2.3向量组与矩阵的秩(1)
- 格式:ppt
- 大小:1.16 MB
- 文档页数:25
第三章向量组的线性相关性与矩阵的秩何建军§3 • 1 概念与性质3.1.1向量的概念和运算1、n维向量:n个数构成的一个有序数组(a i,a2,…,a n),称为一个n维向量,记为〉=佝,a2 ,…,a n ),并称为n维行向量,a i称为〉的第i个分量,〉的转置T T(a1,a2, a n)称为n维向量。
2、相等:若a =@182,…,a n),p =(D,b2,…,b n),当且仅当a i =b i(i =1,2,…,n)时,:,:。
3、加法:」-a b!,a2 b2^ ,a n b n4、数乘:k ka1,ka2,…,ka n ,(k 为常数)5、內积:匕0 】=aQ +a?b2 + …+a“b n3.1.2向量组的线性相关性1、线性组合:给定向量组A : 对于任何一组实数匕出,…,k m,向量k V1 k^ 2肚m称为向量组A的一个线性组合,匕*?,…,k m称为这个线性组合的组合系数2、线性表示:给定向量组A : 〉1「2,i「m和向量:,如果存在一组数n n « n'1, '2, ,‘ m ,使得■- = ‘1〉1 ‘2〉2 •…-'rn'm则向量-能有向量组A线性表示,向量-是向量组A的线性组合。
3、线性相关:给定向量组A : ‘1厂2,厂m,如果存在一组不全为零的数k1 , k2 , , k m,使得kr 1 k2〉2 k m〉m=o则称向量组A是线性相关的。
4、线性无关:向量组A :r,〉2,…,〉m,不线性相关,称向量组A线性无关,即不存在不全为零的数k1,k2, , k m使得1• k2「2•■ k m m=0成立,即只有当k1二Q二=k m=0时,才有k^ 1 k2「2 ' k^' m=0成立。
(如果存在一组数k-k2,,k m 使得k V 1 k^ ■k m「m=0,则必有k1= k2 = = k m=0,称向量组A 线性无关)注:含有零向量的向量组一定线性相关。
矩阵的“秩”,是线性代数第一部分的核心概念。
“矩阵的秩与向量组的秩一致。
矩阵的秩就是其行(或列)向量组的秩。
”怎样证明?就当做习题练一练。
设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。
分析这是格莱姆法则推论,带来的直接判别方法。
(画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0)逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系?逻辑2——(“线性无关,延长无关。
”定理)——已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。
分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0,如何证明“这组常数只能全为0”?每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。
前n 个等式即c1 a1+ c2a2+ ---+ c k a k = 0由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。
逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。
(潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。
)逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗?唯一信息——A的所有r + 1阶子式全为0分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。
(画外音:画个示意图最好。
)任取A的一行,其左起前 r个分量形成的r 维向量,必定可以被r 阶子式的r 个行线性表示。
第三章 向量组的线性相关性与矩阵的秩向量是研究代数问题的重要工具。
在解析几何里,曾经讨论过二维与三维向量。
但是,在很多实际问题中,往往需要研究更多维的向量。
例如,描述卫星的飞行状态需要知道卫星的位置()z y x ,,、时间t 以及三个速度分量z y x v v v ,,,这七个量组成的有序数组()z y xv v vt z y x ,,,,,,称为七维向量。
更一般地,本章将引入n 维向量的概念,定义向量的线性运算,并在此基础上讨论向量组的线性相关性,研究向量组与矩阵的秩、向量组的正交化等问题。
这将为以后利用向量的线性关系来分析线性方程组解的存在性,化二次型为标准形等奠定理论上的基础。
§1 n 维向量作为二维向量、三维向量的推广,现给出n 维向量的定义定义1 n 个数n a a a ,,,21 组成的有序数组(n a a a ,,,21 ),称为n 维向量。
数i a 称为向量的第i 个分量(或第i 个分量)。
向量通常用希腊字母γβα,, ,等来表示。
向量常写为一行α=(n a a a ,,,21 )有时为了运算方便,又可以写为一列=α⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a 21前者称为行向量,后者称为列向量。
行向量、列向量都表示同一个n 维向量。
设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,当且仅当它们各个对应的分 量相等,即),,2,1(n i b a i i ==时,称向量α与向量β相等,记作,βα=。
分量全为零的向量称为零向量,记为,即 0=)0,,0,0( 若),,,(21n a a a =α,则称),,,(21n a a a --- 为α的负向量,记为α-。
下面讨论n 维向量的运算。
定义2 设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,那么向量),,,(2211n n b a b a b a +++ 叫做向量α与β的和向量,记做βα+,即),,,(2211n n b a b a b a +++=+ βα向量α与β的差向量可以定义为α+)(β-,即),,,()(2211n n b a b a b a ---=-+=- βαβα定义3 设),,,(21n a a a =α是n 维向量,λ是一个数,那么向量),,,(21n a a a λλλ 叫做数λ与向量α的数量乘积(简称数乘),记为λα,即),,,(21a a a λλλλα =向量的和、差及数乘运算统称为向量的线性运算。
86线性代数规定只含零向量的向量组的秩为0. 由定义3.3.2可知,例1中()123 ,,2r =ααα.一般来说,要求向量组的秩,首先需要求出极大无关组,若按照定义3.3.1去求极大无关组比较麻烦,尤其是定义3.3.1中的第二个条件的判断很困难,在3.3.2节我们还将介绍另外的方法求向量组的极大无关组以及秩.由向量组秩的定义可得:(1)向量组12,,,s "ααα线性相关()12,,,s r s ⇔<ααα";向量组12,,,s "ααα线性无关(1,r ⇔α)2,,s s =αα"(线性无关的向量组的极大无关组就是该向量组本身). (2)任何一个部分组的秩≤向量组的秩≤向量组中向量的个数. (3)若向量组12,,,s "ααα可由向量组12,,,t βββ"线性表示,则()()1212,,,,,,s t r r αααβββ""≤.证 设12,,,r i i i ααα"是向量组12,,,s "ααα的极大无关组,12,,,m j j j βββ"是向量组12,,,t βββ"的极大无关组. 因为向量组12,,,s "ααα可由向量组12,,,t βββ"线性表示,而向量组与极大无关组是等价的,所以12,,,r i i i ααα"可由12,,,m j j j βββ"线性表示. 又因为12,,,r i i i ααα"线性无关,根据推论3.2.7,得r m ≤,即()()1212,,,,,,s t r r αααβββ""≤.证毕.(4)等价的向量组具有相同的秩.证 设向量组12,,,s "ααα与向量组12,,,t βββ"等价,它们的秩分别为r 和m . 一方面,向量组12,,,s "ααα能由向量组12,,,t βββ"线性表示,则有r m ≤;另一方面,向量组12,,,t βββ"能由向量组12,,,s "ααα线性表示,则m r ≤. 综合这两方面的结论,可得r m =,即等价的向量组的秩相等.证毕.需要注意的是,若两个向量组的秩相等,它们不一定等价.如向量组()()121,2,1,2,4,2=−=−αα,1α是向量组12,αα的极大无关组,秩为1;而向量组()()120,2,1,0,4,2==ββ,1β是向量组12,ββ的极大无关组,秩为1. 两个向量组的秩相等,但是这两个向量组不等价.例2 试证:若一个向量组的秩为r ,则在向量组内,任意r 个线性无关的向量都构成它的一个极大无关组.证 设12,,,r i i i ααα"为向量组12,,,s "ααα中r 个线性无关的向量. 任取{}12,,,j s ∈αααα",如果 {}12,,,rj i i i ∈αααα",则12,,,,r ji i i αααα"线性相关;如果{}12,,,rj i i i ∉αααα",因为向量组12,,,,r j i i i αααα"的秩不超过向量组12,,,s "ααα的秩,所以()12,,,,1r j i i i r r r <+αααα"≤,于是向量组12,,,,r j i i i αααα"线性相关. 从而12,,,r i i i ααα"是向量组12,,,s "ααα的一个极大无关组.3.3.2 向量组的秩与矩阵的秩的关系由于矩阵和向量组之间存在着一定的关系,所以向量组的秩与矩阵的秩之间也有一定的关系.。
第三章向量组的线性相关性和矩阵的秩(一)基本要求:(二)内容分析和教学指导(1)从解方程的过程引出所要解决的问题,每个方程对应于一个行向量,某个方程可由其它方程表示,则该方程可去掉,为无效方程。
这对应于讨论向量组中是否有某个向量可由其它向量线性表示,即向量的线性相关性问题。
去掉无效方程后的方程求解,需要确定自由未知量和保留未知量,涉及最后的方程系数行列式不等于零的问题(2)向量的线性运算及其性质,和矩阵的运算相对应。
(3 )向量线性相关性的定义和判断:线性相关性定义使用于理论证明,把相关性问题转化为向量方程(即方程组)有无非零解的问题,而等价定义使相关性的含义更加明确。
为了加深相关性的定义,对与一个向量,两个向量和三个向量线性相关的几何意义加以强调:单个零向量是线性相关的,两个向量相关是指两个向量共线,三个向量相关是共面。
通过利用相关性定义来判断向量组线性相关,重点培养学生的利用概念分析判断,进行逻辑推理的能力。
定义理解中的误区:(1 )定义中的系数是独立的,(2 )非零组合系数是相对向量组的,不同向量组对应的系数可能不同,( 3 )向量组线性相关则至少有一个向量可以由其它向量线性表示,至于是那一个向量是依赖于具体的向量组,并不是每个向量都可由其它向量变来表示。
列向量组的线性相关性和线性表示的矩阵表示,行向量组线性相关性和线性表示的矩阵表示。
重点是列向量组表示的矩阵形式(4 )相关表示式的分量形式是理解相关性定理的基础和本质,一个分量对应一个方程,一个向量对应一个未知数。
用子式判断向量的线性相关性的方法,子式不等于对应于只有零解,对应于线性无关,子式等于零对应于有非零解,对应线性相关。
(5 )最大无关组和矩阵的秩:重点理解矩阵秩的定义和含义,牢固建立矩阵和向量组的对应关系。
矩阵的秩等于行向量组的秩,等于列向量组的秩,就是非零子式的最高阶数。
掌握最高阶非零子式和向量组的最大无关组之间的对应关系,子式为零对应于线性相关,子式非零对应于线性无关。
矩阵的秩及其应用摘要:本文主要介绍了矩阵的秩的概念及其应用。
首先是在解线性方程组中的应用,当矩阵的秩为1时求特征值;其次是在多项式中的应用,最后是关于矩阵的秩在解析几何中的应用。
对于每一点应用,本文都给出了相应的具体的实例,通过例题来加深对这部分知识的理解。
关键词:矩阵的秩; 线性方程组; 特征值; 多项式引言:阵矩的秩是线性代数中的一个概念,它描述了矩阵的一个数值特征。
它是矩阵 的一个重要性质。
在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值,在多项式、空间几何中等多个方面都有广泛的应用。
由于矩阵的秩的重要作用和地位,需要我们认真学习。
1.矩阵的秩及其求法1.1矩阵的秩的定义定义1.1.1[1] 矩阵A 的行(列)向量组的秩称为矩阵A 的行(列)秩。
定义1.1.2[2] 矩阵的列向量组(或行向量组)的任一极大线性无关组所含向量的个数称为矩阵的秩。
定义1.1.3[1] 设在矩阵A 中有一个不等于零的r 阶子式,且所有的1r +子式(如果存在的话)全等于零,则称矩阵A 的秩为r ,记为()r A r =或秩()A r =。
零矩阵的秩规定为零。
注:由定义可以看出(1)若A 为n m ⨯矩阵,则()r A m ≤,也()r A n ≤,即()min{,}r A m n =(2) ()()T r A r A = ,()()r kA r A = ,k 为非零数 1.2 矩阵的秩的求法定义法和初等变换法是我们常用的求矩阵的秩的两种方法,下面就来比较一 下这两种方法。
方法1 按定义例1.2.1 求矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--41311221222832的秩 解 按定义3解答,容易算出二阶子式12232-0≠,而矩阵的所有三阶子式1312122832--=0,43112122232-=0,41312212283--=0,4111222282-=0 所以()2r A =方法2 初等变换法引理1.2.1[1] 初等变换不改变矩阵的秩。
第三章 向量组的线性相关性与矩阵的秩向量是研究代数问题的重要工具。
在解析几何里,曾经讨论过二维与三维向量。
但是,在很多实际问题中,往往需要研究更多维的向量。
例如,描述卫星的飞行状态需要知道卫星的位置()z y x ,,、时间t 以及三个速度分量z y x v v v ,,,这七个量组成的有序数组()z y xv v vt z y x ,,,,,,称为七维向量。
更一般地,本章将引入n 维向量的概念,定义向量的线性运算,并在此基础上讨论向量组的线性相关性,研究向量组与矩阵的秩、向量组的正交化等问题。
这将为以后利用向量的线性关系来分析线性方程组解的存在性,化二次型为标准形等奠定理论上的基础。
§1 n 维向量作为二维向量、三维向量的推广,现给出n 维向量的定义定义1 n 个数n a a a ,,,21 组成的有序数组(n a a a ,,,21 ),称为n 维向量。
数i a 称为向量的第i 个分量(或第i 个分量)。
向量通常用希腊字母γβα,, ,等来表示。
向量常写为一行α=(n a a a ,,,21 )有时为了运算方便,又可以写为一列=α⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a 21前者称为行向量,后者称为列向量。
行向量、列向量都表示同一个n 维向量。
设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,当且仅当它们各个对应的分 量相等,即),,2,1(n i b a i i ==时,称向量α与向量β相等,记作,βα=。
分量全为零的向量称为零向量,记为0,即 0=)0,,0,0(若),,,(21n a a a =α,则称),,,(21n a a a --- 为α的负向量,记为α-。
下面讨论n 维向量的运算。
定义2 设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,那么向量),,,(2211n n b a b a b a +++ 叫做向量α与β的和向量,记做βα+,即),,,(2211n n b a b a b a +++=+ βα 向量α与β的差向量可以定义为α+)(β-,即),,,()(2211n n b a b a b a ---=-+=- βαβα定义3 设),,,(21n a a a =α是n 维向量,λ是一个数,那么向量),,,(21n a a a λλλ 叫做数λ与向量α的数量乘积(简称数乘),记为λα,即),,,(21a a a λλλλα =向量的和、差及数乘运算统称为向量的线性运算。