点从A 点返回时,则点N 表示的有理数为()5211216t t -+-=-若此时点M 未经过点O ,则5t < 则2165t t -=-+ 解得11t =,则此种情况不存在 则此时点M 已经过点O ,5t >,如图,则()21650t t -+-+= 解得7t = ④当,M N 在O 点右侧重合时,如图, ·线○封○密·○外则2165t t -=-+解得11t =此时点,M N 都已经到达点B ,此时即,,M N B 三点重合,,M N 停止运动故t 的值为:111,7,1133, 【点睛】本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键.4、(1)①t =3;②见解析;(2)β=α+60°;(3)t =15或t =24或t =54【分析】(1)①求出∠BOC ,利用角平分线的定义求出∠BOM ,进而求出∠AON ,然后列方程求解; ②求出∠CON =15°即可求解;(2)用含t 的代数式表示出α和β,消去t 即可得出结论;(3)分三种情况列方程求解即可.【详解】解:(1)①∵∠AOC =30°,∴∠COM =60°,∠BOC =150°,∵OM 恰好平分∠BOC ,∴∠BOM =12∠BOC =75°,∴∠AON =180°-90°-75°=15°,∴5t =15,∴t =3;②∵∠AOC =30°,∠AON =15°,∴∠CON =15°,∴此时ON 平分∠AOC ;(2)由旋转的性质得,∠AON =α=5t ①,∠COM =β=60°+5t ②, 把①代入②,得 β=α+60°; (3)当ON 与OC 重合时,60÷5=12秒, 当OC 与OA 重合时,(360-60)÷20+12=27秒, 当OC 平分∠MON ,且OC 未与OA 重合时,则∠CON =45°, 由题意得,60+20(t -12)-5t =45,解得t =15; 当OM 平分∠CON ,且OC 未转到OA 时,则∠CON =180°,·线○封○密○外由题意得,60+20(t -12)-5t =180,解得t =24;当OM 平分∠CON ,且OC 转到OA 时,则∠AOM =90°,由题意得,∴360-90=5t ,∴t =54,综上可知,当t =15或t =24或t =54时, ON ,OM 两条边所在的射线及射线OC ,三条射线中的某一条射线是另两条射线的角平分线.【点睛】本题考查了角的和差,角平分线的定义,以及一元一次方程的定义,正确识图是解答本题的关键. 5、(1)(1-0)(2)21x -≤≤-(3)32m -≤≤-(4)-3.5或-5或0或83-. 【分析】(1)求出抛物线解析式和点A 、B 的坐标,确定图象G 的范围,求出与x 轴交点坐标即可;(2)1x m =+和3x =-代入222y x mx m =-+,根据纵坐标相等求出m 的值,再根据二次函数的性质写出取值范围即可; (3)分别求出抛物线顶点坐标和点A 、B 的坐标,根据图象G 的最高点与最低点纵坐标的差等于1,列出方程和不等式,求解即可; (4)求出A 、B 两点坐标,再求出直线AM 、BM 的解析式,根据将矩形AEBF 的面积分为1:2两部分,列出方程求解即可. (1) 解:当1m =-时,抛物线解析式为222y x x =+-,直线1x m =+为直线0x =,即y 轴;此时点A 的坐标为(0,-2);当3x =-时,2(3)2(3)21y =-+⨯--=, 点B 的坐标为(-3,1); 当y =0时,2022x x =+-,解得,11=-x21=-x∵10->,∴11=-x图象G 与x轴交点坐标为(1-0) (2) 解:当AB ∥轴时,把1x m =+和3x =-代入222y x mx m =-+得, 2962(1)2(1)2m m m m m m ++=+-++, 解得14m =-,22m =-, 当14m =-时,点A 、B 重合,舍去; ·线○封○密○外当22m =-时,抛物线解析式为244y x x =+-,对称轴为直线4222b x a =-=-=-,点A 的坐标为(-1,-7),点B 的坐标为(-3,-7);因为10a =>, 所以,图象G 对应的函数值y 随x 的增大而增大时x 的取值范围为:21x -≤≤-;(3)解:抛物线222y x mx m =-+化成顶点式为22()2y x m m m =--+,顶点坐标为: 22)(m m m -+,, 当1x m =+时,22(1)2(1)221y m m m m m m =+-++=-++,点A 的坐标为221)(1m m m +-++,,当3x =-时,96298y m m m =++=+,点B 的坐标为98)(3m +-,, 点A 关于对称轴x m =的对称点的坐标为221)(1m m m --++,,当13m -≥-时,29821m m m +≥-++,此时图象G 的最低点为顶点,则298(2)1m m m +--+=,解得,14m =-(舍去),22m =-, 当13m -<-,3m ≥-时,29821m m m +≤-++,此时图象G 的最低点为顶点,则2221(2)1m m m m -++--+=,等式恒成立,则32m -≤<-,当3m <-时,此时图象G 的最低点为B ,图象G 的最高点为A ,则221(98)1m m m -++-+=,解得,3m =-(舍去), 综上,m 的取值范围为32m -≤≤-.(4)解:由前问可知,点A 的坐标为221)(1m m m +-++,,点B 的坐标为98)(3m +-,,点M 的坐标为22)(m m m -+,,设直线AM 、BM 的解析式分别为y kx b =+,y cx n =+,把点的坐标代入得,2221(1)2m m m k bm m mk b ⎧-++=++⎨-+=+⎩,29832m c n m m mc n +=-+⎧⎨-+=+⎩, 解得,21k b m m =⎧⎨=-+⎩,(3)5c m n m =-+⎧⎨=⎩,所以,直线AM 、BM 的解析式分别为2y x m m =-+,(3)5y m x m =-++, 如图所示,BM 交AE 于C ,把221y m m =-++代入(3)5y m x m =-++得, 2321()5m x m m m =-+++-+,解得,2313m m x m +-=+, 223168333E m C m m m m m +-+=++=++,134EA m m +=+=+, 因为,点M 与图象G 的最高点所连线段将矩形AEBF 的面积分为1:2两部分, 所以,2682(4)33m m m m ++=++, 解得,10m =,24m =-(此时,A 、B 两点重合,舍去);如图所示,BM 交AF 于L ,同理可求L 点纵坐标为:(3)(1)5m m m -+++, 398()(1)5m F m L m m ++=-++,29821F m A m m ++=--, ·线○封○密○外可列方程为2)92(3)(1)5(982138m m m m m m m +++-=+--++, 解得,35m =-,44m =-(此时,A 、B 两点重合,舍去);如图所示,AM 交BF 于P ,同理可求P 点横坐标为:279m m ++, 268PF m m =---,4FB m =+, 可列方程为22(4)368m m m =-+--, 解得,583m =-,64m =-(此时,A 、B 两点重合,舍去);如图所示,AM 交EB 于S ,同理可求S 点纵坐标为:23m m --+, 22213ES m m m m =-++++-,22198m m m EB ++--=-, 可列方程为2)92(3)(1)5(982138m m m m m m m +++-=+--++, 解得,7 3.5m =-,44m =-(此时,A 、B 两点重合,舍去);综上,m 值为-3.5或-5或0或83 . 【点睛】 本题考查了二次函数的综合,解题关键是熟练运用二次函数知识,树立数形结合思想和分类讨论思想,通过点的坐标,建立方程求解 ·线·○封○密○外。
2020年中考数学模拟试卷(3月份)一、选择题1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零3.用配方法解方程x2=4x+1,配方后得到的方程是()A.(x﹣2)2=5B.(x﹣2)2=4C.(x﹣2)2=3D.(x﹣2)2=1 4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.如图,以点O为位似中心,把△ABC中放大到原来的2倍得到△A'B'C'.以下说法中错误的是()A.△ABC∽△A'B'C'B.点C,O,C'三点在同一条直线上C.AO:AA'=1:2D.AB∥A'B'6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8B.中位数是8C.平均数是8.2D.方差是1.27.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A.9(1﹣2x)=1B.9(1﹣x)2=1C.9(1+2x)=1D.9(1+x)2=1 8.已知反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2 ),则y1>y29.如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm10.如图,嘉淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,且C地恰好位于A地正东方向上,则下列说法正确的是()A.B地在C地的北偏西40°方向上B.A地在B地的南偏西30°方向上C.D.∠ACB=50°11.对于一元二次方程x2﹣3x+c=0来说,当时,方程有两个相等的实数根:若将c 的值在的基础上减小,则此时方程根的情况是()A.没有实数根B.两个相等的实数根C.两个不相等的实数根D.一个实数根12.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2C.2D.213.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD14.定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{2,4}=4.因此,max{﹣2,﹣4}=﹣2;按照这个规定,若,则x的值是()A.﹣1B.﹣1或C.D.1或15.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a =3.其中正确的是()A.①②B.③④C.②③D.①③16.如图1,图2是甲、乙两位同学设置的“数值转换机”的示意图,若输入的m=﹣2,则输出的结果分别为()A.9,23B.23,9C.9,29D.29,9二、填空题(有3个小题)17.为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,数一数带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有条.18.y=﹣x2+x+,则铅球推出的距离是.此时铅球行进高度是.19.张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.(1)在屏幕内容中添加条件∠D=30°,则AD的长为.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ABC与△DCO 全等.参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母).三、解答题(有7个小题).20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,﹣1)、B(﹣1,1)、C(0,﹣2).(1)点B关于坐标原点O对称的点的坐标为;(2)将△ABC绕着点C顺时针旋转90°,画出旋转后得到的△A1B1C;(3)在(2)中,求边CA所扫过区域的面积是多少?(结果保留π).(4)若A、B、C三点的横坐标都加3,纵坐标不变,图形△ABC的位置发生怎样的变化?21.我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)当该专卖店每件童装降价多少元时,平均每天盈利400元?(3)该专卖店要想平均每天盈利600元,可能吗?请说明理由.22.文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P(一次拿到7元本)=.(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.23.如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕转轴O自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水:当河水上涨时,阀门会因河水压迫而关闭,以防止河水倒灌入城中.若阀门的直径OB=OP=100cm,OA为检修时阀门开启的位置,且OA=OB.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB位置时,在点A处测得俯角∠CAB =67.5°,若此时点B恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留根号)24.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.25.如图,已知AB=10,以AB为直径作半圆O,半径OA绕点O顺时针旋转得到OC,点A的对应点为C,当点C与点B重合时停止.连接BC并延长到点D,使得CD=BC,过点D作DE⊥AB于点E,连接AD,AC.(1)AD=;(2)如图1,当点E与点O重合时,判断△ABD的形状,并说明理由;(3)如图2,当OE=1时,求BC的长;(4)如图3,若点P是线段AD上一点,连接PC,当PC与半圆O相切时,直接写出直线PC与AD的位置关系.26.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.若△AOC与△BMN 相似,请求出t的值.参考答案一、选择题(共16个小题,共42分,1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.解:∵A,B,C选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有D,掷一枚骰子,向上一面的数字一定大于零,是必然事件,符合题意.故选:D.3.用配方法解方程x2=4x+1,配方后得到的方程是()A.(x﹣2)2=5B.(x﹣2)2=4C.(x﹣2)2=3D.(x﹣2)2=1【分析】先把一次项移到等式的左边,然后在左右两边同时加上一次项系数﹣4的一半的平方.解:把方程x2=4x+移项,得x2﹣4x=1方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=1+4配方得(x﹣2)2=5.故选:A.4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【分析】利用结合体的形状,结合三视图可得出俯视图和左视图没有发生变化;解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.5.如图,以点O为位似中心,把△ABC中放大到原来的2倍得到△A'B'C'.以下说法中错误的是()A.△ABC∽△A'B'C'B.点C,O,C'三点在同一条直线上C.AO:AA'=1:2D.AB∥A'B'【分析】根据位似的性质对各选项进行判断.解:∵点O为位似中心,把△ABC中放大到原来的2倍得到△A'B'C',∴△ABC∽△A'B'C',OA:OA′=1:2,AB∥A′B′,CC′经过点O.故选:C.6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8B.中位数是8C.平均数是8.2D.方差是1.2【分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得到不正确的选项.解:由图可得,数据8出现3次,次数最多,所以众数为8,故A选项正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是(8+8)=8,故B选项正确;平均数为(6+7×2+8×3+9×2+10×2)=8.2,故C选项正确;方差为[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.56,故D选项错误;故选:D.7.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A.9(1﹣2x)=1B.9(1﹣x)2=1C.9(1+2x)=1D.9(1+x)2=1【分析】等量关系为:2016年贫困人口×(1﹣下降率)2=2018年贫困人口,把相关数值代入计算即可.解:设这两年全省贫困人口的年平均下降率为x,根据题意得:9(1﹣x)2=1,故选:B.8.已知反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2 ),则y1>y2【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2 ),则y1<y2,所以D选项错误.故选:C.9.如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.10.如图,嘉淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,且C地恰好位于A地正东方向上,则下列说法正确的是()A.B地在C地的北偏西40°方向上B.A地在B地的南偏西30°方向上C.D.∠ACB=50°【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.解:如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C处的北偏西50°,故A错误;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故B错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故C正确;∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故D错误.故选:C.11.对于一元二次方程x2﹣3x+c=0来说,当时,方程有两个相等的实数根:若将c 的值在的基础上减小,则此时方程根的情况是()A.没有实数根B.两个相等的实数根C.两个不相等的实数根D.一个实数根【分析】根据根的判别式即可求出答案.解:由题意可知:△=9﹣4c,当c<时,∴9﹣4c>0,∴该方程有两个不相等的实数根,故选:C.12.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2C.2D.2【分析】连接OA,OB,根据等边三角形的性质可得⊙O的半径,进而可得出结论.解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故选:B.13.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠CON=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.14.定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{2,4}=4.因此,max{﹣2,﹣4}=﹣2;按照这个规定,若,则x的值是()A.﹣1B.﹣1或C.D.1或【分析】根据新定义分x>0和x<0列出方程,再分别求解可得.解:若x>﹣x,即x>0,则x=,解得x=(负值舍去);若x<﹣x,即x<0,则﹣x=,解得x=﹣1(正值舍去);故选:B.15.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a =3.其中正确的是()A.①②B.③④C.②③D.①③【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.解:∵抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴b2﹣4ac>0,故①错误;当x=1时,y=a+b+c<0,故②错误;﹣=﹣1,得2a﹣b=0,b=2a,故③正确;当x=﹣1时,y=a﹣b+c=a﹣2a+c=﹣a+c=3,即c﹣a=3,故④正确;故选:B.16.如图1,图2是甲、乙两位同学设置的“数值转换机”的示意图,若输入的m=﹣2,则输出的结果分别为()A.9,23B.23,9C.9,29D.29,9【分析】将m的值分别代入题中的两个程序框图,求出它们的值即可.解:(﹣2)2+52=4+25=29,(﹣2+5)2=32=9.则输出的结果分别为29,9.故选:D.二、填空题(有3个小题,共11分,17小题3分;18-19小题各有2个空,每空2分,把答案写在题中横线上)17.为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,数一数带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有10000条.【分析】设该水库中鲢鱼约有x条,由于李老板先捞上150条鲢鱼并在上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,数一数带红色记号的鱼有三条,由此即可列出方程200:3=x:150,解此方程即可求出该水库中鲢鱼约有多少条.解:设该水库中鲢鱼约有x条,依题意得200:3=x:150,∴x=10000,∴估计出该水库中鲢鱼约有10000条.故答案为:10000.18.y=﹣x2+x+,则铅球推出的距离是10.此时铅球行进高度是0.【分析】铅球推出的距离就是当高度y=0时x的值,据此可得关于x的一元二次方程,解得x的值,并根据问题的实际意义作出取舍,问题即可得解.解:铅球推出的距离就是当高度y=0时x的值∴当y=0时,﹣x2+x+=0解得:x1=10,x2=﹣2(不合题意,舍去)∴铅球推出的距离是10.此时铅球行进高度是0.故答案为:10;0.19.张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.(1)在屏幕内容中添加条件∠D=30°,则AD的长为3.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ABC与△DCO 全等.参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母)∠ABC=30°,求CD的长.【分析】(1)连接OC,根据切线的性质得到∠OCD=90°,根据含30°的直角三角形的性质计算;(2)结合图形解答小明给出的题目;根据圆周角定理得到∠ACB=90°,证明△OBC 为等边三角形,利用ASA定理证明△ABC≌△DOC;结合图形、根据题意编制题目.解:(1)连接OC,∵DC是⊙O的切线,∴∠OCD=90°,又∠D=30°,∴OD=2OC=2,∴AD=OA+OD=1=2=3,故答案为:3;(2)小明:AD+AB+BD=2+1=3,小聪:∵AB是⊙O是直径,∴∠ACB=90°,∴∠ABC=60°,又OB=OC,∴△OBC为等边三角形,∴CO=CB,∠CBA=∠COD=60°,在△ABC和△DOC中,,∴△ABC≌△DOC(ASA),编制的题目是:∠ABC=30°,求CD的长,故答案为:∠ABC=30°,求CD的长.三、解答题(有7个小题,共67分,解答应写出文字说明、证明过程或演算步骤). 20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,﹣1)、B(﹣1,1)、C(0,﹣2).(1)点B关于坐标原点O对称的点的坐标为(1,﹣1);(2)将△ABC绕着点C顺时针旋转90°,画出旋转后得到的△A1B1C;(3)在(2)中,求边CA所扫过区域的面积是多少?(结果保留π).(4)若A、B、C三点的横坐标都加3,纵坐标不变,图形△ABC的位置发生怎样的变化?【分析】(1)根据两个点关于原点对称时,横坐标与纵坐标都互为相反数,可得出答案;(2)分别找到点A、B绕着点C顺时针旋转90°以后的对应点A1、B1,然后顺次连接即可得出旋转后的图形△A1B1C;(3)边CA旋转到CA′所扫过的图形为扇形,且圆心角为90度,半径CA利用勾股定理求得,然后利用扇形的面积公式:S=计算即可;(4)横坐标都加3,纵坐标不变,根据平移规律:左右平移点的纵坐标不变,上下平移时点的横坐标不变即可得出图形△ABC向右平移了3个单位长度.解:(1)∵B(﹣1,1),∴点B关于坐标原点O对称的点的坐标为(1,﹣1).故答案为(1,﹣1);(2)如图所示,△A1B1C即为所求作的图形;(3)∵CA==,∠ACA1=90°,∴S扇形CAA1==;(4)∵A、B、C三点的横坐标都加3,纵坐标不变,∴图形△ABC的位置是向右平移了3个单位.21.我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)当该专卖店每件童装降价多少元时,平均每天盈利400元?(3)该专卖店要想平均每天盈利600元,可能吗?请说明理由.【分析】(1)根据总利润=每件利润×销售数量,可得y与x的函数关系式;(2)根据(1)中的函数关系列方程,解方程即可求解;(3)根据(1)中相等关系列方程,判断方程有无实数根即可得.解:(1)根据题意得,y与x的函数关系式为y=(20+2x)(60﹣40﹣x)=﹣2x2+20x+400;(2)当y=400时,400=﹣2x2+20x+400,解得x1=10,x2=0(不合题意舍去).故当该专卖店每件童装降价10元时,平均每天盈利400元;(3)该专卖店不可能平均每天盈利600元.当y=600时,600=﹣2x2+20x+400,整理得x2﹣10x+100=0,∵△=(﹣10)2﹣4×1×100=﹣300<0,∴方程没有实数根,即该专卖店不可能平均每天盈利600元.22.文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P(一次拿到7元本)=.(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.【分析】(1)根据6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,P(一次拿到7元本)=.可求出单价为7元的笔记本的本数,进而得出众数;(2)①求出原来6本价格、后来5本价格的中位数,进行判断即可;②用列表法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率.解:(1)6×=4本,因此单价为7元有4本,这6本的价格为4元、5元、7元、7元、7元、7元、7元,因此这6个本价格的众数是7元.(2)①相同;原来6本价格为:4元、5元、7元、7元、7元、7元,价格的中位数是=7元,后来5本价格为:4元、5元、7元、7元、7元价格的中位数是7元,因此相同;②用列表法列举出所有等可能出现的情况如下:共有20种等可能的情况,其中两次都是7的有6种,∴P(两次都为7)==.23.如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕转轴O自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水:当河水上涨时,阀门会因河水压迫而关闭,以防止河水倒灌入城中.若阀门的直径OB=OP=100cm,OA为检修时阀门开启的位置,且OA=OB.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB位置时,在点A处测得俯角∠CAB =67.5°,若此时点B恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留根号)【分析】(1)根据题意即可得到结论;(2)根据余角的定义得到∠BAO=22.5°,根据等腰三角形的性质得到∠BAO=∠ABO =22.5°,由三角形的外角的性质得到∠BOP=45°,解直角三角形即可得到结论.解:(1)阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围为:0°≤∠POB ≤90°;(2)如图,∵∠CAB=67.5°,∴∠BAO=22.5°,∵OA=OB,∴∠BAO=∠ABO=22.5°,∴∠BOP=45°,∵OB=100,∴OE=OB=50,∴PE=OP﹣OE=100﹣50m,答:此时下水道内水的深度约为(100﹣50)cm.24.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先把A(﹣3,4)代入反比例函数解析式得到m的值,从而确定反比例函数的解析式为y=﹣;再利用反比例函数解析式确定B点坐标为(6,﹣2),然后运用待定系数法确定所求的一次函数的解析式为y=﹣x+2;(2)先依据一次函数求得点C的坐标,进而得到△AOB的面积;(3)过A点作AP1⊥x轴于P1,AP2⊥AC交x轴于P2,可得P1点的坐标为(﹣3,0);再证明Rt△AP2P1∽Rt△CAP1,利用相似比计算出P1P2的长度,进而得到OP2的长度,可得P2点的坐标为(﹣,0),于是得到满足条件的P点坐标.解:(1)将A(﹣3,4)代入y=,得m=﹣3×4=﹣12∴反比例函数的解析式为y=﹣;将B(6,n)代入y=﹣,得6n=﹣12,解得n=﹣2,∴B(6,﹣2),将A(﹣3,4)和B(6,﹣2)分别代入y=kx+b(k≠0),得,解得,∴所求的一次函数的解析式为y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=3,∴C(3,0),∴S△AOC=×3×4=6,S△BOC=×3×2=3,∴S△AOB=6+3=9;(3)存在.过A点作AP1⊥x轴于P1,AP2⊥AC交x轴于P2,如图,∴∠AP1C=90°,∵A点坐标为(﹣3,4),∴P1点的坐标为(﹣3,0);∵∠P2AC=90°,∴∠P2AP1+∠P1AC=90°,而∠AP2P1+∠P2AP1=90°,∴∠AP2P1=∠P1AC,∴Rt△AP2P1∽Rt△CAP1,∴=,即=,∴P1P2=,∴OP2=3+=,∴P2点的坐标为(﹣,0),∴满足条件的P点坐标为(﹣3,0)、(﹣,0).25.如图,已知AB=10,以AB为直径作半圆O,半径OA绕点O顺时针旋转得到OC,点A的对应点为C,当点C与点B重合时停止.连接BC并延长到点D,使得CD=BC,过点D作DE⊥AB于点E,连接AD,AC.(1)AD=10;(2)如图1,当点E与点O重合时,判断△ABD的形状,并说明理由;(3)如图2,当OE=1时,求BC的长;(4)如图3,若点P是线段AD上一点,连接PC,当PC与半圆O相切时,直接写出直线PC与AD的位置关系.【分析】(1)由圆周角定理得到AC⊥BD,结合已知条件CD=BC和等腰三角形“三线合一”性质推知AD=AB=10;(2)△ABD是等边三角形.理由:由等腰△ABD“三线合一”性质得到AD=BD;又由(1)的结论可以推知AD=AB=DB,即△ABD是等边三角形;(3)分类讨论:点E在线段AO和线段OB上,借助于勾股定理求得BC的长度;(4)由三角形中位线定理知OC∥AD,又由切线的性质知PC⊥OC,所以根据平行线的性质推知PC⊥AD.解:(1)∵AB是圆O的直径,∴AC⊥BC.又∵BC=CD,∴AD=AB=10.故答案是:10;(2)△ABD是等边三角形,理由如下:如图1,∵点E与点O重合,∴AE=BE,∵DE⊥AB,∴AD=BD,∵AD=AB,∴AD=AB=DB,∴△ABD是等边三角形;(3)如图2,∵AB=10,∴AO=BO=5,当点E在AO上时,则AE=AO﹣OE=4,BE=BO+OE=6,∵AD=10,DE⊥AO,∴在Rt△ADE和Rt△BDE中,由勾股定理得AD2﹣AE2=BD2﹣BE2,即102﹣42=BD2﹣62,解得BD=2,∴BC=BD=;当点E在OB上时,同理可得102﹣62=BD2﹣42,解得BD=4,∴BC=2,综上所述,BC的长为或2;(4)PC⊥AD.理由如下:如图3,连接OC.∵点C是BD的中点,点O是AB的中点,∴OC是△ABD的中位线,∴OC∥AD.又∵PC与半圆O相切,∴PC⊥OC,∴PC⊥AD.26.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.若△AOC与△BMN 相似,请求出t的值.【分析】(1)由抛物线的对称轴及AB的长度确定点A,B的坐标,再将点A,B的坐标代入y=﹣x2+bx+c即可;(2)求出直线BC的解析式,由对称性质确定F点的横坐标为2,将其代入直线BC的解析式即可求出点F的坐标;(3)t秒时,OM=2t,用含t的代数式表示点N的坐标,写出MN的长度,分△AOC ∽△BMN和△AOC∽△NMB两种情况进行讨论,利用相似三角形的性质可求出t的值.解:(1)∵点A、B关于直线x=1对称,AB=4,∴由对称性质知A(﹣1,0),B(3,0),代入y=﹣x2+bx+c中,得,,解得,,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴C点坐标为(0,3);(2)设直线BC的解析式为y=mx+n,将B(3,0),C(0,3)代入,得,,解得,,∴直线BC的解析式为y=﹣x+3,∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴EF=2,∴F点的横坐标为2,。
2019-2020石家庄市中考数学模拟试卷(含答案)一、选择题1.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x5 2.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.3.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.154B.14C.1515D.417174.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD 为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.2003米C.2203米D.100(31)米5.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差6.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.97.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .8.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A .3B .23C .32D .69.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .10.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .52 11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm12.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .96096054848x -=+ B .96096054848x +=+ C .960960548x -= D .96096054848x-=+ 二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.16.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .17.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.18.使分式的值为0,这时x=_____.19.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.解方程:x 21x 1x-=-. 22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.23.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.24.某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x (元)85 95 105 115 日销售量y (个)175 125 75 m 日销售利润w(元) 875 1875 1875 875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?25.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.3.A解析:A【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB , 故选A 4.D解析:D【解析】【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长.【详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°,∴AC =2×100=200米,∴AD∴AB =AD +BD =100(故选D .【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.5.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A .【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.6.A【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解.【详解】∵E 是AC 中点,∵EF ∥BC ,交AB 于点F ,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6, ∴菱形ABCD 的周长是4×6=24, 故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.7.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 8.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM ,再由AN 平分∠MAB ,得出∠DAM=∠MAN=∠NAB ,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM ≌△ADM ,∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∠MAN=∠NAB ,∴∠DAM=∠MAN=∠NAB ,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴AM=2623 33AD==,故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 9.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.10.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=122, 故选:C . 点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.11.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12.D解析:D【解析】 解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1 解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.14.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:33【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD2222-=-=BD AB6333【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=O A=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP 、OQ ,∵PQ 是⊙O 的切线,∴OQ ⊥PQ .根据勾股定理知PQ 2=OP 2﹣OQ 2,∴当PO ⊥AB 时,线段PQ 最短.此时,∵在Rt △AOB 中,OA=OB=,∴AB=OA=6.∴OP=AB=3. ∴. 17.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1),∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴2222,OD OA OD =+=故答案为:2 2.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k .18.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比. 三、解答题21.2x =.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ==.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒.∴2OA =.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.24.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85-a ),得a=80,w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w 取得最大值,此时w=2000,(3)设科技创新后成本为b 元,当x=90时,(-5×90+600)(90-b )≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.25.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n 为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.。