整式的加减检测导学案
- 格式:doc
- 大小:218.00 KB
- 文档页数:2
《整式的加减(1)》导学案 班级: 姓名:
课题 2.2整式的加减(1)
课型 新授课 主备 审核
数学组
学习目标 1.理解同类项概念,掌握合并同类项法则;
2. 能利用合并同类项化简多项式.
导学过程
一、复习导入
运用运算律计算: 622482⨯+⨯= ;
62(2)48(2)⨯-+⨯-= .
二、新知导学
1.类比上题中的方法完成下面多项式的化简,并说明其中的道理.
6248a a +=
=
2.类比1题的方法,化简下列式子:
(1)6248a a - 22(2)32x x + 22(3)34ab ab -
= = =
= = =
归纳:(1)同类项:所含 相同,并且 也相同的项叫做同类项. 几个 也是同类项. “两相同,两无关”
(2)合并同类项:把多项式中的 合并成一项,叫做合并同类项.
(3)法则:合并同类项时,把同类项的 相加,且字母连同它的指数 。
三、新知应用
挑战一:(小试牛刀,你能行!)
例:找出多项式 中的同类项,并进行合并.
283724x _
22x x x -+++
(2)求多项式 22113333a abc c a c +--+的值,其中 1,2,36
a b c =-==-.
挑战四:(联系实际,我来解决!)
某商店原有5袋大米,每袋大米为x 千克.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?
四、我思我进步!。
第二章整式的加减
【知识脉络】
【学习目标】
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
【要点检索】
理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行去括号与同类项的合并。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
【中考翘望】
整式的概念和简单的运算,是中考必考内容,要求学生能用代数式表示简单的数量关系,能解释一些简单的代数式的实际背景或几何意义,能根据题意求代数式的值。
这部分的题目多以选择题、填空题为主,主要考察同类项、整式的运算、找规律列代数式等,也有可能渗透到综合题中。
数学七年级上册《整式加减》导学案设计人:审核人:【学习目标】1. 在复习去括号以及合并同类项法则的基础上,进行整式的加减运算。
2、运用整式加减解决实际问题,学会整式加减的运算。
【学习重点】正确进行整式的加减【学习难点】总结出整式加减的一般步骤【学习方法】自主学习--合作交流—总结整式加减法的一般步骤自学1、自学P67页例6,完成下列各题。
(1)多项式2x-3y与多项式5x+4y的和是?(2)多项式8a-7b比多项式4a-5b多多少?知识链接:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2、新知探究:自学P68页例7,思考;(3x+2y)+(4x+3y)这个式中,3x+2y与4x+3y都带着括号,不带括号行吗?为什么?注意:数学中的整体思想3、自学P69例8,说一说每个式子的意义?学法指导A、去括号时要注意括号前面的符号,“-”“+”括号内符号不变“-”括号内符号都变。
B、合并同类项时要注意方法,系数相加两不变。
我的疑惑是研学1.组内讨论,解决自学疑惑2.群学,讨论对学后仍解决不了的问题。
组长要收集整理组员的问题,安排好讨论的顺序和时间。
能力提升:.已知多项式A=xy-yz+5yz B=7xy-yz+xy求(1)A-B (2)2A+B方法提炼:整式的加、减,其实质就是去括号,合并同类项。
示学展示任务:展示自学4、研学2展示形式:黑板展示展示方法:C组展示 B组讲解 A组点评总结检学必做题(1)3xy-4xy-(-2xy)(2)-ab-a2+a2-(-ab)2、计算:(1)(-x+2x2+5)+(4x2-3-6x)(2)(3a2-ab+7)-(-4a2+2ab+7)3、先化简下式,再求值。
5(3a2b-ab2)-(ab2+3a2b),其中a,b中考链接4、已知多项式A=3x2-5xy B=-3xy-x2 C=8x2-5xy求:2A-5B+3C5、1路公交车上原有(3m-n)人,中途下车一半人,又上车若干人,使车上共有乘客(8m-5n)人,问上车乘客是多少人?当m=10,n=8时,上车乘客是多少人?小结结合本节课的学习目标说一说本节课的收获:我学会了,本节课我还不明白,我觉得我的表现,我要向学习。
第二章 整式的加减《2.1整式--单项式》导学案 NO :25班级_______姓名___________小组_______小组评价_________ 教师评价_______一、学习目标1、会用含有字母的式子表示数量关系,理解字母表示数的意义;2、理解并掌握单项式的有关概念;3、能用单项式表示具体问题中的数量关系。
二、自主学习自学教材54-55页 1、用含字母的式子填空(1)全校学生总数是x ,其中女生占总数48%,则女生人数是 ,男生人数是 (2)每包书有12册,n 包书有 册。
(3)一辆汽车3小时行驶了S 千米,这辆汽车的平均速度是 (4)产量由m 千克增长10%,就达到 千克。
2、列含字母的式子时应该注意的问题(1)数与字母、字母与字母相乘时,常省略乘号“⨯” “⋅”.如:22a a -⨯=-,33a b ab ⨯⨯=,2255x x -⨯=-.(2)数字通常写在字母前面。
如:(7)7mn mn ⨯-=-,3(2)3(2)a b a b ⨯-=-. (3)带分数与字母相乘时要化成假分数。
如:15222ab ab ⨯=,切勿错误写成“122ab ”. (4)除法常写成分数的形式。
如S÷x=xS. 问题:填空中列出的式子有什么特点?归纳:上面列出的式子 ,它们都是 ,这样的式子叫做单项式。
单独的一个数或一个字母也是单项式。
单项式中的叫做这个单项式的系数。
一个单项式中,所有 叫做这个单项式的次数。
3、自学检测 (1)填表(2)把56页练习2做在此三、合作探究1、下列说法正确的是( ) A 、x 的系数为0 B 、223ab 是三次单项式 C 、-7是一次单项式 D 、x1是单项式 2、式子21,2x y ,0,132--b ,222y x -,t s 中单项式一共有( )个A 、 2B 、3C 、 4D 、53、下列单项式中,书写规范的一个是( )A 、1aB 、3x ⨯C 、0.5xyD 、mn 211 4、.若212n x y -是四次单项式,则n =5、一台电视机的原价为a 元,降价4%后的价格为 元四、达标检测1、写出一个系数为5-且含x ,y 的三次单项式2.、有一个三角形的底为x 厘米,高是底的一半,则此三角形的面积是 平方厘米3、单项式232y x m 与y x 22-的次数相同,则m = 4、李老师到文体商店为学校买篮球,篮球的单价为a 元,商店规定:买10个或10个以上的篮球按8折优惠,请你表示:(1)购买30个篮球应付多少钱?(2)购买x 个篮球要付多少钱?五、拓展提高有一列单项式:2x ,32x -,43x ,54x -,……,2019x ,2120x -,……(1)请你写出第100个、第2010个单项式;(2)请你写出第n 个、第n+1个单项式。
整式的加减导学案(第一课时)学习目标:1.知识目标:(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2.能力目标:(1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3.学习方法:组织学生参与学习、讨论,在合作探究活动中获取知识。
4.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
学习重点、难点:根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
学习过程:一、引入:1、 运用有理数的运算律计算:100×2+252×2=_100×(-2)+252×(-2)= _2、根据(1)中的方法完成下面的运算,并说明其中的道理:100t +252t = _3、下列三个多项式由哪些单项式组成?.每个多项式中的单项式有什么共同特点?(1)3x 2+2x 2 (2)3ab 2-4ab 2 (3)100t-252t二、讲授新课:1.同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
特别指出:几个常数项也是同类项。
2.例题:例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x 与3mx 是同类项。
( ) (2)2a b 与-5a b 是同类项。
( )(3)3x 2y 与-31yx 2是同类项。
( ) (4)5a b 2与-2a b 2c 是同类项。
( )(5)23与32是同类项。
( ) (6)3(s -t)2与-8(t -s)2是同类项。
课题:整式的加减(1)导学案 一.导入新课:2 二.学习目标:21.整式的加减实际上就是去括号、合并同类项这两个知识的综合。
2.整式的加减的一般步骤:①如果有括号,那么先算括号。
②如果有同类项,则合并同类项。
3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便 三.自主学习 反馈交流10 (一)根据课题预示学习目标 1.本节课我要熟练运用去括号法则 .2.我要会运用合并同类项及去括号法则 . (二)温故知新 1.化简下式计算:(1)(2x-3y )+(5x+4y ) (2)(8a-7b )-(4a-5b ).2.去括号(1)a + (-b+c-d) (2) a-(-b+c-d) (3) a+(b-c) (4) a-(-b+c) (5) (a+b)+(c+d)(6) –(a+b)-(-c+d) (7) (a-b)-(-c+d) (8) –(a-b)+(-c-d) (9))2(2c b a a +--四合作探究,展示交流151.一种笔记本的单价是x (元),圆珠笔的单价是y (元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?2.做大小两个长方体纸盒,尺寸如下(单位:厘米). (1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?(学生小组导学,讨论解题方法.)学法指导:思路点拨:让学生自己归纳整式加减运算法则,发展归纳、表达能力.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.)3.求12x-2(x-13y 2)+(-32x+13y 2)的值,其中x=-2,y=23. (思路点拨:先去括号,合并同类项化简后,再代入数值进行计算比较简便,去括号时,特别注意符号问题。
)长宽高小纸盒abc大纸盒1.5a2b2c五.教师点拨,指点迷津3 六.学生总结3 七.自我检测:91.如果a-b=12,那么-3(b-a )的值是( ). A .-35 B .23 C .32 D .162.一个多项式与x 2-2x+1的和是3x-2,则这个多项式为( ).A .x 2-5x+3 B .-x 2+x-1 C .-x 2+5x-3 D .x 2-5x-13 3.先化简再求值:4x 2y-[6xy-3(4xy-2)-x 2y]+1,其中x=2,y=-12;4.已知223,1xx B x x x A +=+++=, 计算:①A+B ② B+A ③ A - B ④ B - A5.一个多项式加上432352x x x---得35334--x x , 求这个多项式6.一个长方形的一边等于2a+3b ,另一边比它小b-a ,计算长方形的周长.7.某轮船顺流航行3小时,逆流航行1.5小时,已知轮船速度为每小时a 千米,水流速度为每小时b 千米,轮船共航行多少千米?八.检测评价,教学反思2课题:整式加减(2)综合运用导学案 一.导入新课:2 二.学习目标:2三.自主学习 反馈交流10 (一)知识点回顾1.整式加减实质就是有括号时先 在合并同类项.2.几个单项式中所含字母 相同的字母 的项叫同类项.3. 请写出三个含有a,b 字母的同类项 .4.已知3a 2b n+1与-2a m b 4是同类项则n= m=5. 去括号并化简-3 (a-2b)+2(3a-4b)-(-a-2b)= = (二)基本知识回顾 1.合并下列各式的同类项 (1)2234ab ab +- (2)333x x + (3)2251xy xy - (42233bab a +-(5)283732422--++-+x y xy y x (6) 26358422-+-+-x x x x2.(1)21,23452222=--++-x x x x x x 其中 (2)22313313c a c abc a +--+其中3,2,61-==-=c b a(3) 211,15.4535.053332332==-+-+-b a b a ab ab b a ab ab 其中3.化简下列各式 1.)635()745(a b c b c a --+++ (2.))8()8(2222xy y x y x xy +--+-(3))2()23(2222a ab b ab b a --+-- (4) 2)()()(+-+-+-x z z y y x(5) )(2)211(2323x x x x -+- (6) )21(4)3212(22+--+-x x x x(7))143()2(32323b b a b b a-++- (8) []222)34(73x x x x ----四合作探究,展示交流151.a 表示十位上的数,b 表示个位上的数,用代数式表示这个两位数;再把这个两位数的十位上的数与个位上的数交换位置,用代数式表示此新两位数。
七年级数学SX—11—07—025《整式加减》导学案编写:审核:编写时间:2011年9月21日班级:组别:组名:姓名:【学习目标】1.理解整式加减的意义及步骤,并运用整式加减解决实际问题。
2.进一步掌握去括号、合并同类项的计算。
【重点】整式加减的步骤【难点】实际问题中数量关系的表示【学法指导】自主学习、合作探究。
先阅读课本,解决其中的问题,再完成导学案。
解决自己能解决的问题。
有困难问题可小组合作完成。
【知识链接】乘法分配律,去括号,合并问题。
【学习过程】一、自主学习(A级)1.复习回顾,去括号法则:2.自学P68—70页:例6、7、8、9、。
3.整式加减运算法则:几个整式加减,如果有括号就括号,然后再合并二、学以致用:(B级)1.一种笔记本的单价是x元,圆珠笔的单价是y元,小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支,买这些笔记本和圆珠笔,小红和小明一共花费多少钱?解:(方法一)小红共花费元,小明共花费元。
则:解:(方法二)买笔记本共花费元,买圆珠笔共花费元。
则:2.计算1)2(x2-2x+5)-3(2x2-5) 2)4(m-3n)-5(3n-10m)-13(n-2m)3.长方形的周长是4a+3b,长是2a+b-3,则宽是多少?4.求加上-x2+6x-5等于4x2+3x-5的多项式。
三、合作交流(C级)1.一个两位数的个位数字是a,十位数字是b,列式表示这个数;2.李佳在做数学作业时,错把多项式中减去2ab-3bc+4,看成加上这个式子,结果得出的答案是2bc-2ab-1,你能帮他把正确答案求出来吗?3.已知xy =-2,x+y=3, 求整式)]322(5[)103(x y xy x y xy -+-++的值。
四、能力提升(D 级) 已知293,75322-+=++x x x x 求代数式的值。
五、课堂小结六、课堂检测: 1.计算:(1)-x+(2x-2)-(3x+5) (2)3a 2+a 2-(2a 2-2a)+(3a-a 2) (3)-a-b+c 的相反数是2.若单项式的关系与则的和是与单项式n m y x y x yx n n n n nm n,53222-是( )A .m=n B.m=2n C.m=3n D.不能确定3.对于有理数a 、b 定义a ⊙b=3a+2b,化简[(x+y )⊙(x-y)]⊙3x.4.当k= 时,代数式8313322----xy y kxy x 中不含xy 项.5.先化简,再求值: 21,2,575332231222323=-=-++++-y x xy xy y x x y x x 其中.七、课后反思:。
整式的加减(1)【学习目标】1.能应用运算律探究去括号法则,并且利用去括号法则将整式化简.2.培养观察分析,归纳能力及主动探究合作交流的意识.【学习重点,难点】重点:去括号法则,准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【知识链接】在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么通过非冻土地段的时间多用0.5小时,即_____小时,于是冻土地段的路程为______千米,非冻土地段的路程为___________千米,因此这段跌路全长为___________千米①,冻土地段与非冻土地段相差___________千米②.式子①100t+120(t-0.5)式子②100t-120(t-0.5)都带有括号,如何化简呢?这节课我们继续学习整式的加减【学习过程】一、自主学习(要求静思独做.)1.忆一亿:乘法的分配律:a(b+c)=____________2.算一算:(要求应用乘法的分配律)(1)120×(10-0.5)(2)-120×(10-0.5)(3)120×(t-0.5)(4)-120×(t-0.5)二、问题探究计算:(1)2(50-a)(2)-3(a2-2b)比较上面两式,你能发现去括号的规律吗?如果括号外的因数是正数,去括号后_____________________;如果括号外的因数是负数,去括号后______________________ 特别地+(a-8),-(a-8)可以分别看1×(a-8),-1×(a-8)利用分配律,可以将式子中的括号去掉得+(a-8)=a-8,-(a-8)=-a+8,这也符合以上发现的去括号规律三、合作交流1.对上述问题中不懂的地方,小组交流解决.2.化简下列各式(模仿课本例4,可上台展示)(1)10m+8n+(7m-3n)(2)(7x-5y)-2(x2-3y)思路点拨:(1)先判断是哪种类型的去括号,其次去括号后,括号内各项的符号要不要变号.(2)易错警示:括号外的系数不要漏乘括号里的每一项.括号前是“-”号,去括号时,注意括号里的各项符号都要变号.四、精讲点拨(约5分)1.去括号规律要准确理解,去括号应对括号内的每一项的符号都予考虑,做到要变都变,要不变,则各项符号都不要变.2.括号内原有几项去掉括号后仍有几项.3.有多层括号时,要从里向外逐步去括号.五、能力提升(约5分)细读课本例5,完成下题.飞机的无风航速为a千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?思路导航:(1)飞机的航速有如下关系:顺风航速=无风航速+风速,逆风航速=无风航速-风速.因此飞机顺风航速为__________千米/时,顺风飞行4小时的行程是_______千米.飞机逆风航速为_________,逆风飞行3小时的行程是___________千米.两个行程相差________千米.解答过程:【课堂小结】:(约3分)1. 去括号是代数式变形的一种常用方法,去括号的法则是:____________________________________________________________________________________________________2. 去括号规律可以简单记为“-”变“+”不变,要变全部变,当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.【达标测评】(约10分)1. 化简:(1)31(9y-3)+2(y+1)(2)-5a+(3a-2)-(3a-7) 2.2x 3y m与-3x n y 2是同类项,则m+n=_____ 3.化简m+n-(m-n)的结果为()A.2mB.-2mC.2nD.-2n4.已知3x 2-4x+6的值为9,则x 2-34x+6的值为().A.7B.18 C.12D.9 5.如果关于x 的多项式ax 4+4x 2-21与3x b +5是同次多项式,求21b 3-2b 2+3b-4的值.6.选做题:〔创新思维〕规定一种新运算:a*b=a+b,a#b=a-b 其中a 、b 为有理数,则化简a 2b*3ab+5a 2b#4ab 并求出当a=5,b=3时的值是多少?整式的加减(2)学习目标:1.初步掌握添括号法则。
《第3课时整式的加减》教案【教学目标】1.知道整式加减运算的法则,熟练进行整式的加减运算;(重点)2.能用整式加减运算解决实际问题;(难点)3.能在实际背景中体会进行整式加减的必要性.【教学过程】一、情境导入1.某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?(1)让学生写出答案:n+(n+1)+(n+2)+(n+3);(2)提问:以上答案能进一步化简吗?如何化简?我们进行了哪些运算?2.化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上的化简实际上进行了哪些运算?怎样进行整式的加减运算?二、合作探究探究点一:整式的加减【类型一】整式的化简化简:3(2x2-y2)-2(3y2-2x2).解析:先运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:3(2x2-y2)-2(3y2-2x2)=6x2-3y2-6y2+4x2=10x2-9y2.方法总结:去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.【类型二】整式的化简求值化简求值:12a -2(a -13b 2)-(32a +13b 2)+1,其中a =2,b =-32. 解析:原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.解:原式=12a -2a +23b 2-32a -13b 2+1=-3a +13b 2+1,当a =2,b =-32时,原式=-3×2+13×(-32)2+1=-6+34+1=-414. 方法总结:化简求值时,一般先将整式进行化简,当代入求值时,要适当添上括号,否则容易发生计算错误,同时还要注意代数式中同一字母必须用同一数值代替,代数式中原有的数字和运算符号都不改变.【类型三】 利用“无关”进行说理或求值有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.解析:先通过去括号、合并同类项对多项式进行化简,然后代入a ,b 的值进行计算.解:3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3=(3-4+1)a 3b 3+(-12+14+14)a 2b +(1-2)b 2+b +3=b -b 2+3.因为它不含有字母a ,所以代数式的值与a 的取值无关.方法总结:解答此类题的思路就是把原式化简,得到一个不含指定字母的结果,便可说明该式与指定字母的取值无关.探究点二:整式加减的应用如图,小红家装饰新家,小红为自己的房间选择了一款窗帘(阴影部分表示窗帘),请你帮她计算:(1)窗户的面积是多大?(2)窗帘的面积是多大?(3)挂上这种窗帘后,窗户上还有多少面积可以射进阳光.解析:(1)窗户的宽为b +b 2+b 2=2b ,长为a +b 2,根据长方形的面积计算方法求得答案即可; (2)窗帘的面积是2个半径为b 2的14圆的面积和一个直径为b 的半圆的面积的和,相当于一个半径为b 2的圆的面积; (3)利用窗户的面积减去窗帘的面积即可.解:(1)窗户的面积是(b +b 2+b 2)(a +b 2)=2b (a +b 2)=2ab +b 2; (2)窗帘的面积是π(b 2)2=14πb 2; (3)射进阳光的面积是2ab +b 2-14πb 2=2ab +(1-14π)b 2. 方法总结:解决问题的关键是看清图意,正确利用面积计算公式列式即可.三、板书设计整式的加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.【教学反思】通过实际问题,让学生体会进行整式的加减的必要性.通过“去括号、合并同类项”习题的复习归纳总结出整式的加减的一般步骤,培养学生的观察、分析、归纳和概括的能力,了解知识的发生发展过程,理解整式的加减实质就是去括号、合并同类项.教学过程中由学生小组讨论概括出整式的加减的一般步骤,然后出示例题,由学生解答,同时采取由学生出题,其他同学抢答等形式,来提高学生的学习兴趣,充分调动他们的主观能动性,从而提高课堂教学效率.《第3课时整式的加减》同步练习能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是( )A.-16x+B.-16x+C.-16x-D.10x+3.多项式8x2-3x+5与多项式3x3+2mx2-5x+3相加后不含二次项,则m等于( )A.2B.-2C.-4D.-84.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,空格的地方被钢笔弄污了,则空格中的这一项是( )A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2 015= .6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若A=3a2-5b+4,B=3a2-5b+7,则A B.(填“>”“<”或“=”)8.小雄的储蓄罐里存放着家长平时给他的零用钱,这些钱全是硬币,为了支援贫困地区的小朋友读书,他将储蓄罐里所存的钱都捐献出来.经清点,一角钱的硬币有a枚,五角钱的硬币比一角钱的3倍多7枚,一元钱的硬币有b枚,则小雄一共捐献了元.9.先化简,再求值.2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.★10.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1”.甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出这个结果.★11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.创新应用★12.已知实数a,b,c的大小关系如图所示:求|2a-b|+3(c-a)-2|b-c|.★13.试说明7+a-{8a-[a+5-(4-6a)]}的值与a的取值无关.参考答案能力提升1.A 由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B3.C4.C=-x2+3xy-y2+x2-4xy-=-x2-xy-y2-=-x2-xy+y2,故空格中的这一项应是-y2.5.2 016 由a3-a-1=0,得a3-a=1,整体代入a3-a+2015=1+2015=2016.6.x 因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2,所以多项式的值与x无关.7.< 因为A-B=(3a2-5b+4)-(3a2-5b+7)=3a2-5b+4-3a2+5b-7=-3,所以A<B.8.1.6a+b+3.5 一角钱的硬币有a枚,共0.1a元;五角钱的硬币比一角钱的3倍多7枚,共0.5(3a+7)元;一元钱的硬币有b枚,共b元,所以共(1.6a+b+3.5)元.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.可以看出化简后的式子与x的值无关.故甲同学把“x=”错抄成“x=-”,计算的结果也是正确的.当y=-1时,原式=-2×(-1)3=-2×(-1)=2.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.创新应用12.解:由数轴上a,b,c的位置可知,a<0<b<c,则2a-b<0,b-c<0.所以|2a-b|=b-2a,|b-c|=c-b.所以|2a-b|+3(c-a)-2|b-c|=(b-2a)+3(c-a)-2(c-b)=b-2a+3c-3a-2c+2b=(-2a-3a)+(b+2b)+(3c-2c)=-5a+3b+c.13.解:原式=7+a-8a+[a+5-(4-6a)]=7+a-8a+a+5-(4-6a)=7+a-8a+a+5-4+6a=8,故原式的值与a的值无关.第二章整式的加减2.2 整式的加减《第2课时整式的加减》导学案【学习目标】:1.熟练进行整式的加减运算.2.能根据题意列出式子,表示问题中的数量关系.【重点】:熟练进行整式的加减运算.【难点】:列式表示问题中的数量关系,去掉括号前是负因数的括号.【自主学习】一、知识链接1.同类项:必须同时具备的两个条件(缺一不可): ①所含的 相同;②相同 也相同. 合并同类项,就是把多项式中的同类项合并成一项.方法:把同类项的 相加,而 不变.2.去括号法则:①如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 ;②如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 .去括号法则的依据实际是 .二、新知预习做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a 元,字典的售价为每本b 元,文具盒的售价为每个c 元.请你计算:(1)小亮花了________元; 小莹花了__________元;小亮和小莹共花___________________元.(2)小亮比小莹多花_______________元.想一想:如何进行整式的加减运算?【自主归纳】整式的加减运算归结为__________、_____________,运算结果____________.三、自学自测1.求单项式25x y ,22x y -,22xy ,24xy -的和.2.求2x xy467+-的差.31x xy-+与2【课堂探究】一、要点探究探究点1:整式的加减问题1:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 .交换这个两位数的十位数字和个位数字,得到的数是 .将这两个数相加: + = .结论:这些和都是_________的倍数.问题2:任意写一个三位数交换它的百位数字与个位数字,又得到一个数,两个数相减.例如:原三位数728,百位与个位交换后的数为827,由728 -827= -99.你能看出什么规律并验证它吗?任意一个三位数可以表示成100a+10b+c设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(100a+10b+c)-( 100c+10b+a)= 100a+10b+c-100c-10b-a=99a-99c=99(a-c)在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1 计算:(1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)例2 求多项式3x2+5x 与多项式-6x2+2x-3的和与差.总结归纳:整式的加减运算归结为_________、______________,运算结果仍是______.运算结果,常将多项式的某个字母(如x)的降幂(升幂)排列.探究点2:整式的加减的应用例3 一种笔记本的单价是x元,圆珠笔的单价是y元.小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例4 做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?总结归纳:通过上面的学习,你能得到整式加减的运算法则吗?一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.例5 求2211312()()2323x x y x y--+-+的值,其中32,2=-=yx【针对训练】王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.二、课堂小结1.整式的加减运算法则 .2.列整式解决实际问题的一般步骤.3.比较复杂的式子求值,先化简,再把数值代入计算.【当堂检测】1.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +2.长方形的一边长等于3a +2b ,另一边比它大a -b ,那么这个长方形的周长是( )A.14a +6bB.7a +3bC.10a +10bD.12a +8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( )A.二次多项式B.三次多项式C.五次三项式D. 五次多项式4.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( )A.2B.-2C.4D.-45.已知 1232+-=a a A ,2352+-=a a B ,则BA32 =_______________________.6.若mn=m+3,则2mn+3m-5mn+10=__________.7.计算:8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n个小圆,又会得到什么结论?(1)m2思路点拨:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结合r1+r2+r3=R,化简式子比较大小.。
2012—2013年上期 七年级数学 导学案 第 课时 编案教师:谭洪兵 审核:陈勇 审批:殷长贵 授课教师:初一全体数学教师 授课时间: 班级: 姓名: 教师评价:
第1页/(共4页) 第2页/(共4页)
《整式的加减》检测案 检测内容:3.1-3.4 检测重点:整式及整式的加减
检测时间:60分钟 检测设计:
一、选择题(2分/题,共20分)
1、下列式子是代数式的共( )个 错误!未找到引用源。
3x -5 ②
1
3x
- ③3x -2=0 ④S =ab ⑤π ⑥m (A )2个 (B )3个 (C )4个 (D )5个 2、下列说法中错误的是( )
A 、x 与y 的平方差是x 2-y 2 B. x 加上y 除以x 的商是x+
x
y C 、x 减去y 的2倍所得的差是x-2y D 、x 与y 和的平方的2倍是2(x+y)2
3、若某件商品的原价为a 元,提价10%后,欲恢复原价,应降价( )
A .
10010 B .10011 C .111 D .11
10 4、关于代数式) (3-x 1
-2x 的是的值,下列说法中错误
A 、当x=1
0 B x 32
=时,其值为;、当时,其值不存在;
C 、当x ≠3时,其值存在;
D 、以上说法都不对 5、下列各代数式,书写正确的是( )
22.3A x y 1
.12
B mn 2.3
C xy 1
.
()4
D a b + 6、当n 取自然数时,代数式2
10n -与1010n +的值先超过100的是( )
2.10A n - .1010B n + C.同时 D.无法确定
7、已知4
2
3x 与3n
n
x 是同类项,则n 等于( )
.
4A .3B .24C 或 .2D
8、代数式3
3
2
3
3
2
3
76336310a a b a b a a b a b a -+++--的值( )
.,A a b 与字母都有关 .B a 只与有关 .C b 只与有关 .,D a b 与都无关
9、已知代数式ax bx +合并后的结果为零,则下列结论正确的是( )
.0A a b == .0B a b x === .0C a b += .0D a b -=
10、若::3:4:7a b c =,则23323a b c
a b c -+--的值是( )
.1A 1.20B - 11.20
C - .2
D 二.填空题(2分/空,共32分)
1、若-22a m +
2b 4是7次单项式,则m =____ ___,系数为 。
2、代数式
x y x 54
23
2--π是 次____项式,其中第2项的系数是_____ _。
3、已知a 、b 、c 在数轴上的对应点如图所示,化简a -b a ++a c -+c b +
= .
4、已知82
=-ab a ,42-=-b ab ,则=-2
2b a , =+-2
2
2b ab a
5、当k= 时,代数式6436
43
154105
x kx y x x y --++中不含43x y 项。
6、如果1
4a
a x y
+-与51
b mx y
-的和是53n
x y ,则()(2)m n a b --= 。
7、在代数式231
,3,2,,,325b xy ab x xy a b
++-+中,单项式有 ,多项式有 , 整式有 ,代数式有 。
8、化简9{4[5(82)]}x x x x ----为 。
9、已知,75352
=+-x x 则55
3
2
+-
x x 的值为___________。
三、解答题(8分/题,共48分)
1、先化简,再求值:22
(2)x y --4(2)x y -+2
)2(x y --3)2(x y -,其中x =-1
,y =12
.
a
b
c
第3页/共4页 第4页/共4页
导 学 案 装
定 线
2、如果关于字母x 的代数式10522-+-+-x nx mx x 的值与x 的值无关,求3
2m n +-的值。
3、某中学七年级一班共有学生m 人,在春节期间,每两个同学之间通电话一次,互致新春的祝福,问该班同学共通电话多少次?若m 为50,问该班同学共通电话多少次?
4、已知1110,x y -=求代数式3632y xy x
y xy x
--+-的值。
5、已知2222
534,72.A x y xy xy B xy xy x y =-+=-+ (1) 求A-2B ;(2)求当12x =,1y =-时1
()2
A B A -+-的值。
6、已知当7x =时,代数式3
5ax bx +-的值为7,求当7x =-时此代数式的值。