江苏省南通市高一数学上学期期中考试试卷苏教版
- 格式:pdf
- 大小:147.71 KB
- 文档页数:6
2022-2023学年江苏省南通中学高一上学期期中数学试题一、单选题1.已知集合,则的真子集的个数为( ){}3,4,5N =N A .5B .6C .7D .8【答案】C【分析】集合的元素是个,则其真子集个数是个.n 21n-【详解】,则的真子集为:{}3,4,5N =N {}{}{}{}{}{},3,4,5,3,4,3,5,4,5.∅故选:C2.下列图象中,表示函数关系的有( )()y f x =A .B .C .D .【答案】C【分析】根据函数的概念逐一判断即可.【详解】根据函数的概念知,对于定义域内任意,都有唯一确定的和它对应,由图象可看出,x y 对于A ,当时,有两个值与其对应,不符合;0x =y 对于B ,当时,有两个值与其对应,不符合;0x =y 对于C ,符合定义域内任意,都有唯一确定的和它对应,可表示函数关系;x y 对于D ,当时,有无数个值与其对应,不符合.1x =y 故选:C .3.已知函数是幂函数,且时,单调递减,则的值为()()2231mm f x m m x +-=--()0,x ∈+∞()f x m ( )A .B .1C .2或D .21-1-【答案】A【分析】利用幂函数的定义及性质列式计算并判断.【详解】∵是幂函数,()()2231mm f x m m x +-=--∴,即,解得,或,211m m --=()()210m m -+=2m =1m =-又当时,单调递减,∴,()0,x ∈+∞()f x 230m m +-<当时,,不合题意,舍去;2m =2330m m +-=>当,,符合题意,1m =-2330m m +-=-<故.1m =-故选:A .4.镜片的厚度是由镜片的折射率决定,镜片的折射率越高,镜片越薄,同时镜片越轻,也就会带来更为舒适的佩戴体验.某次社会实践活动中,甲、乙、丙三位同学分别制作了三种不同的树脂镜.则这三种镜片中,制作出最薄镜片和最厚镜片的同学分别为( )A .甲同学和乙同学B .丙同学和乙同学C .乙同学和甲同学D .丙同学和甲同学【答案】C的大小关系即可得出答案.【详解】,.∵.102525==105232==2532<<又∵,,6339==6328==>∴.<<又因为镜片折射率越高,镜片越薄,故甲同学创作的镜片最厚,乙同学创作的镜片最薄.故选:C.5.已知为实数,使“,”为真命题的一个充分不必要条件是( )a []3,4x ∀∈0x a -<A .B .C .D .4a >5a >3a >4a ≥【答案】B【分析】根据全称量词命题的真假性求得的取值范围,然后确定其充分不必要条件.a 【详解】解:依题意,全称量词命题:为真命题,[]3,4,0x x a ∀∈-<所以,在区间上恒成立,所以,a x >[]3,44a >所以使“”为真命题的一个充分不必要条件是“”.[]3,4,0x x a ∀∈-<5a >故选:B 6.已知函数由下表给出,若,则()f x ()()()()()0134f f x f f f =+⋅0x =x1234()f x 1312A .1B .2C .3D .4【答案】D【分析】结合表格数据可得的值,进而可求得的值,即可求得.()()()134f f f +⋅()0f x 0x 【详解】由题可得,,则,故.()()()()()01341123f f x f f f =+⋅=+⨯=()02f x =04x =故选:D.【点睛】本题考查了函数值的求法,利用表格中的数据是解决本题的关键,属于基础题.7.已知函数的定义域为,则函数)()f x []22-,()()3g x f x =A .B .C .D .(]0,120,3⎡⎤⎢⎥⎣⎦2,13⎡⎤-⎢⎥⎣⎦20,3⎛⎤ ⎥⎝⎦【答案】D【分析】根据题意列出不等式组,求解即可.【详解】要使有意义,则,即,解得,()g x 23210x x x -⎧⎪-⎨⎪⎩ ()232100x x x x -⎧⎪-⎨⎪≠⎩ 203x < 所以函数的定义域为.()g x 20,3⎛⎤⎥⎝⎦故选:D .8.一次速算表演中,主持人出题:一个35位整数的31次方根仍是一个整数,下面我报出这个35位数,请说出它的31次方根.这个35位数是……未等主持人报出第一位数字,速算专家己经写出了这个数的31次方根:13.其实因为只有一个整数,它的31次方是一个35位整数.速算专家心中记住了右表(表中常用对数为近似值).请你也尝试借助此表求一求:一个31位整数的64次方根仍是一个整数,这个64次方根是( )真数常用对数真数常用对数20.3011 1.0430.4812 1.0840.6013 1.1150.7014 1.1560.7815 1.1870.8516 1.2080.9017 1.2390.9518 1.26101.00191.28A .2B .3C .4D .5【答案】B【分析】由题意可知,两边取对数,然后计算出的取值范围,查表即可得出答案.3064311010a ≤<a 【详解】解:由题意得:,3064311010a ≤< ,6430lg 31101010a ∴≤<,即,6430lg 31a ∴≤<3064lg 31a ≤<故此,即,3031lg 6464a ≤<0.46875lg 0.484375a ≤<又因为为整数,故根据上表可知:,a 3a =故选:B二、多选题9.若不等式的解集是,则下列对于系数,,的结论中,正确的是20ax bx c ++>1,22⎛⎫- ⎪⎝⎭a b c ( )A .B .C .D .a<00c >0a b c ++>0a b c -+>【答案】ABC【分析】由一元二次不等式与一元二次方程根的关系及韦达定理可得b 、c 可用a 的代数式表示,检验各选项即可得结果.【详解】由题意知: 0013222122a a b b aa c a c a ⎧⎪<<⎧⎪⎪⎪⎪-+=-⇒=-⎨⎨⎪⎪=-⎪⎪⎩-⨯=⎪⎩A 项: ,即:A 项正确;a<0B 项: ,即:B 项正确;0c a =->C 项: ,即:C 项正确;3322a b c a a a a ++=--=->D 项:,即:D 项错误.3322a b c a a a a -+=+-=<故选:ABC.10.下列说法中,正确的是( )A .集合和表示同一个集合{}1,2A =(){}1,2B =B .函数()f x =()1,1-C .若,,则用,表示2log 3a =2log 7b =a b 423log 561b a b +=++D .已知是定义在上的奇函数,当时,,则当时,()f x ()(),00,∞-+∞ 0x >()211f x x x =+-0x <()211f x x x=--+【答案】BC【分析】对于A ,根据集合的定义即可判断;对于B ,利用复合函数的单调性即可判断;对于C ,利用对数的换底公式及运算性质即可判断;对于D ,利用函数的奇偶性求对称区间上的解析式即可判断.【详解】对于A ,集合中元素为数,集合为点,可知表示的不是同一个集合,{}1,2A =(){}1,2B =所以A 选项错误;对于B,根据解得函数,2 320x x+-≥()f x=[]1,3-令则,232t x x=+-y=为二次函数,开口向下,对称轴为,所以函数在区间上单调232t x x=+-1x=232t x x=+-()1,1-递增,在区间上单调递减,()1,3函数为增函数,根据复合函数的单调性可知函数,y=()f x=()1,1-所以B选项正确;对于C,因为,,根据对数的换底公式可得2log3a=2log7b=,所以C选项正确;()()3222222422222222log78log56log7log8log7log23log56log42log76log7log6log7log3log21ba b⨯+++=====⨯+++++对于D,因为当时,,可令,则,所以x>()211f x xx=+-x<0x->,又因为是定义在上的奇函数,所以()()()221111f x x xx x-=-+-=---()f x()(),00,∞-+∞,与题干结果不符,所以D选项错误.()()211f f x xxx-=-+-+=故选:BC.11.已知,,且,则()a>0b>281a b+=A.B C.D.281a b->-1≥164ab≤221168a b+≥【答案】ACD【分析】对于A,利用换元结合不等式的性质即可求解;对于B、C、D三个选项可以利用基本不等式证明求解.【详解】对于A,因为,所以,又因为,,281a b+=218a b=-0a>0b>所以,即,所以,2180a b=->18b<<28188116a b b b b-=--=-又因为,所以,可知A选项正确;18b<<1281a b-<-<对于B,因为,22812841222a b a ba b++=++=≤+=当且仅当,即,时等号成立,28a b=14a=116b=,可知B选项错误;1+≤对于C,因为,当且仅当,即,时281a b+=≥=164ab≤28a b=14a=116b=等号成立,可知C选项正确;对于D ,因为,所以,281a b +=142a b +=所以,()2222222224161616241162228a b a b a b a b a b a b ++++++⋅⋅+=≥==当且仅当,即,时等号成立,可知D 选项正确.4a b =14a =116b =故选:ACD.12.定义在上的函数满足,当时,,则以下()1,1-()f x ()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭10x -<<()0f x <结论正确的是( )A .B .为奇函数()00f =()f x C .为单调减函数D .为单调增函数()f x ()f x 【答案】ABD【分析】A.令求解判断;B.令求解判断;CD.令,,且,由0x y ==y x =-1x x =2y x =-12x x <判断其符号即可.()()()()121212121x x f x f x f x f x f x x ⎛⎫--=+-= ⎪-⎝⎭【详解】解:令得,即得,A 正确;0x y ==()()()000f f f +=()00f =在定义域范围内令得,即得是奇函数,B 正确;y x =-()()()00f x f x f +-==()f x 令,,且,1x x =2y x =-12x x <所以,()()()()121212121x x f x f x f x f x f x x ⎛⎫--=+-= ⎪-⎝⎭又且,,120x x -<111x -<<211x -<<所以,即,()()()()1221121110x x x x x x ---=+->1212101x x x x --<<-所以,即()()120f x f x -<()()12f x f x <所以在上是单调增函数,D 正确,C 错误.()f x ()1,1-故选:ABD .三、填空题13.计算:________.2log 312-⎛⎫=⎪⎝⎭【答案】3【分析】根据指数幂运算法则、对数恒等式运算即可.【详解】解:.22log 3log 31232-⎛⎫== ⎪⎝⎭故答案为:3.14.已知函数,则________.()2231f x x =+()f x =【答案】2314x +【分析】用换元法求解析式,令,得,代入,即可得到的解析式2t x =2tx =2(2)31f x x =+()f x 【详解】解:令,得,代入得2t x =2t x =2(2)31f x x =+223()31124t f t t ⎛⎫=⨯+=+ ⎪⎝⎭即的解析式为()f x 23()14f x x =+故答案为:2314x +15.已知为正实数,则的最小值为__________.,x y 162y x x x y ++【答案】6【分析】将原式变形为,结合基本不等式即可求得最值.162y yx x ++【详解】由题得,162y xx x y+=+162y yx x ++设,则.(0)y t t x =>1616()22282622f t t t t t =+=++-≥=-=++当且仅当时取等.2t =所以的最小值为6.162y xx x y ++故答案为:6四、双空题16.已知函数,其中,()22,25,x x m f x x mx m x m ⎧≤=⎨-+>⎩0m >(1)若函数在单调,则实数的范围是__________;()f x ()0,∞+m (2)若存在互不相等的三个实数,,,使得,则函数1x 2x 3x ()()()123f x f x f x ==的值域为__________.y m =【答案】(]0,3(),1-∞-【分析】(1)利用单调性的定义进行处理.(2)利用函数图象以及换元法来处理.【详解】(1)当时,,在单调递增,当时,,其x m ≤()2f x x=(0,)m x >m ()225f x x mx m =-+对称轴为,所以在x m =()f x (,)m +∞上单调递增,若函数在单调,则,()f x ()0,∞+22252||2m m m m m -+≥=解得.03m <≤(2)若存在互不相等的三个实数,,,使得,()f x 1x 2x 3x ()()()123f x f x f x ==则的图象如图所示:()f x则,即,解得或(舍去).222||225m m m m m =>-+230m m ->3m >0m <对于函数,令,,所以,y m =t =2t >22(1)1y t t t t =--=-++其对称轴为,所以在上单调递减,所以,则函数12t =21y t t =-++()2,+∞22211y <-++=-的值域为.y m =(),1-∞-故答案为:,.(]0,3(),1-∞-五、解答题17.(1)求的值;1103488127⎛⎫-+ ⎪⎝⎭(2)已知,求的值.114x x -+=1122224200x x x x --+++-【答案】(1);(2)8343-【分析】(1)利用指数幂的运算性质化简计算即可;(2)把平方,结合即可求得,利用可得1122x x -+114x x -+=1122x x -+()22212x x x x --+=+-的值,代入所求的式子即可得答案.22x x -+【详解】(1);()1134134134828811273233133⨯⎛⎫=-+=-+=⎛⎫-+ ⎝⎭⎪⎭⎪⎝(2),,,211122216x x x x --⎛⎫+++= ⎪⎝⎭= 11220x x ->+11224x x -∴+=,.()22212194x x x x--+=+-=11222242344419420000x x x x --+∴-+=-=-++18.已知命题:对任意实数,不等式都成立,命题:关于的方程p x 21202mx x -+>q x 无实数根.若命题,有且只有一个是真命题,求实数的取值范围.()244210x m x +-+=p qm 【答案】(][)1,23,⋃+∞【分析】先求出真、真时的取值范围,根据题设条件可得真假或假真,从而可求出p qm p qp q实数的取值范围.m 【详解】若真,对任意实数,不等式都成立.p x 21202mx x -+>∴当时,显然对于任意实数,不等式不都成立0m =x 1202x -+>当时,,解得0m ≠4200m m -<⎧⎨>⎩m>2∴真时,;p m>2若真,则方程无实数根,q ()244210x m x +-+=∴,()2162160m --<∴真时,.q13m <<∵命题、中有且仅有一个真命题,p q∴当真假时,且,故实数m 的取值范围是:;p qm>2(][),13,m ∈-∞+∞ 3m ≥当假真时,且,故实数m 的取值范围是:;p q2m ≤13m <<12m <≤综上,实数的取值范围为m (][)1,23,⋃+∞19.已知函数是定义域上的奇函数.()21x bf x x +=-()1,1-(1)确定的解析式;()f x (2)用定义证明:在区间上是减函数;()f x ()1,1-(3)解不等式.()()10f t f t -+<【答案】(1);(2)证明见解析;(3).()21x f x x =-1,12⎛⎫⎪⎝⎭【解析】(1)利用奇函数的定义,经过化简计算可求得实数,进而可得出函数()()f x f x -=-b 的解析式;()y f x =(2)任取、,且,作差,化简变形后判断的符号,1x ()21,1x ∈-12x x <()()12f x f x -()()12f x f x -即可证得结论;(3)利用奇函数的性质将所求不等式变形为,再利用函数的定义域和单()()1f t f t -<-()y f x =调性可得出关于的不等式组,即可解得实数的取值范围.t t 【详解】(1)由于函数是定义域上的奇函数,则,()21x bf x x +=-()1,1-()()f x f x -=-即,化简得,因此,;()2211x b x b x x -++=-+-+0b =()21xf x x =-(2)任取、,且,即,1x ()21,1x ∈-12x x <1211x x -<<<则,()()()()()()()()()()()()2212212112121222221211221211111111111x x x x x x x x x x f x f x x x x x x x x x ----+-=-==---+-+--,,,,,,.1211x x -<<< 210x x ∴->1210x x +>110x -<110x +>210x -<210x +>,,因此,函数在区间上是减函数;()()120f x f x ∴->()()12f x f x ∴>()y f x =()1,1-(3)由(2)可知,函数是定义域为的减函数,且为奇函数,()y f x =()1,1-由得,所以,解得.()()10f t f t -+<()()()1f t f t f t -<-=-111111t t t t ->-⎧⎪-<-<⎨⎪-<<⎩112t <<因此,不等式的解集为.()()10f t f t -+<1,12⎛⎫⎪⎝⎭【点睛】本题考查利用函数的奇偶性求参数、利用定义法证明函数的单调性以及函数不等式的求解,考查推理能力与运算求解能力,属于中等题.20.某地拟建造一座大型体育馆,其设计方案侧面的外轮廓如图所示,曲线是以点为圆心的AB E 圆的四分之一部分,其中,轴,垂足为;曲线是抛物线()()0,025E t t <≤AF x⊥F BC 的一部分;,垂足为,且恰好等于的半径,假定拟建体育馆()2500y ax a =-+>CD OD ⊥D CD E 的高(单位:米,下同).50OB =(1)试将用和表示;DF a t (2)若要求体育馆侧面的最大宽度不超过75米,求的取值范围.DF a 【答案】(1)50DF t =-()025t <≤(2)1,100⎡⎫+∞⎪⎢⎣⎭【分析】(1)根据抛物线方程求得,从而可得半径,即,进而求解出点坐标()0,50B 50CD t =-C 后,可知;50DF t =-()025t <≤(2)根据题意,恒成立,即恒成立,再根据基本不等式求最5075DF t =-≤162550a t t ≥++值即可得答案.【详解】(1)解:由抛物线方程得:,()0,50B 50BE t∴=-∵,均为圆的半径,BE CD ,圆的半径为:,50CD t ∴=-E 50t -∴,入抛物线方程可得,解得(),50C C x t -25050Ct ax -=-+C x =∵曲线是以点为圆心的圆的四分之一部分,其中,轴,垂足为,AB E ()0,E t AF x ⊥F ∴,50OF AE t ==-∴.50DF OF OD t =+=-()025t <≤(2)解:∵要求体育馆侧面的最大宽度不超过75米,DF ,整理可得:,5075DF t ∴=-()216252550ta t t t ≥=+++,(]0,25t ∈(当且仅当时取等号),62550t t ∴+≥=25t = ,1162510050t t ∴≤++.1100a ∴≥∴的取值范围为:a 1,100⎡⎫+∞⎪⎢⎣⎭21.已知集合,集合.{A x y =={}220B x x x a a =-+-<(1)若,求的取值范围;A B A ⋃=a (2)在中有且仅有两个整数,求的取值范围.A B ⋂a 【答案】(1);[0,1](2).(1,2][1,0)- 【分析】(1)根据二次根式的性质,结合一元二次不等式的解法、集合并集的性质分类讨论进行求解即可;(2)根据集合交集的定义,结合题意进行求解即可.【详解】(1)由,所以.22002x x x -≥⇒≤≤[0,2]A =由,220()[(1)]0x x a a x a x a -+-<⇒---<因为,所以,A B A ⋃=B A ⊆当时,即时,不等式为,显然该不等式解集为空集,1a a =-12a =21()02x -<即,显然成立;B =∅B A ⊆当时,即时,,1a a >-12a >(1,)B a a =-要想,只需,而,所以;B A ⊆0112a a a ≤-⎧⇒≤⎨≤⎩12a >112a <≤当时,即时,,1a a <-12a <(,1)B a a =-要想,只需,而,所以,B A ⊆0012a a a ≤⎧⇒≥⎨-≤⎩12a <102a ≤<综上所述:的取值范围为;a [0,1](2)由(1)可知:当时,,此时不符合题意;12a =B =∅A B ⋂=∅由(1)可知:当时,,12a >(1,)B a a =-要想中有且仅有两个整数,只需,或,A B ⋂1012a a -<⎧⎨<≤⎩0112a a ≤-<⎧⎨>⎩由,显然,所以,101212a a a -<⎧⇒<≤⎨<≤⎩12a >12a <≤由,0112a a a ≤-<⎧⇒∈∅⎨>⎩所以;12a <≤由(1)可知:时,,12a <(,1)B a a =-要想中有且仅有两个整数,只需,或,A B ⋂0112a a <⎧⎨<-≤⎩0112a a ≤<⎧⎨->⎩由,而,即,010112a a a <⎧⇒-≤<⎨<-≤⎩12a <10a -≤<由,0112a a a ≤<⎧⇒∈∅⎨->⎩所以,10a -≤<综上所述:的取值范围为.a (1,2][1,0)- 【点睛】关键点睛:根据一元二次方程两根的大小确定一元二次不等式的解集,分类讨论是解题的关键.22.对于定义域为的函数,如果存在区间,同时满足:①在内是D ()y f x =[],m n D ⊆()f x [],m n 单调函数;②当定义域是时,的值域也是,则称是该函数的“优美区间”.[],m n ()f x [],m n [],m n (1)写出函数的一个“优美区间”;()212f x x=(2)求证:函数不存在“优美区间”;()64g x x =+(3)已知函数有“优美区间”,当变化时,求出的最()()()221R,0a a x y h x a a a x+-==∈≠[],m n a n m -大值.【答案】(1)[0,2](2)答案见解析【分析】(1)结合“优美区间”的定义,即可写出函数的一个“优美区间”;()212f x x=(2)若函数存在“优美区间”,可得函数在上单调递减,从而可得,联立可推()g x [,]m n ()()g m n g n m =⎧⎨=⎩出矛盾,即可证明结论;(3)函数有“优美区间”,结合单调性可得,说明是方程()h x ()()h m mh n n =⎧⎨=⎩,m n 的两个同号且不等的实数根,结合根与系数的关系可求得的关系,进而222()10a x a a x -++=,m n 可求得的最大值.n m -【详解】(1)是的一个“优美区间”,证明如下:[0,2]21()2f x x=在区间上单调递增,212y x =[0,2]又,,∴的值域为,(0)0f =(2)2f =212y x =[0,2]∴是的一个“优美区间”.[0,2]21()2f x x=(2)设是函数的定义域的子集.[,]m n ()g x 由,可得或,0x ≠[,](,0)m n ∞⊆-[,](0,)m n ∞⊆+∴函数在上单调递减.6()4g x x =+[,]m n 若是函数的“优美区间”,则,[,]m n ()g x 6464n m mn ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得,,则,66n m m n -=-6()n m n m mn -=-,6,6,n m mn n m >∴=∴= 则,显然等式不成立,664m m +=∴函数不存在“优美区间”.6()4g x x =+(3)的定义域为,是函数的定义域的子集,()h x {|0}x x ≠[,]m n ()h x 则或,[,](,0)m n ∞⊆-[,](0,)m n ∞⊆+而函数在上单调递增,()()222111a a x y x h x a a xa a +-==+=-[,]m n 若是函数的“优美区间”,则,[,]m n ()h x ()()h m mh n n =⎧⎨=⎩∴是方程,即的两个同号且不等的实数根.,m n 211a x a a x +-=222()10a x a a x -++=,∴同号,21mn a => ,m n 只需,解得或,2222()4(3)(1)0a a a a a a ∆=+-=+->1a >3a <-,,211,a m n mn a a++== n m>,n m ∴-====∴当时,3a =n m -。
江苏省南通市2022-2023学年高一上学期数学期中考试试卷姓名:__________班级:__________考号:__________题号一二三四总分评分一、单选题1.已知集合A={U0<<2},B={U1<<5},则A∪B=()A.{U0<<5}B.{U2<<5}C.{U0<<2}D.{U<2或>5}2.“0<<2”是“2−−6<0”的()A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件3.已知f(2x﹣1)=4x+6,则f(5)的值为()A.26B.24C.20D.184.《几何原本》卷Ⅱ的几何代数法成了后世西方数学家处理数学问题的重要依据.通过这一原理,很多代数的定理都能够通过图形实现证明,也称之为无字证明现有如图所示图形,点F在半圆O上,点C在直径AB上,且OF⊥AB,设AC=a,BC=b,可以直接通过比较线段OF与线段CF的长度完成的无字证明为()A.a2+b2≥2ab(a>0,b>0)B.r2>B(>0,>0)C.r2≤+a>0,b>0)D.2B r≤B(a>0,b>0)5.函数=1+−1−2的值域为()A.(−∞,32]B.(−∞,32)C.[32,+∞)D.(32,+∞) 6.函数op=1r1+25−2(−1<<52)的最小值是()A.76B.87C.98D.657.已知f(x)为偶函数,且函数g(x)=xf(x)在[0,+∞)上单调递减,则不等式(1﹣2x)f(2x﹣1)+xf (x)<0的解集为()A.(﹣∞,13)B.(﹣∞,1)C.(,+∞)D.(1,+∞)8.对任意正数x,y,不等式x(x+y)≤a(x2+y2)恒成立,则实数a的最小值为()A B.2﹣1C.2+1D二、多选题9.已知集合U是全集,集合M,N的关系如图所示,则下列结论中正确的是()A.∩∁=∅B.∪∁=C.∁∪∁=∁D.∁∩∁=∁10.已知定义在R上的函数f(x),下列说法正确的有()A.若f(2)>f(1),则f(x)在R上不是减函数B.若f(x+1)是偶函数,则f(x)图象关于x=1对称C.若f(﹣1)=f(1),则f(x)是偶函数D.若f(x)满足任意x1≠x2,都有o1)−o2)1−2>0,则f(x)在R上是增函数11.已知3=5=15,则a,b满足的关系有()A.1+1=1B.B>4C.2+2<4D.(+1)2+(+1)2>1612.给定区间D,对于函数f(x)与g(x)及任意x1,x2∈D(其中x1>x2),若不等式f(x1)﹣f(x2)>g (x1)﹣g(x2)恒成立,则称f(x)对于g(x)在区间D上是“渐先函数”.已知函数f(x)=2ax2+2ax对于函数g(x)=x+a在区间[a,a+1]上是“渐先函数”,则实数a的值可能是()A.1B.0C.﹣1D.﹣2三、填空题13.若函数op=f(x)的定义域为.14.已知∃x∈R,使得x2﹣2x﹣m<0是真命题,则实数m的取值范围是.15.为了落实“提速降费”的要求,某市移动公司欲下调移动用户的消费资费,已知该公司共有移动用户10万人,人均月消费50元.经测算,若人均月消费下降x%(x为正数),则用户人数会增加8万人.若要保证该公司月总收入不减少,则x的取值范围为.16.已知函数op=|2−B+2|+,∈,若op在区间[−1,1]上的最大值是3,则实数的最大值是.四、解答题17.(1)已知+−1=6(>1),求12−−12的值;(2)log232+(1+lg2)lg5+(lg2)2−4log4318.已知不等式B2−3+2>0的解集为{U<1或>V(其中>1).(1)求实数,的值;(2)解关于的不等式K14B−≥1.19.已知幂函数f(x)=(m2﹣4m+4)xm﹣2在(0,+∞)上单调递减.(1)求f(x)的解析式;(2)若正数a,b满足2a+3b=4m,若不等式3+2≥n恒成立,求实数n的最大值.\20.已知函数op=2r1,∈(0,+∞)(1)判断函数的单调性,并用定义法证明;(2)若o2−1)>o1−p,求实数的取值范围.21.已知函数op=2+,∈(0,+∞),其中>0.(1)若op的图象与直线=2没有公共点,求实数a的取值范围;(2)当=1时,函数op=12(p+op的最小值为−8,求实数m的值.22.函数=op的图象关于坐标原点成中心对称图形的充要条件是函数=op为奇函数,可以将其推广为:函数=op的图象关于点o,p成中心对称图形的充要条件是函数=o+p−为奇函数,给定函数op=2+K6r1.(1)求op的对称中心;(2)已知函数op同时满足:①o+1)−1是奇函数;②当∈[0,1]时,op=2−B+.若对任意的1∈[0,2],总存在2∈[1,5],使得o1)=o2),求实数m的取值范围.答案解析部分1.【答案】A【解析】【解答】由题设∪={U0<<2}∪{U1<<5}={U0<<5}.故答案为:A【分析】根据并集的定义进行计算可得答案.2.【答案】B【解析】【解答】解不等式2−−6<0,得−2<<3而集合={U0<<2}是集合={U−2<<3}的真子集,所以“0<<2”是“2−−6<0”的充分而不必要条件故答案为:B【分析】利用一元二次不等式的解法可得2−−6<0的解集,再结合充分条件、必要条件的定义可得答案.3.【答案】D【解析】【解答】由于f(2x﹣1)=4x+6,则f(5)=f(2×3﹣1)=4×3+6=18.故答案为:D.【分析】可把f(5)中的5拆成2×3−1的形式,即可利用已知关系式求出f(5)的值.4.【答案】C【解析】【解答】解:由图形可知,O=12B=12(+p,O=12(+p−=12(−p,在Rt△OCF中,由勾股定理可得,CF=∵CF≥OF,≥12(+p,故答案为:C.【分析】由图形可知,O=12B=12(+p,O=12(−p,在Rt△OCF中,由勾股定理可求出CF,结合CF≥OF即可求出答案.5.【答案】A【解析】【解答】设1−2=,则≥0,=1−22,所以=1+1−22−=12(−2−2+3)=−12(+1)2+ 2,因为≥0,所以≤32,所以函数=1+−1−2的值域为(−∞,32].故答案为:A.【分析】根据已知条件,结合换元法以及二次函数的性质,即可求出答案.6.【答案】B【解析】【解答】由−1<<52,可得+1>0,5−2>0,op=1+1+25−2=22+225−2=27[(2+2)+(5−2p](12+2+15−2) =27(2+5−22r2+2r25−2)≥27(2+=87,仅当5−22r2=2r25−2,即=34时等号成立,故op的最小值为87.故答案为:B【分析】由op=1r1+25−2=22r2+25−2=27[(2+2)+(5−2p](12r2+15−2)展开后运用基本不等式可求出答案.7.【答案】B【解析】【解答】f(x)为偶函数,g(x)=xf(x)为奇函数,又g(x)在[0,+∞)上单调递减,g(x)在R上单调递减.∴由(1﹣2x)f(2x﹣1)+xf(x)<0,得(1﹣2x)f(1﹣2x)+xf(x)<0.∴g(1﹣2x)十g(x)<0,∴g(1﹣2x)<﹣g(x)=g(﹣x),∴1﹣2x>﹣x,解得x<1,即x∈(﹣∞,1).故答案为:B.【分析】由题意可得g(x)=xf(x)为奇函数,且g(x)在R上单调递减,原不等式可化为g(1-2x)<g(-x)即为1-2x>-x,解不等式可得所求解集.8.【答案】D【解析】【解答】∵x>0,y>0,∴x(x+y)≤a(x2+y2)⇔xy≤(a﹣1)x2+ay2⇔(−1)()2−+≥0,令=>0,f(t)=(a﹣1)t2﹣t+a,依题意,−1>0−14(K1)≥0,解得o12(K1),即>1∴实数a故答案为:D.【分析】利用换元法结合二次函数的性质可求出实数a的最小值.9.【答案】B,D【解析】【解答】由韦恩图可知,∩∁≠∅,∪∁=,∁∪∁=∁,∁∩∁=∁,AC不符合题意,BD符合题意,故答案为:BD【分析】利用韦恩图结合集合间的基本运算,逐项进行判断,可得答案.10.【答案】A,B,D【解析】【解答】A:若op在R上是减函数,显然由2>1⇒o2)>o1),不可能有o2)>o1)成立,所以op在R上不是减函数,因此A项正确;B:因为o+1)是偶函数,所以函数o+1)的图象关于轴对称,因为函数o+1)的图象向右平移1个单位得到op图象,所以op图象关于=1对称,B项正确;C:若o−1)=o1)=0,则函数op有可能是奇函数,不是偶函数,C项错误;D:o1)−o2)1−2>0的含义是分子分母同号,即op中,自变量越大,函数值也大,所以op在R上是增函数,D项正确.故答案为:ABD.【分析】根据函数单调性的性质,函数奇偶性的性质,函数图象变换的性质逐项进行判断,可得答案. 11.【答案】A,B,D【解析】【解答】由3=5=15,则=log315>0,=log515>0,A:1+1=1log315+1log515=log153+log155=log1515=1,正确;B:由A知:1+1=1且>0,>0,≠,所以1=1+1>B>4,故正确,C:由A、B知:+=B,而2+2=(+p2−2B=(B)2−2B=(B−1)2−1>8,故错误,D:由上,(+1)2+(+1)2=2+2+2(+p+2=(B)2+2>18>16,故正确.故答案为:ABD.【分析】先把指数式化为对数式,再利用对数的运算性质可判断A;由A可知1+1=1,再结合基本不等式可判断B、C、D.12.【答案】A,D【解析】【解答】根据题意知,要使函数f(x)=2ax2+2ax对于函数g(x)=x+a在区间[a,a+1]上是“渐先函数”,则a≠0,不等式f(x1)﹣f(x2)>g(x1)﹣g(x2)在[a,a+1]上恒成立,∵x1>x2,∴o1)−o2)1−2在[a,a+1]上恒成立,1−2>o1)−o2)∴'(p≥'(p,即4ax+2a≥1在[a,a+1]上恒成立,当a>0时,只需(4ax+2a)min=4a2+2a≥1,即4a2+2a﹣1≥0,解得当a<0时,只需(4ax+2a)min=4a(a+1)+2a≥1,即4a2+6a﹣1≥0,解得,综上可得,故实数a的值可能是1,﹣2.故答案为:AD.【分析】由已知及导数的定义可知o1)−o2)1−2>o1)−o2)1−2在[a,a+1]上恒成立,即f'(x)>g'(x),分别对已知函数求导,求出a的取值范围,即可得实数a的值.13.【答案】[﹣1,0)∪(0,1]【解析】【解答】∵op=1−2|U∴1−2≥0|U≠0,∴−1≤≤1≠0∴﹣1≤x<0或0<x≤1即f(x)的定义域为[﹣1,0)∪(0,1]故答案为:[﹣1,0)∪(0,1]【分析】由已知可得1−2≥0|U≠0,解不等式组可得f(x)的定义域.14.【答案】(﹣1,+∞)【解析】【解答】解:因为∃x∈R,使得x2﹣2x﹣m<0是真命题,即m>x2﹣2x在R上有解,只需m>(x2﹣2x)min,又函数x2﹣2x=(x﹣1)2﹣1≥﹣1,所以m>﹣1,即实数m的范围为(﹣1,+∞),故答案为:(﹣1,+∞).【分析】由已知可得m>x2-2x在R上有解,只需m>(x2-2x)min,再根据二次函数的性质求出最小值,由此即可求解出实数m的取值范围.15.【答案】(0,20]【解析】【解答】设该公司下调消费投资后的月总收入为y元,则=50(1−100)(10+8),要保证该公司月总收入不减少,则50(1−100)(10+8)≥10×50,解得0≤≤20,∵x为正数,∴x的取值范围为(0,20].故答案为:(0,20]【分析】设该公司下调消费投资后的月总收入为y元,则=50(1−100)(10+8),进而有50(1−100)(10+ 8)≥10×50,求解出x的取值范围.16.【答案】0【解析】【解答】因为op=|2−B+2|+,当2−4≤0,即−2≤≤2时,2−B+2≥0,op=2−B+2+,此时对称轴为=2∈[−1,1],所以op max=max{o−1),o1)},即op max=max{3+2,3},所以3+2≤3,解得≤0,所以−2≤≤0;当2−4>0,即<−2或>2时,2−B+=0有两个根,1,2,设1<,此时对称轴为=2<−1或=2>1,当即op max=max{3+2,3}所以3+2≤3,解得≤0,所以<−2;当2>1,即>2时,op max=max{o−1),o1)},即op max=max{3+2,3}所以3+2≤3,解得≤0,不满足>2,故无解.综上所述,的取值范围是(−∞,0],故的最大值为0.故答案为:0【分析】分−2≤≤2,<−2或>2三种情况,结合二次函数的性质分类讨论,求出a的范围即可求出实数的最大值.17.【答案】(1)解:由题意得(12−−12)2=+1−2=4,而>1,则12−−12>0,12−−12=2(2)解:原式=13+(1+lg2)(1−lg2)+(lg2)2−3=13+1−3=−53【解析】【分析】(1)利用有理数指数幂的运算性质,结合完全平方公式求解出12−−12的值;(2)利用对数的运算性质求解即可.18.【答案】(1)解:由题意可得B2−3+2>0的解集为{U<1或>V,则>0且1和为方程B2−3+2=0的两个根.则1+=31×=2,解得=1=2.(2)解:不等式K14B−≥1化为K14K2≥1,转化为3K12K1≤0,即(3−1)(2−1)≤02−1≠0所以13≤<12,解集为{U13≤<12}.【解析】【分析】(1)由题意可得>0且1和为方程B2−3+2=0的两个根,由韦达定理列出关于a、b的方程组求解出实数,的值;(2)不等式K14B−≥1转化为3K12K1≤0,求解分式不等式,可得不等式的解集.19.【答案】(1)解:幂函数f(x)=(m2﹣4m+4)xm﹣2在(0,+∞)上单调递减,所以2,解得m=1,所以f (x )的解析式为f (x )=x ﹣1.(2)解:正数a ,b 满足2a+3b =4m ,则a >0,b >0,2a+3b =4,所以3+2=14(3+2)(2a+3b )=14(12+4+9)≥6,当且仅当4=9,即a =1,b =23时等号成立,故3+2的最小值为6,又不等式3+2≥n 恒成立,所以n≤6,即实数n 的最大值6.【解析】【分析】(1)利用幂函数的定义和单调性列出方程,求出f (x )的解析式;(2)由已知条件可得a >0,b >0,2a+3b =4,利用基本不等式求出3+2的最小值,即可得实数n 的最大值.20.【答案】(1)解:op =2r1=2(r1)−2r1=2+−2r1,∈(0,+∞),该函数由op =−2向左平移一个单位,再向上平移2个单位即可得到,如图:由图可知,函数在∈(0,+∞)单增,现证明如下:设0<1<2,则o 1)=2+−21+1,o 2)=2+−22+1,o 2)−o 1)=21+1−22+1=2(2−1)(1+1)(2+1),∵0<1<2,2−1>0,o 2)−o 1)>0,op =2r1在∈(0,+∞)上单调递增(2)解:若o2−1)>o1−p ,由op =2r1在∈(0,+∞)上单调递增,得2−1>01−>02−1>1−,即23<<1,则实数的取值范围为23<<1【解析】【分析】(1)采用分离常数法,结合反比例函数图象的平移法则进行预判,再采用定义法证明即可;(2)op =2r1,∈(0,+∞)根据增减性判断,应满足2−1>01−>02−1>1−,化简求值即可.21.【答案】(1)解:由题意2+=2在∈(0,+∞)上无解,即22−+2=0在∈(0,+∞)上无解,由2=−22,∈(0,+∞),而−22=−2(−14)2+18≤18,所以>116,所以实数a的取值范围为(116,+∞).(2)解:当=1时op=2+1,则1op=+1,所以op=12(p+op=2+12+o+1)=(+1)2+o+1)−2,令=+1,又∈(0,+∞),故≥2(仅当=1时等号成立)所以=2+B−2在[2,+∞)上的最小值为−8,又=2+B−2的图象开口向上,对称轴为=−2,当−2≤2,即≥−4时,=2+B−2在[2,+∞)上单调递增,所以min=4+2−2=2+2=−8,解得=−5,不满足≥−4,故无解;当−2>2,即<−4时,=2+B−2在[2,−2)上单调递减,在(−2,+∞)上单调递增,所以min=24−22−2=−24−2=−8,解得=±26,又<−4,故=−26,综上所述,=−26.【解析】【分析】(1)由题意可得22−+2=0在∈(0,+∞)上无解,由二次函数的性质求出实数a的取值范围;(2)由题意可得op=(+1)2+o+1)−2,令=+1,则有t≥2,将问题转化为=2+B−2在[2,+∞)上的最小值为−8,由二次函数的性质讨论函数的单调性和对应的最小值即可求得m的值. 22.【答案】(1)解:op=2+K6r1=(r1)2−(r1)−6r1=−6r1,设op的对称中心为(,p,由题意,得函数=o+p−为奇函数,则o−+p−=−o+p+,即o+p+o−+p−2=0,即(+p−6rr1+(−+p−6−rr1−2=0,整理得(−p2−[(−p(+1)2−6(+1)]=0,所以−=(−p(+1)2−6(+1)=0,解得=−1,=−1,所以函数op的对称中心为(−1,−1);(2)解:因为对任意的1∈[0,2],总存在2∈[1,5],使得o1)=o2),所以函数op的值域是函数op的值域的子集,因为函数=,=−6r1在[1,5]上都是增函数,所以函数op=−6r1在[1,5]上是增函数,所以op的值域为[−2,4],设函数op的值域为集合,则原问题转化为⊆[−2,4],因为函数o+1)−1是奇函数,所以函数op关于(1,1)对称,又因为o1)=1,所以函数op恒过点(1,1),当2≤0,即≤0时,op在[0,1]上递增,则函数op在(1,2]上也是增函数,所以函数op在[0,2]上递增,又o0)=,o2)=2−o0)=2−,所以op的值域为[,2−p,即=[,2−p,又=[,2−p⊆[−2,4],2−≤4≤0,解得−2≤≤0,所以≥−2当2≥1即≥2时,op在[0,1]上递减,则函数op在(1,2]上也是减函数,所以函数op在[0,2]上递减,则=[2−,p,又=[2−,p⊆[−2,4],2−≥−2≤4,解得2≤≤4,所以≥2当0<2<1即0<<2时,op在(0,2)上递减,在(2,1)上递增,又因函数op过对称中心(1,1),所以函数op在(1,2−2)上递增,在(2−2,2)上递减,故此时op min=min{o2),o2)},op max=max{o0),o2−2)},要使⊆[−2,4],只需要o2)=2−o0)=2−≥−2o2)=−24+≥−2o0)=≤4o2−2)=2−o2)=24−+2≤40<<2,解得0<<2,综上所述实数m的取值范围为[−2,4].【解析】【分析】(1)设op的对称中心为(,p,根据对称性得到关于a,b的方程,解方程求出op的对称中心;(2)求出op的值域为[−2,4],设函数op的值域为集合,则问题可转化为⊆[−2,4],分m≤0,m≥2和0<<2三种情况讨论,从而可求出实数m的取值范围.。
江苏省南通市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分) (2019高一上·柳江月考) 以下五个关系:,,,,,其中正确的个数是()A .B .C .D .4. (2分) (2019高一上·平罗期中) 函数在区间上的最大值为4则函数的单调递增区间是().A .B .C .D .5. (2分) (2019高一上·石嘴山期中) 已知函数f(x)=2x的反函数为y=g(x),则g()的值为()A .B . 1C . 12D . 26. (2分)(2017·宜宾模拟) 已知函数有且仅有四个不同的点关于直线y=1的对称点在直线kx+y﹣1=0上,则实数k的取值范围为()A .B .C .D .7. (2分) (2016高一上·历城期中) 下列各组函数中,表示同一函数的是()A .B .C .D .8. (2分)函数f(x)=lgx﹣的零点所在的区间是()A . (0,1]B . (1,10]C . (10,100]D . (100,+∞)9. (2分)已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2 ,则f (2015)=()A . 2B . -2C . 8D . -810. (2分) (2016高一上·运城期中) 若函数y=f(x)是定义在R上的偶函数,在(﹣∞,0]上是减函数,且f(2)=0,则使函数值y<0的x取值范围为()A . (﹣2,2)B . (2,+∞)C . (﹣∞,2)D . (﹣∞,2]11. (2分) (2017高一上·汪清期末) 函数f(x)=ex+x﹣2的零点所在的区间是()A . (﹣2,﹣1)B . (﹣1,0)C . (0,1)D . (1,2)二、填空题 (共4题;共4分)12. (1分) (2018高一上·鹤岗期中) 已知幂函数f(x)=k·xa则k=________13. (1分)下列等式中,当a,b的值为正数时,都是正确的,但对a,b为任意实数时,有些等式就未必成立,其中不能对任意实数a,b都成立的是________① ;② ;③am•an=am+n(m,n∈Q);④(am)n=amn(m,n∈Q);⑤ ;⑥ .14. (1分) (2017高三上·长葛月考) 函数的值域为________.15. (1分) (2018高一上·台州月考) 已知函数,则函数的图像关于点成中心对称________, ________.三、解答题 (共6题;共50分)16. (5分) (2016高一上·景德镇期中) 已知集合M={x|x(x﹣a﹣1)<0(a∈R)},N={x|x2﹣2x﹣3≤0},若M∪N=N,求实数a的取值范围.17. (10分)已知函数f(x)=log4(4x+1)+kx(k∈R).(1)若k=0,求不等式f(x)>的解集;(2)若f(x)为偶函数,求k的值.18. (10分) (2016高一上·唐山期中) 设定义在[﹣2,2]上的函数f(x)是减函数,若f(m﹣1)<f(﹣m),求实数m的取值范围.20. (5分) (2016高一上·宿迁期末) 已知二次函数f(x)对任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+m,(m∈R).①若存在实数a,b(a<b),使得g(x)在区间[a,b]上为单调函数,且g(x)取值范围也为[a,b],求m 的取值范围;②若函数g(x)的零点都是函数h(x)=f(f(x))+m的零点,求h(x)的所有零点.21. (10分) (2016高一上·菏泽期中) 设函数f(x)=ax﹣(m﹣2)a﹣x (a>0且a≠1)是定义域为R的奇函数.(1)求m的值;(2)若f(1)<0,试判断y=f(x)的单调性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围;(3)若f(1)= ,g(x)=a2x+a﹣2x﹣2f(x),求g(x)在[1,+∞)上的最小值.参考答案一、单选题 (共11题;共22分)1-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共4题;共4分)12-1、13-1、14-1、15-1、三、解答题 (共6题;共50分)16-1、17-1、18-1、20-1、20-2、21-1、21-2、21-3、。
江苏省南通市第一中学2021-2022高一数学上学期期中试题(含解析)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.若集合{|121}M x x =-<-≤,{}2|680N x x x =-+<,则M N ⋃=()A. (]2,3B. ()2,3C. [)1,4D. ()1,4【答案】C 【解析】 【分析】先计算集合M ,N ,再计算M N ⋃.【详解】集合{|121}M x x =-<-≤,{}2|680N x x x =-+<∵[1,3)M =,(2,4)N =, ∴[1,4)MN =.故答案选C【点睛】本题考查集合的并集与一元二次不等式的解法,考查运算求解能力,属于基础题型. 2.扇形周长为6cm ,面积为2cm 2,则其圆心角的弧度数是( ) A. 1或5 B. 1或2C. 2或4D. 1或4【答案】D 【解析】 【分析】利用扇形弧长和面积计算公式完成求解.【详解】设扇形的半径为r cm ,圆心角为(02)ααπ<<,则2261 2.2r r r αα+=⎧⎪⎨=⎪⎩解得14r α=⎧⎨=⎩或21.r α=⎧⎨=⎩,故选:D.【点睛】扇形的弧长和面积计算公式:弧长公式:l r α=;面积公式:21122S lr r α==,其中α是扇形圆心角弧度数,r 是扇形的半径.3.函数()ln ||f x x =的定义域为() A. [)1,-+∞B. [)()1,00,-⋃+∞C. (],1-∞-D.()()1,00,-+∞【答案】B 【解析】 【分析】分别计算两部分的定义域,求交集得到答案.【详解】函数()ln ||f x x∵3300xx -⎧-≥⎪⎨>⎪⎩,∴[1,0)(0,)x ∈-+∞.故答案选B【点睛】本题考查函数的定义域,考查运算求解能力 4.已知函数()()22231m m f x m m x+-=--是幂函数,且其图象与两坐标轴都没有交点,则实数(m = )A. 1-B. 2C. 3D. 2或1-【答案】A 【解析】 【分析】根据幂函数的定义,求出m 的值,代入判断即可.【详解】函数()()22231m m f x m m x+-=--是幂函数,211m m ∴--=,解得:2m =或1m =-,2m =时,()f x x =,其图象与两坐标轴有交点不合题意, 1m =-时,()41f x x =,其图象与两坐标轴都没有交点,符合题意, 故1m =-,【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题. 5.在同一直角坐标系中,函数()()0af x xx =≥,()log a g x x =-的的图象可能是()A. B.C. D.【答案】D 【解析】 【分析】就01a <<和1a >分类讨论可得正确的选项. 【详解】解:当01a <<时,函数()()0af x xx =≥为增函数,且图象变化越来越平缓,()log a g x x =-的图象为增函数,当1a >时,函数()()0af x x x =≥为增函数,且图象变化越来越快,()log a g x x =-的图象为减函数, 综上:只有D 符合 故选:D .【点睛】本题考查指数函数和对数函数的图像性质,属于基础题.6.已知关于x 的方程22(28)160x m x m --+-=的两个实根为12,x x 满足123,2x x <<则实数m 的取值范围为( )A. 4m <B. 142m -<< C.742m << D.1722m -<< 【答案】D【分析】利用二次方程实根分布列式可解得.【详解】设22()(28)16f x x m x m =--+-,根据二次方程实根分布可列式:3()02f <,即2233()(28)16022m m --⨯+-<, 即241270m m --<,解得:1722m -<<. 故选D.【点睛】本题考查了二次方程实根的分布.属基础题.7.设集合{}4590,M k k Z αα==+⋅∈,{}9045,N k k Z αα==+⋅∈,则集合M 与N 的关系是( ) A. M N ⋂=∅ B. MNC. NMD. M N【答案】C 【解析】 【分析】将集合M 和集合N 整理后可知集合M 表示45的奇数倍的角,集合N 表示45的整数倍的角,从而得到集合之间的包含关系.【详解】{}(){}45245,2145,M k k Z k k Z αααα==+⋅∈==+⋅∈{}(){}24545,245,N k k Z k k Z αααα==⨯+⋅∈==+⋅∈21k +表示所有奇数;2k +表示所有整数 NM ∴本题正确选项:C【点睛】本题考查集合间的包含关系,关键是能够将两个集合所表示的角的大小确定,从而得到包含关系.8.已知函数84()()2x xa f x a ⨯-=∈R 是奇函数,()ln(e 1)()xg x bx b =+-∈R 是偶函数,则log b a =() A. 3-B. 13-C.13D. 3【解析】 【分析】利用奇函数的性质(0)0f =,可以求出a 的值,由偶函数的性质()()g x g x =-,可以求出b 的值,利用对数的运算公式,可以求出log b a 的值.【详解】因为函数84()()2x xa f x a ⨯-=∈R 是奇函数,所以(0)0f =,即808a a -=⇒=, 因为()ln(e 1)()xg x bx b =+-∈R 是偶函数,所以()()g x g x =-,1ln(e 1)ln(e 1)ln(e 1)ln(e 1)22,2x x x x bx bx bx x bxx b --+-=++⇒+-+=⇒=∈∴=R因此12log log 83b a ==-,故本题选A.【点睛】本题考查了奇偶函数的性质,考查了对数的运算,考查了数学运算能力. 9.设函数()f x 对0x ≠的一切实数均有()201926f x f x x ⎛⎫+= ⎪⎝⎭,则()2019f =( )A. -4034B. 2021C. 2021D. 4036【答案】A 【解析】 【分析】 将x 换成2019x 再构造一个等式,然后消去f (2019x),得到f (x )的解析式,最后可求得f (2021).【详解】∵f (x )+2f (2019x)=6x ① ∴f (2019x )+2f (x )62019x⨯=②∴①﹣②×2得﹣3f (x )=6x 622019x⨯⨯-∴f (x )=﹣2x 42019x⨯+,∴f (2021)=﹣4038+4=﹣4034. 故选:A .【点睛】本题考查了函数解析式的求法,属中档题.10.已知()P y 为角β的终边上的一点,且sin β=2222sin sin cos βββ=-( ) A. 12±B. 211-D. 2±【答案】B 【解析】 【分析】利用三角函数的定义列方程,解方程求得y 的值,进而求得tan β的值,将所求表达式转化为只含tan β的形式,由此求得表达式的值.【详解】因为r =,故由正弦函数的定义可得=,解得12y =或12y(舍去),所以1tan β==,所以222222222sin 2tan 2sin cos tan 1111βββββ⎛⨯ ⎝⎭===---⎛- ⎝⎭,故选B. 【点睛】本小题主要考查三角函数的定义,考查同角三角函数的基本关系式,考查齐次方程的运算,考查化归与转化的数学思想方法,属于中档题.11.已知单调函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()9g x f x x =+-的零点所在的区间为() A. (1,2) B. (2,3)C. (3,4)D. (4,5)【答案】D 【解析】 【分析】根据单调性的性质和零点存在定理,可以求解出函数()()9g x f x x =+-的零点所在的区间,选出正确答案.【详解】因为函数()f x 是定义域为(0,)+∞上的单调函数,[]2()log 3f f x x -=,所以2()log f x x -为一定值,设为t ,即22()log ()log f x x t f x x t -=⇒=+,而()3f t =,解得2t =,因此2()log 2f x x =+,所以2()log 7g x x x =+-,22(1)60,(2)40,(3)log 340,(4)10,(5)log 520g g g g g =-<=-<=-<=-<=->,故函数()()9g x f x x =+-的零点所在的区间为(4,5),本题选D.【点睛】本题考查了单调函数的性质,考查了零点存在定理,考查了换元法,对数式正负性的判断是解题的关键. 12.已知函数()1lg 43xx f x m ⎛⎫=-- ⎪⎝⎭,若对任意的[]1,1x ∈-使得()0f x ≥成立,则实数m的取值范围为( ) A. 11,3⎛⎫-∞-⎪⎝⎭B. 8,3⎛⎫-∞- ⎪⎝⎭C. 11,4⎛⎫-∞-⎪⎝⎭D.15,4⎛⎤-∞-⎥⎝⎦【答案】D 【解析】 【分析】问题转化为对任意的[]1,1x ∈-使得1143x x m +≤-恒成立,令()143xxh x =-,[]1,1x ∈-,根据函数的单调性求出()h x 的最小值,从而可得结果. 【详解】对任意的[]1,1x ∈-使得()0f x ≥成立,即对任意的[]1,1x ∈-使得1143xxm +≤-恒成立, 令()143xx h x =-,[]1,1x ∈-, 显然()h x 在[]1,1-递增, 故()143xx h x =-的最小值为()1h -=-114, 故1114m +≤-,15m 4≤-,实数m 的取值范围为15,4⎛⎤-∞-⎥⎝⎦,故选D . 【点睛】本题主要考查指数函数的单调性的应用,以及不等式恒成立问题,属于中档题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.二、填空题(本大题共4小题,每小题5分,共20分.) 13.函数()()20.5log 32f x x x =-+-的单调递增区间为______.【答案】3,22⎡⎫⎪⎢⎣⎭【解析】 【分析】先求得函数的定义域,再结合复合函数单调性的性质即可求得单调递增区间. 【详解】由对数函数真数大于0,可得2320x x -+->,解得()1,2x ∈函数()()20.5log 32f x x x =-+-是由对数与二次函数的复合函数构成,由”同增异减”的单调性质,可知对数部分为单调递减函数,则二次函数部分为单调递减函数即可 二次函数单调递减区间是3,+2⎡⎫∞⎪⎢⎣⎭结合函数定义域,所以整个函数单调递减区间为3,22⎡⎫⎪⎢⎣⎭【点睛】本题考查了复合函数单调性的判断,注意对数函数对定义域的特殊要求.14.已知4323x xy =-⋅+,当[]0,2x ∈时,其值域________【答案】3,74⎡⎤⎢⎥⎣⎦【解析】【分析】令2x t =,因为[]0,2x ∈,所以[1,4]t ∈,得到函数()223333()24f t t t t =-+=-+,利用二次函数的性质,即可求解,得到答案.【详解】由题意,令2x t =,因为[]0,2x ∈,所以[1,4]t ∈, 则函数()223333()24f t t t t =-+=-+, 所以当32t =时,函数()f t 取得最小值,最小值为33()24f =, 当4t =时,函数()f t 取得最大值,最小值为(4)7f =,所以函数4323x xy =-⋅+的值域为3,74⎡⎤⎢⎥⎣⎦,故答案为3,74⎡⎤⎢⎥⎣⎦.【点睛】本题主要考查了指数函数的性质,以及二次函数的图象与性质的应用,着重考查了换元思想,以及推理与运算能力,属于基础题.15.已知定义在R 上的函数()f x 满足()()f x f x -=,且函数()f x 在(),0-∞上是减函数,若22cos ,3a f π⎛⎫= ⎪⎝⎭()0.812log 4.1,2b f c f ⎛⎫== ⎪⎝⎭,则,,a b c 的大小关系为__________.【答案】a c b << 【解析】 【分析】先判断函数的奇偶性,再分析得到0.8122log 4.122cos 03π<-<<,由函数单调性得到()0.8122log 4.122cos 3f f f π⎛⎫⎛⎫>-> ⎪ ⎪⎝⎭⎝⎭,即得解.【详解】()()f x f x -=,()f x ∴是偶函数,()()0.80.822f f ∴-=,22cos 13π=-,1122log 4.1log 42<=-,00.810.8222,122<<<<,0.8221-<-<-,0.8122log 4.122cos 03π∴<-<<,又因为()f x 在(),0-∞上递减,()0.8122log 4.122cos 3f f f π⎛⎫⎛⎫∴>-> ⎪ ⎪⎝⎭⎝⎭,()0.8122log 4.122cos 3f f f π⎛⎫⎛⎫∴>> ⎪ ⎪⎝⎭⎝⎭所以b c a >>,即a c b <<, 故填:a c b <<【点睛】本题主要考查函数的奇偶性和单调性的应用,考查指数函数对数函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于较易题目。
2023-2024学年度江苏省启东中学高一期中考试(数学)一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.对于全集U 的子集M ,N ,若M 是N 的真子集,则下列集合中必为空集的是().A.()UNM ⋂ð B.()U M Nð C.()()UUM N ⋂痧 D.M N⋂【答案】B 【解析】【分析】根据题目给出的全集是U ,M ,N 是全集的子集,M 是N 的真子集画出集合图形,由图形表示出三个集合间的关系,从而看出是空集的选项.【详解】解:集合U ,M ,N 的关系如图,由图形看出,只有()U N M I ð是空集.故选:B .【点睛】本题考查了交、并、补集的混合运算,是基础题.本题解题的关键在于根据题意,给出集合的图形表示法,数形结合解.2.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是()A.{}4a a ≤ B.{}4a a ≥ C.{}4a a ≤- D.{}4a a ≥-【答案】C 【解析】【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果.【详解】由题意可得220a +≤,解得4a ≤-,故选:C3.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9z x y =-的取值范围是()A.{}726z z -≤≤B.{}120z z -≤≤C.{}415z z ≤≤ D.{}115z z ≤≤【答案】B 【解析】【分析】令m x y =-,4n x y =-,可得85933z x y n m =-=-,再根据,m n 的范围求解即可.【详解】令m x y =-,4n x y =-,则343n m x n my -⎧=⎪⎪⎨-⎪=⎪⎩,所以85933z x y n m =-=-.因为41m -≤≤-,所以5520333m ≤-≤.因为15n -≤≤,所以8840333n -≤≤,所以120z -≤≤.故选:B4.加油(两次加油时油价不一样),甲方案:每次购买汽油的量一定;乙方案:每次加油的钱数一定.问哪种加油的方案更经济?()A.甲方案B.乙方案C.一样D.无法确定【答案】B 【解析】【分析】设两次加油的油价分别为x ,y (,0x y >,且x y ≠),分别计算两种方案的平均油价,然后比较即得.【详解】设两次加油的油价分别为x ,y (,0x y >,且x y ≠),甲方案每次加油的量为()0a a >;乙方案每次加油的钱数为()0b b >,则甲方案的平均油价为:22ax ay x ya ++=,乙方案的平均油价为:22211bxy b bx y x yx y==+++,因为22()022()x y xy x y x y x y +--=>++,所以22x y xy x y+>+,即乙方案更经济.故选:B .5.若a 为实数,则“1a =”是“3()3+=-x x a f x a为奇函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据函数的的偶性的定义及判定方法,结合充分条件、必要条件的判定方法,即可求解.【详解】当1a =时,函数31()31+=-x x f x 的定义域为(,0)(0,)-∞+∞ 关于原点对称,且3131313()()1331313x x x x xx x xf x f x --+++-===-=----,即()()f x f x -=-,此时函数()f x 为奇函数,所以充分性成立;反之:当3()3+=-x x a f x a ,则满足()()f x f x -=-,即3333x xx xa aa a--++=---,即133133x x xxa aa a +⋅+=--⋅-,解得1a =±,所以必要性不成立.综上可得,1a =是函数3()3+=-x x a f x a为奇函数的充分不必要条件.故选:A.6.若函数()()2,16,1x ax x f x a x a x ⎧-+<⎪=⎨--⎪⎩满足对任意实数12x x ≠,都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是()A.(-∞,2] B.(1,2)C.[2,6)D.72,3⎡⎤⎢⎥⎣⎦【答案】D 【解析】【分析】由题意()f x 是R 上的增函数,所以分段函数的每一段单调递增且分界点处单调递增,列出不等式组求出a 的取值范围即可.【详解】根据题意,任意实数12x x ≠都有1212()()0f x f x x x ->-成立,所以函数()f x 是R 上的增函数,则分段函数的每一段单调递增且分界点处单调递增,所以()21216016a a a a a⎧-⎪⨯-⎪⎪->⎨⎪-+--⎪⎪⎩,解得:723a ≤≤,所以实数a 的取值范围是:[2,7]3.故选:D.7.已知()4y f x =+是定义域为R 的奇函数,()2y g x =-是定义域为R 的偶函数,且()y f x =与()y g x =的图象关于y 轴对称,则()A.()y f x =是奇函数B.()y g x =是偶函数C.()y f x =关于点()2,0对称D.()y g x =关于直线4x =对称【答案】A 【解析】【分析】根据函数()4y f x =+,()2y g x =-的奇偶性可推出()y f x =以及()y g x =的对称性,结合()y f x =与(y g x =的图象关于y 轴对称,推出()y f x =的奇偶性以及对称性,判断A,C;同理推得()y g x =的奇偶性以及对称性,判断B,D.【详解】由于()4y f x =+是定义域为R 的奇函数,则()y f x =的图象关于(4,0)成中心对称,()2y g x =-是定义域为R 的偶函数,则()y g x =的图象关于2x =-对称,因为()y f x =与()y g x =的图象关于y 轴对称,则()y f x =的图象关于2x =对称,又()y f x =的图象关于(4,0)成中心对称,则()y f x =的图象关于(0,0)成中心对称,故()y f x =为奇函数,A 正确;因为()y f x =为奇函数,故()()f x f x -=-,由()y f x =与()y g x =的图象关于y 轴对称,可得()(),()()f x g x g x f x =-=-,故()()()()g x f x f x g x -==--=-,故()y g x =为奇函数,B 错误;由A 的分析可知()y f x =的图象关于2x =对称,故C 错误;由A 的分析可知()y f x =的图象关于(4,0)成中心对称,()y f x =为奇函数,则()y f x =的图象也关于(4,0)-成中心对称,而()y f x =与()y g x =的图象关于y 轴对称,则()y g x =的图象关于(4,0)成中心对称,故D 错误,故选:A【点睛】本题综合考查了函数的奇偶性以及对称性的应用,对抽象函数的性质的考查能较好地反映学生的思维能力和数学素养,解答时要注意综合应用函数性质的相关知识解答.8.已知函数()22f x ax x =+的定义域为区间[m ,n ],其中,,a m n R ∈,若f (x )的值域为[-4,4],则n m -的取值范围是()A.[4,]B.,]C.[4,]D.,8]【答案】C 【解析】【分析】先讨论0a =,再结合二次函数的图象与性质分析0a >时,n m -的最大值与最小值,同理可得a<0时的情况即可得解.【详解】若0a =,()2f x x =,函数为增函数,[,]x m n ∈时,则()24,()24f m m f n n ==-==,所以2(2)4n m -=--=,当0a >时,作图如下,为使n m -取最大,应使n 尽量大,m 尽量小,此时14a =,由22()424()424f n am m f m an n =⎧+=⎧⇒⎨⎨=+=⎩⎩,即2240ax x +-=,所以24,m n mn a a+=-=-,所以n m -=,即n m -≤,当14a -<-时,即10a 4<<时,此时,m n 在对称轴同侧时n m -最小,由抛物线的对称性,不妨设,n m 都在对称轴右侧,则由22()24,()24f n an n f m am m =+==+=-,解得24162416,22n m a a-+-==,42n m a a∴-==,当且仅当1414a a+=-,即0a =时取等号,但0a >,等号取不到,4n m ∴->,a<0时,同理,当14a =-时,max ()n m -=,当14a >-时,()min 4n m ->,综上,nm -的取值范围是,故选:C二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.下列说法正确的是()A.若0,R a b >∈,则“a b >”是“a b >”的必要不充分条件B.“0c <”是“二次方程20(,R)x bx c b c ++=∈有两个不等实根”的充分不必要条件C.“A B B = ”是“()B A B ⊆ ”的充分不必要条件D.若“x >m ”是“2021x <或“2022x >”的充分不必要条件,则m 的最小值为2022【答案】BD 【解析】【分析】根据充分、必要条件逐个分析判断.【详解】对A :若a b >,则a b b >≥,即a b >若a b >,比如:12a b =>=-,则a b >不成立∴“a b >”是“a b >”的充分不必要条件,A 错误;对B :若0c <,则240b c ∆=->,即二次方程20(,R)x bx c b c ++=∈有两个不等实根若二次方程20(,R)x bx c b c ++=∈有两个不等实根,等价于240b c ∆=->比如:3,1b c ==满足0∆>,但0c <不成立∴“0c <”是“二次方程20(,R)x bx c b c ++=∈有两个不等实根”的充分不必要条件,B 正确;对C :∵A B B B A =⇔⊆ 且()B A B B A ⊆⋂⇔⊆则()A B B B A B =⇔⊆⋂ ∴“A B B = ”是“()B A B ⊆ ”的充要条件,C 错误;对D :根据题意可得:2021m ≥,则m 的最小值为2022,D 正确;故选:BD.10.设矩形ABCD (AB BC >)的周长为定值2a ,把ABC 沿AC 向ADC △折叠,AB 折过去后交DC 于点P ,如图,则下列说法正确的是()A.矩形ABCD 的面积有最大值B.APD △的周长为定值C.APD △的面积有最大值D.线段PC 有最大值【答案】BC 【解析】【分析】根据基本不等式的性质,结合图形折叠的性质,结合对钩函数的性质逐一判断即可.【详解】设AB x =,则BC a x =-,因为AB BC >,所以,2a x a ⎛⎫∈⎪⎝⎭.矩形ABCD 的面积22()24x a x a S AB BC x a x +-⎛⎫=⋅=-<= ⎪⎝⎭,因为2ax ≠,所以无最大值.故A 错.根据图形折叠可知APD △与1CPB △全等,所以APD △周长为1AP PD DA AP PB DA AB DA a ++=++=+=.故B 正确.设DP m =,则AP PC x m ==-,有222DP DA AP +=,即222()()m a x x m +-=-,得22a m a x=-,22321313()224224ADP a a a S a a x ax a x x ⎛⎫⎛⎫-=--=-+≤ ⎪ ⎪⎝⎭⎝⎭△,当2x a =时,取最大值.故C 正确.22a PC x a x =+-,因为函数22a y x a x =+-在2(0,)2a 上单调递减,在2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭上单调递增,所以当,2a x a ⎛⎫∈⎪⎝⎭,当2x a =时函数有最小值,无最大值.故D 错误.故选:BC .【点睛】关键点睛:利用基本不等式的性质、对钩函数的性质是解题的关键.11.已知2log 3m =,3log 7n =,则42log 56的值不可能是()A.31mn mn ++ B.321m n m n ++++ C.31mn mn m +++ D.31mn mn m +-+【答案】ABD 【解析】【分析】利用对数运算的公式计算即可.【详解】由换底公式得:223log 7log 3log 7mn =⋅=,71log 2mn=,()424242427878log 56log log log ⨯==+,其中4277771111711log 421log 61log 2log 311log mnmn m mn n=====++++++,424222233383242log log log log lo 67g 1mnm ====+++,故42313log 5611mn m mn m mn mn m mn +=++=+++++故选:ABD.12.已知关于x 的不等式(1)(3)20a x x -++>的解集是()12,x x ,其中12x x <,则下列结论中正确的是()A.1220x x ++=B.1231x x -<<<C.124x x ->D.1230x x +<【答案】ACD 【解析】【分析】由一元二次不等式的解集可得12122230x x x x a +=-⎧⎪⎨=-<⎪⎩判断A 、D ,再将题设转化为()(1)(3)2f x a x x =-+>-,结合二次函数的性质,应用数形结合的方法判断B 、C.【详解】由题设,2(1)(3)22320a x x ax ax a -++=+-+>的解集为()12,x x ,∴a<0,则12122230x x x x a +=-⎧⎪⎨=-<⎪⎩,∴1220x x ++=,12230x x a+=<,则A 、D 正确;原不等式可化为()(1)(3)2f x a x x =-+>-的解集为()12,x x ,而()f x 的零点分别为3,1-且开口向下,又12x x <,如下图示,∴由图知:1231x x <-<<,124x x ->,故B 错误,C 正确.故选:ACD.【点睛】关键点点睛:由根与系数关系得12122230x x x x a +=-⎧⎪⎨=-<⎪⎩,结合二次函数的性质及数形结合思想判断各选项的正误.三、填空题(本大题共4小题,共20.0分)13.已知“()2160x a +->”的必要不充分条件是“2x ≤-或3x ≥”,则实数a 的最大值为______.【答案】1【解析】【分析】首先解出不等式()2160x a +->,再根据题意得到4243a a --≤-⎧⎨-≥⎩,即可求出a 的取值范围,从而得解;【详解】解:由()2160x a +->,得4x a <--或4x a >-,因为()2160x a +->的必要不充分条件是“2x ≤-或3x ≥”,所以4243a a --≤-⎧⎨-≥⎩,解得21a -≤≤,所以实数a 的最大值为1;故答案为:114.已知0a >,0b >,下面四个结论:①22ab a b a b +≤+;②2a b +>a b >,则22c c a b ≤;④若11111a b +=++,则2+a b 的最小值为;其中正确结论的序号是______.(把你认为正确的结论的序号都填上)【答案】①③④【解析】【分析】①可以由222a b ab +≥得2224a b ab ab ++≥,然后变形可得是正确的,②可以由222a b ab +≥得222222()2()a b a b ab a b +≥++=+,然后变形可得是错误的,③可以()1112211a b a b ⎛⎫++++ ⎪++⎝⎭展开由基本不等式推导出来.【详解】因为222a b ab +≥,所以2224a b ab ab ++≥即2()4a b ab +≥所以22ab a ba b +≤+,故①正确因为222a b ab+≥所以222222()2()a b a b ab a b +≥++=+2a b +≥,故②错误因为0a b >>,所以11a b<因为2c ≥0,所以22c c a b≤,故③正确因为()112(1)1122121111b a a b a b a b ++⎛⎫++++=+++⎪++++⎝⎭3≥+,当且仅当2(1)111b a a b ++=++即2a b ==时取得最小值因为11111a b +=++,所以1223a b +++≥+即2a b +≥,故④正确故答案为:①③④【点睛】0a >,0b >22112a b aba b a b+≥≥=++15.关于x 的不等式22(1)ax x -<恰有2个整数解,则实数a 的取值范围是__.【答案】3443(,[,2332-- .【解析】【分析】先将原不等式转化为[(1)1][(1)1]0a x a x +---<,再对a 分类讨论分别求出原不等式的解集,然后根据其解集中恰有两个整数求出实数a 的取值范围.【详解】不等式22(1)ax x -<可化为[(1)1][(1)1]0a x a x +---<,①当1a =时,原不等式等价于210x ->,其解集为1,2⎛⎫+∞⎪⎝⎭,不满足题意;②当1a =-时,原不等式等价于210x +<,其解集为1 ,2⎛⎫-∞- ⎪⎝⎭,不满足题意;③当1a >时,原不等式等价于11011x x a a ⎛⎫⎛⎫--< ⎪⎪+-⎝⎭⎝⎭,其解集为11,11a a ⎛⎫ ⎪+-⎝⎭,其解集中恰有2个整数,∴12 1131a a ⎧<⎪⎪-⎨⎪⎪-⎩,解得:4332a ≤<;④当11a -<<时,原不等式等价于11011x x a a ⎛⎫⎛⎫--> ⎪⎪+-⎝⎭⎝⎭,其解集为11(,,11a a ⎫⎛⎫-∞⋃+∞⎪ ⎪-+⎭⎝⎭,不满足题意;⑤当1a <-时,原不等式等价于11011x x a a ⎛⎫⎛⎫--< ⎪⎪+-⎝⎭⎝⎭,其解集为11,11a a ⎛⎫ ⎪+-⎝⎭,其解集中恰有2个整数,121131a a ⎧<-⎪⎪+∴⎨⎪-⎪+⎩,解得:3423a -<-,综合以上,可得:3443,,2332a ⎛⎤⎡⎫∈-- ⎪⎥⎢⎝⎦⎣⎭.故答案为:3443,,2332a ⎛⎤⎡⎫∈-- ⎪⎥⎢⎝⎦⎣⎭ .【点睛】关键点睛:解决本题的关键一是正确的分类讨论,二是要注意在处理满足整数解时等号的取舍.16.已知函数()22,11,1x x f x x x x -≥⎧=⎨+-<⎩,那么()()4f f =___________若存在实数a ,使得()()()f a f f a =,则a 的个数是___________.【答案】①.1②.5【解析】【分析】求出()4f 的值,再计算()()4ff 的值;设()f a t =,则()f t t =,可求得1t =或1t =-,再解方程()1f a =或()1f a =-,可求得a 的值即可求解.【详解】因为()22,1,1x x f x x x x -≥⎧=⎨+-<⎩,所以()4242f =-=-,所以()()()()2422211ff f =-=---=,设()f a t =,则()f t t =,当1t ≥时,()2f t t t =-=,可得1t =,当1t <时,()21f t t t t =+-=,可得1t =-,所以()1f a =或()1f a =-,当1a ≥时,由()21f a a =-=或()21f a a =-=-可得1a =或3a =;当1a <时,()211f a a a =+-=或,()211f a a a =+-=-可得2a =-或1a =(舍)或1a =-或0a =,综上所述:2a =-,1-,0,1,3,有5个a 符合题意,故答案为:1;5.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.计算下列各式:(102)--(2)23948(lg 2)lg 2lg 50lg 25(log 2log 2)(log 3log 3)+⋅+++⋅+【答案】(1)19(2)134【解析】【分析】(1)、利用指数幂的运算性质求解即可;(2)、利用对数的运算性质求解.【小问1详解】4032)18---)21216=19=+--+.【小问2详解】23948(lg 2)lg 2lg 50lg 25(log 2log 2)(log 3log 3)+⋅+++⋅+()23232111(lg2)lg2lg512lg5log 22log 3log 3223⎛⎫⎛⎫=++++++ ⎪⎪⎝⎭⎝⎭23235(lg2)lg2lg5lg22lg5log 2log 326=++++⨯()5lg2lg2lg5+lg22lg54=+++52lg22lg54=++134=18.设集合{}12A x x =-≤≤,{}21B x m x =<<,{1C x x =<-或}2x >.(1)若A B B = ,求实数m 的取值范围;(2)若B C ⋂中只有一个整数,求实数m 的取值范围.【答案】(1)12m m ⎧⎫≥-⎨⎬⎩⎭(2)312m m ⎧⎫-≤<-⎨⎬⎩⎭【解析】【分析】(1)根据集合交集的性质,可得两集合之间的关系,分类讨论是否为空集,列出不等式,可得答案;(2)由题意,明确交集中的唯一的整数,结合这个整数,列出不等式,可得答案.【小问1详解】因为A B B = ,所以B A ⊆.①当B ≠∅时,由B A ⊆,得2121m m <⎧⎨≥-⎩,解得1122m -≤<;②当B =∅,即12m ≥时,B A ⊆成立.综上,实数m 的取值范围是12m m ⎧⎫≥-⎨⎬⎩⎭.【小问2详解】因为B C ⋂中只有一个整数,所以B ≠∅,且322m -≤<-,解得312m -≤<-,所以实数m 的取值范围是312m m ⎧⎫-≤<-⎨⎬⎩⎭.19.已知命题:p x R ∀∈,2210ax x ++≠;命题:q x R ∃∈,210ax ax ++≤(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题p 与q 均为假命题,求实数a 的取值范围.【答案】(1)()1,+∞;(2)[]0,1.【解析】【分析】(1)根据题意,可知命题p 为真命题,则0a ≠且Δ0<,即可求出a 的取值范围;(2)根据题意,分别求出p ⌝和q ⌝,由命题p 与q 均为假命题,可知p ⌝和q ⌝都是真命题,由p ⌝是真命题,得0a =或0Δ440a a ≠⎧⎨=-≥⎩,由q ⌝是真命题,得0a =或2Δ40a a a >⎧⎨=-<⎩,化简计算后,可得出实数a 的取值范围.【小问1详解】解:因为命题:p x R ∀∈,2210ax x ++≠,若命题p 为真命题,则0a ≠且Δ0<,即20240a a ≠⎧⎨-<⎩,解得:1a >,所以实数a 的取值范围是()1,+∞.【小问2详解】解:因为命题:p x R ∀∈,2210ax x ++≠;命题:q x R ∃∈,210ax ax ++≤,则:p x R ⌝∃∈,2210ax x ++=,:q x R ⌝∀∈,210ax ax ++>,若命题p 与q 均为假命题,则p ⌝和q ⌝都是真命题,由p ⌝是真命题,得0a =或0Δ440a a ≠⎧⎨=-≥⎩,解得:1a ≤,由q ⌝是真命题,得0a =或2Δ40a a a >⎧⎨=-<⎩,解得:04a ≤<,联立104a a ≤⎧⎨≤<⎩,得01a ≤≤,所以实数a 的取值范围为[]0,1.20.十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划,2020年某企业计划引进新能源汽车生产设备看,通过市场分析,全年需投入固定成本3000万元,每生产x (百辆)需另投入成本y (万元),且210100,0100005014500,40x x x y x x x ⎧+<<⎪=⎨+-≥⎪⎩.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.(1)求出2020年的利润S (万元)关于年产量x (百辆)的函数关系式;(利润=销售额—成本)(2)当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润.【答案】(1)2104003000,040()100001500,40x x x S x x x x ⎧-+-<<⎪=⎨--≥⎪⎩(2)100百辆,最大利润为1300万【解析】【分析】(1)根据题意分情况列式即可;(2)根据分段函数的性质分别计算最值.【小问1详解】由题意得当040x <<时,22()500(10100)3000104003000S x x x x x x =-+-=-+-,当40x ≥时,1000010000()500501450030001500S x x x x x x ⎛⎫=-+--=-- ⎪⎝⎭,所以2104003000,040()100001500,40x x x S x x x x ⎧-+-<<⎪=⎨--≥⎪⎩,【小问2详解】由(1)得当040x <<时,2()104003000S x x x =-+-,当20x =时,max ()1000S x =,当40x ≥时,1000010000()15001500()S x x x x x=--=-+10000200x x +≥= ,当且仅当10000x x =,即100x =时等号成立,()150********S x ∴≤-=,100x ∴=时,max ()1300S x =,13001000> ,100x ∴=时,即2020年产量为100百辆时,企业所获利润最大,且最大利润为1300万元.21.设函数()xxf x ka a-=-(0a >且1,a k R ≠∈),()f x 是定义域为R 的奇函数:,(1)求k 的值,(2)判断并证明当1a >时,函数()f x 在R 上的单调性;(3)已知3a =,若()()3f x f x λ≥⋅对于[]1,2x ∈时恒成立.请求出最大的整数λ.【答案】(1)1k =;(2)()f x 在R 上为增函数;证明见解析;(3)10.【解析】【分析】(1)由()00f =,解得1k =,再检验其成立;(2)利用定义法证明单调性;(3)用分离参数法求出919λ≤,即可得到λ的最大整数值.【详解】(1)∵()xxf x ka a -=-(0a >且1,a k R ≠∈)是定义域为R 的奇函数,∴()00f =,解得1k =.此时()xxf x a a-=-,对任意x R ∈,有()()()x x x x f x a a a a f x ---=-=--=-,即()f x 是R 上的奇函数,符合题意.故1k =.(2)由(1)得()xxf x a a-=-.判断该函数为增函数.下面证明:设12,x x R ∈,且12x x <,则()()()()()()1122121212xx x x x x x x f x f x a aaa a a a a -----=---=---12121212111()()()(1x x x x x x x x a a a a a a a +=---=-+∵1a >,且12x x <,∴120-<x x a a ,又12110x x a ++>∴()()120f x f x -<,即()()12f x f x <,∴()f x 在R 上为增函数.(3)由(1),不等式()()3f x f x λ≥⋅对于[]1,2x ∈时恒成立,即3333(33)x x x x λ---≥-,亦即不等式22(33)(313)(33),[1,2]x x x x x x x λ---≥∈-++-恒成立.令33,[1,2]x x t x -∈=-,则880,39t ⎡⎤∈⎢⎥⎣⎦,问题转化为关于t 的不等式2(3)t t t λ+≥对任意880,39t ⎡⎤∈⎢⎥⎣⎦恒成立,亦即不等式2+3t λ≤,对任意880,39t ⎡⎤∈⎢⎥⎣⎦恒成立.当83t =时,2min 91(3)9t +=,919λ∴≤,则λ的最大整数为10.【点睛】(1)函数奇偶性的应用:①一般用()()f x f x =-或()()f x f x =-;②有时为了计算简便,我们可以对x 取特殊值:(1)(1)f f =-或(1)(1)f f =-.(2)分离参数法是求参数范围的一种非常常用的方法.22.已知二次函数2()f x ax bx c =++满足对任意实数x ,不等式212()(1)2x f x x ≤≤+恒成立.(1)求a b c ++的值;(2)若该二次函数与x 轴有两个不同的交点,其横坐标分别为1x 、2x .①求a 的取值范围;②证明:12x x 为定值.【答案】(1)2;(2)①10,2⎛⎫ ⎪⎝⎭;②证明见解析.【解析】【分析】(1)由212()(1)2x f x x ≤≤+取1x =可求a b c ++,(2)由2()x f x ≤恒成立,结合(1)可得a ,b ,c 的关系,再由()f x 与x 轴有两个不同的交点可求a 的范围,并证明12x x 为定值.【详解】解:(1)对任意实数x ,不等式2212(1)2x ax bx c x ≤++≤+恒成立.令212(1)2x x =+得x =1令x =1,得2≤a +b +c ≤2,∴a +b +c =2.(2)①当a +b +c =2时,22ax bx c x ++≥,即()220ax b x c +-+≥恒成立,所以()()()22202440a b ac a c ac a c >⎧⎪⎨--=+-=-≤⎪⎩,所以0,22a c b a =>=-.因为二次函数有两个不同的零点,所以()22244140b ac a a -=-->,解得12a <∴a 的取值范围为10,2⎛⎫ ⎪⎝⎭②由韦达定理得121c x x a ==,∴12x x 为定值。
2019-2020学年江苏省南通中学高一(上)期中数学试卷一、选择题(本大题共12小题,共36.0分) 1. 已知实数a ∈{1,3,a 2},则a 的值为( )A. 1B. 1,3C. 0,3D. 0,1 2. 集合A ={x|−1≤x ≤1},B ={x|a −1≤x ≤2a −1},若B ⊆A ,则实数a 的取值范围是( )A. a ≤1B. a <1C. 0≤a ≤1D. 0<a <13. 函数f(x)=√2x −1+12−x 的定义域为( )A. {x|x ≥12} B. {x|x >12} C. {x|x ≥12且x ≠2}D. {x|x >12且x ≠2} 4. 函数y =3−x2+2x+1的值域是 ( )A. (−∞,9]B. [9,+∞)C. (0,9]D. [0,9]5. 已知函数f(x)={1−x 2 (x ≤1),x 2+x −2 (x >1),则f(1f(2))的值为( )A. 1516 B. 89 C. −2716D. 186. 函数e|x|3x的部分图象可能是( )A.B.C.D.7. 已知函数f(x)=x 2−ax +4,若f(x +1)是偶函数,则实数a 的值为( )A. 1B. −1C. −2D. 28. 函数y =log 12(2x 2−3x +1)的递减区间为( ) A. (1,+∞)B. (−∞,34] C. (12,+∞) D. [34,+∞) 9. 若函数f(x)的定义域是[−1,4],则y =f(2x −1)的定义域是( )A. [0,52]B. [−1,4]C. [−5,5]D. [−3,7]10. 已知f(x)是R 上的偶函数,且在(−∞,0]是减函数,若f(3)=0,则不等式f(x)+f(−x)x<0的解集是( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(3,+∞)C. (−∞,−3)∪(0,3)D. (−3,0)∪(0,3)11. 已知奇函数f(x)是定义在(−2,2)上的减函数,则不等式f(x3)+f(2x −1)>0的解集是( )A. (−∞,37) B. [−12,+∞) C. (−6,−12) D. (−12,37)12. 已知y =f(x)是奇函数,且满足f(x +2)+3f(−x)=0,当x ∈[0,2]时,f(x)=x 2−2x ,则当x ∈[−4,−2]时,f(x)的最小值为 ( )A. −1B. 13C. −19D. 19二、填空题(本大题共4小题,共12.0分)13. 已知函数f(x)=(m 2−m −5)x m−1是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,则实数m的值为__________. 14. 已知集合,则A ∩B =______.15.lg32−lg4lg2+(27)23=________.16. 已知函数f(x)为偶函数,且当x ≥0时,f(x)=1−|x −1|,则方程f(f(x))=0根的个数为_____. 三、解答题(本大题共6小题,共52.0分)17. 已知R 为全集,A ={x|log 12(3−x)≥−2},B ={x |5x+2≥1}. (1)求A ∩B ;(2)求(∁R A)∩B 与(∁R A)∪B .18. 定义在R 上的奇函数f (x),当x ≥0时,f (x)={−2x x+1,x ∈[0,1),1−|x −3|,x ∈[1,+∞),求函数F(x)=f (x)−1π的所有零点之和.19.已知f(x)=a⋅2x+a−2(x∈R),若f(x)满足f(−x)+f(x)=0,2x+1(1)求实数a的值及f(3);(2)判断函数的单调性,并加以证明.20.某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产一百台,需要新增加投入2.5t2(万元),(0<万元.经调查,市场一年对此产品的需求量为500台;销售收入为R(t)=6t−12 t≤5),其中t是产品售出的数量(单位:百台).(说明:①利润=销售收入−成本;②产量高于500台时,会产生库存,库存产品不计于年利润.)(1)把年利润y表示为年产量x(x>0)的函数;(2)当年产量为多少时,工厂所获得年利润最大?21.已知函数f(x)=(x−2)|x+a|(a∈R).(1)当a=1时,求函数f(x)的单调递增区间;(2)当x∈[−2,2]时,函数f(x)的最大值为g(a),求g(a)的表达式.22.已知函数g(x)=4x−a是奇函数,f(x)=lg(10x+1)+bx是偶函数.2x(1)求a和b的值.(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2−2t)+g(2t2−k)>0恒成立,求实数k的取值范围.x,若存在x∈(−∞,1],使不等式g(x)>ℎ[lg(10a+9)]成立,求实数a(3)设ℎ(x)=f(x)+12的取值范围.-------- 答案与解析 --------1.答案:C解析:解:a =1,则a 2=1,不符合互异性; a =a 2,则a =1(不符合互异性),或a =0; a =3,则a 2=9,成立; 故a =0或a =3时符合条件, 故选C .本题考查元素与集合的关系,集合中元素的互异性,考查分类讨论的数学思想,属于基础题.2.答案:A解析:解:∵集合A ={x|−1≤x ≤1},B ={x|a −1≤x ≤2a −1},B ⊆A , ∴当B =⌀时,a −1>2a −1,解得a <0, 当B ≠⌀时,{a −1≤2a −1a −1≥−12a −1≤1,解得0≤a ≤1.综上,实数a 的取值范围是{a|a ≤1}. 故选:A .当B =⌀时,a −1>2a −1;当B ≠⌀时,{a −1≤2a −1a −1≥−12a −1≤1,由此能求出实数a 的取值范围.本题考查实数的取值范围的求法,考查集合的包含关系、不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.答案:C解析: 【分析】考查函数定义域的概念及求法,属于基础题型.要使得原函数有意义,则需满足{2x −1≥02−x ≠0,解出x 的范围即可.【解答】解:要使原函数有意义,则:{2x −1≥02−x ≠0, ∴x >12且x ≠2,∴原函数的定义域为.{x|x ≥12且x ≠2} , 故选:C .4.答案:C解析: 【分析】本题考查了指数函数,二次函数的性质,是一道基础题.结合二次函数的性质求出指数的最大值,从而求出函数的值域即可. 【解答】解:令f(x)=1+2x −x 2=−(x −1)2+2, 故f(x)max =f(1)=2, 当x =1时,y 的最大值是9, 又当x ∈R 时,y =3x >0, 故函数y =3−x 2+2x+1的值域为(0,9].故选C .5.答案:A解析: 【分析】本题考查分段函数求值,属于基础题.先求1f(2)的值.再根据所得值代入相应的解析式求值即可. 【解答】解:当x >1时,f(x)=x 2+x −2, 则f(2)=22+2−2=4, ∴1f(2)=14,当x ≤1时,f(x)=1−x 2, ∴f(1f(2))=f(14)=1−116=1516. 故选A .6.答案:C解析:【分析】本题主要考查函数图象的识别和判断,结合函数的解析式,利用函数图象的特点进行排除是解决本题的关键.属于中档题.根据函数解析式,分别从对称性,单调性以及函数取值进行排除即可. 【解答】解:函数为奇函数,图象关于原点对称,排除B , 当x =1时,y =e3<1,排除A , 当x →+∞时,e |x|3x →+∞,排除D ,故选:C .7.答案:D解析: 【分析】本题考查的是函数的奇偶性,属于基础题. 【解答】解:函数f(x)=x 2−ax +4的对称轴为x =a2, 因为f(x +1)是偶函数,所以a2−1=0,解得a =2, 故选D .8.答案:A解析: 【分析】本题考查函数的定义域、复合函数的单调性,属基础题. 【解答】解:由2x 2−3x +1>0,得函数的定义域为(−∞,12)∪(1,+∞). 令t =2x 2−3x +1,则y =log 12t . 因为t =2x 2−3x +1=2(x −34)2−18,所以t =2x 2−3x +1的单调增区间为(1,+∞).又y =log 12t 在(0,+∞)上是减函数, 所以函数y =log 12(2x 2−3x +1)的单调减区间为(1,+∞). 9.答案:A解析:∵函数f(x)的定义域是[−1,4],∴函数y =f(2x −1)的定义域满足−1≤2x −1≤4,∴0≤x ≤52, ∴y =f(2x −1)的定义域是[0,52].10.答案:C解析:解:因为y =f(x)为偶函数,所以f(x)+f(−x)x<0等价为2f(x)x<0,所以不等式等价为{x >0f(x)<0或{x <0f(x)>0.因为函数y =f(x)为偶函数,且在(−∞,0]上是减函数,又f(3)=0, 所以f(x)在[0,+∞)是增函数,则对应的图象如图: 所以解得x <−3或0<x <3, 即不等式的解集为(−∞,−3)∪(0,3). 故选:C .利用函数的奇偶性将不等式进行化简,然后利用函数的单调性确定不等式的解集.本题主要考查函数奇偶性和单调性的性质,根据函数性质的综合应用,将不等式转化是解决本题的关键.11.答案:D解析: 【分析】本题主要考查函数奇偶性和单调性的应用问题,解题时应注意定义域的限制.利用函数是奇函数,将不等式转化为f(x3)>−f(2x −1)=f(1−2x),然后利用函数的单调性求解即可. 【解答】解:f(x)是奇函数,所以不等式f(x3)+f(2x −1)>0等价于 f(x3)>−f(2x −1)=f(1−2x), 又f(x)是定义在(−2,2)上的减函数, 所以{−2<x3<2−2<1−2x <2x3<1−2x ,即{−6<x <6−12<x <32x <37,解得−12<x <37, 则不等式的解集为(−12,37). 故选:D .12.答案:C【分析】定义在R上的函数f(x)满足f(x+2)+3f(−x)=0,可得出f(x)=13f(x+2),由此关系求出求出x∈[−4,−2]上的解析式,再配方求其最值本题考查函数的最值及其几何意义,解题的关键是正确正解定义在R上的函数f(x)满足f(x+2)=3f(x),且由此关系求出x∈[−4,−2]上的解析式,做题时要善于利用恒等式.【解答】解:由题意定义在R上的函数f(x)满足f(x+2)+3f(−x)=0,即f(x+2)=3f(x),任取x∈[−4,−2],则f(x)=13f(x+2)=19f(x+4)由于x+4∈[0,2],当x∈[0,2]时,f(x)=x2−2x,故f(x)=13f(x+2)=19f(x+4)=19[(x+4)2−2(x+4)]=19[x2+6x+8]=19[(x+3)2−1],x∈[−4,−2]当x=−3时,f(x)的最小值是−19,故选C.13.答案:3解析:【分析】本题考查幂函数.根据幂函数的定义可得=1,解得m=−2或m=3,检验得结果.【解答】解:由幂函数的定义得=1,解得:m=−2或m=3,当m=−2时,f(x)=x−3,不符合x∈(0,+∞)时,f(x)是增函数,所以m=3.故答案为3.14.答案:{1,6}【分析】本题主要考查集合的运算,属于基础题.直接利用交集的定义求解即可.【解答】解:因为集合,A∩B={1,6}.故答案为{1,6}.15.答案:12解析:【分析】本题主要考查了指数与对数的运算性质,属于基础题.根据指数与对数的运算性质求解.【解答】解:lg32−lg4lg2+(27)23=lg8lg2+(33)23=3lg2lg2+32=3+9=12.故答案为12.16.答案:5解析:【分析】本题考查函数的性质的应用,函数的零点.令f(x)=t,根据已知及偶函数的性质解得t=0或2或−2,再分别求解f(x)=0或2或−2即可.【解答】解:当x≥0时,f(x)=1−|x−1|,令f(x)=t则方程f(f(x))=0,即为f(t)=0,所以t⩾0时,f(t)=1−|t−1|=0,解得t=0或2,因为函数f(x)为偶函数,所以t=−2也为f(t)=0的解,令f(x)=0,解得x=0或2或−2,令f(x)=2,无解令f(x)=−2,则1−|x−1|=−2解得x=4,根据函数f(x)为偶函数,x=−4也为f(x)=−2的解,综上方程f(f(x))=0根的个数为5.故答案为5.17.答案:解:(1)由,得{3−x >0,3−x ⩽4.即A ={x|−1≤x <3}. 由5x+2≥1,得x−3x+2≤0,即B ={x|−2<x ≤3},所以A ∩B ={x|−1≤x <3}.(2)因为∁R A ={x|x <−1或x ≥3}, 故(∁R A)∩B ={x|−2<x <−1或x =3},则(∁R A)∪B =R .解析:本题主要考查了交,并,补集的混合运算,以及对数函数的性质,属于中等题;(1)根据条件得到A ={x|−1≤x <3}和B ={x|−2<x ≤3}即可得到A ∩B ;(2)根据集合的定义可得(∁R A)∩B 与(∁R A)∪B .18.答案:解:由题意知,当x <0时,f (x)={−2x 1−x ,x ∈(−1,0)|x +3|−1,x ∈(−∞,−1]作出函数f (x)的图象如图所示,设函数y =f (x)的图象与y =1π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=−6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令−2x 1−x =1π,解得x 3=11−2π,所以函数F(x)=f (x)−1π的所有零点之和为11−2π.解析:本题主要考查函数奇偶性,分段函数模型,由函数奇偶性可得x <0时函数f(x)的解析式,作出函数f (x)的图象,根据图象结合函数的对称性质列式解答即可.19.答案:解:(1)∵f(−x)+f(x)=0,且x ∈R ,∴函数f(x)是奇函数,则f(0)=a⋅20+a−220+1=0, 解得a =1,则f(x)=2x −12x +1, 所以f(3)=23−123+1=79; 证明:(2)f(x)是R 上的增函数,设x 1<x 2,f(x 1)−f(x 2)=2x 1−12x 1+1−2x 2−12x 2+1 =(2x 2+1)(2x 1−1)−(2x 1+1)(2x 2−1)(2x 1+1)(2x 2+1)=2⋅2x 1−2x 2(2x 1+1)(2x 2+1),∵x 1<x 2,∴2x 1−2x 2<0,∵2x 1+1>0,且2x 2+1>0,∴f(x 1)−f(x 2)<0,即f(x 1)<f(x 2),∴f(x)在R 上是增函数.解析:(1)由题意和奇函数的定义判断出f(x)是奇函数,根据奇函数的性质得:f(0)=0,列出方程求出a 的值,代入f(x)求出f(3);(2)先判断出函数的单调性,根据函数单调性的定义,以及步骤:取值、作差、变形、定号、下结论进行证明即可.本题考查了奇函数的定义与性质,函数单调性的定义,以及证明单调性的步骤:取值、作差、变形、定号、下结论,考查化简、变形能力.20.答案:解:(1)当0<x ≤5时,f(x)=6x −12x 2−0.5−2.5x =−12x 2+3.5x −0.5, 当x >5时,f(x)=6×5−12×52−0.5−2.5x =17−2.5x , 即f(x)={−0.5x 2+3.5x −0.5(0<x ≤5)17−2.5x(x >5), (2)当0<x ≤5时,f(x)=−12(x 2−7x +1)=−12(x −72)2+458, ∴当x =3.5∈(0,5]时,f(x)max =458=5.625,当x >5时,f(x)为(5,+∞)上的减函数,f(x)<f(5)=17−2.5×5=4.5.又5.625>4.5,∴f(x)max =f(3.5)=5.625.故当年产量为350台时,工厂所获年利润最大.解析:本题主要考查了函数模型的选择与应用,以及利用二次函数性质求最值,同时考查了分类讨论的数学思想,属于中档题.(1)利润函数y =销售收入函数R(x)−成本函数,讨论x 的大小,利用分段函数表示出年利润y 表示为年产量x(x >0)的函数;(2)由利润函数是分段函数,分段求出最大值,利用二次函数的性质求出函数取最大值时对应的自变量x 的值,比较两段的最大值即可求出所求.21.答案:解:(1)a =1时,f(x)=(x −2)|x +1|,当x ≤−1时,f(x)=−(x −2)(x +1)=−x 2+x +2,此时函数为增函数;当x >−1时,f(x)=(x −2)(x +1)=x 2−x −2,此时函数在(−1,12]上为减函数,在[12,+∞)上为增函数,综上可得:当a =1时,函数f(x)的单调递增区间为(−∞,−1],[12,+∞);(2)当x ∈[−2,2]时,函数f(x)={−(x −2)(x +a),x <−a (x −2)(x +a),x ≥−a, ①当−a ≤−2,即a ≥2时,若x ∈[−2,2],则f(x)=(x −2)(x +a ),则f(x)≤0,故g(a)=f(2)=0;②当−a ≥2,即a ≤−2时,若x ∈[−2,2],则f (x )=−(x −2)(x +a ),则f(x)≤0,故g(a)=f(2)=0;③当−2<−a <2,即−2<a <2时,若x ∈[−2,2],则f(x)≤0,故g(a)=f(2)=0;综上可得:g(a)=0.解析:本题考查的知识点是分段函数的应用,分类讨论思想,函数的最值及其几何意义,难度中档.(1)a =1时,f(x)=(x −2)|x +1|,分段讨论可得函数的单调递增区间;(2)当x ∈[−2,2]时,函数f(x)={−(x −2)(x +a),x <−a (x −2)(x +a),x ≥−a,分段讨论可得函数f(x)的最大值g(a)的表达式.22.答案:解:(1)由g(0)=0得,a =1,则g(x)=4x −12x ,经检验g(x)是奇函数,故a =1,由f(−1)=f(1)得,则f(x)=lg(10x +1)−12x ,故b =−12,经检验f(x)是偶函数∴a =1,b =−12…(4分)(2)∵g(x)=4x −12x =2x −12x ,且g(x)在(−∞,+∞)单调递增,且g(x)为奇函数.∴由g(t 2−2t)+g(2t 2−k)>0恒成立,得g(t 2−2t)>−g(2t 2−k)=g(−2t 2+k),∴t 2−2t >−2t 2+k ,t ∈[0,+∞)恒成立即3t 2−2t >k ,t ∈[0,+∞)恒成立令F(x)=3t 2−2t ,在[0,+∞)的最小值为F(13)=−13∴k <−13…(9分)(3)ℎ(x)=lg(10x +1),ℎ(lg(10a +9))=lg[10lg(10a+9)+1]=lg(10a +10)则由已知得,存在x ∈(−∞,1],使不等式g(x)>lg(10a +10)成立,而g(x)在(−∞,1]单增,∴g max (x)=g(1)=32∴lg(10a +10)<32=lg1032=lg 10√10 ∴10a +10<10√10又a <√10−1又∵{10a +9>010a +10>0∴a >−910∴−910<a <√10−1…(14分)解析:(1)由函数g(x)=4x −a2x 是奇函数,f(x)=lg(10x +1)+bx 是偶函数,可得g(0)=0,f(−1)=f(1),进而可得a 和b 的值.(2)g(x)在(−∞,+∞)单调递增,且g(x)为奇函数.若g(t 2−2t)+g(2t 2−k)>0恒成立,则3t 2−2t>k,t∈[0,+∞)恒成立,令F(x)=3t2−2t,求其最值,可得答案;(3)ℎ(x)=lg(10x+1),若存在x∈(−∞,1],使不等式g(x)>lg(10a+10)成立,则lg(10a+10)<3=lg1032=lg10√10,解得答案.2本题考查的知识点是函数恒成立问题,函数的奇偶性,函数的单调性,存在性问题,对数函数的图象和性质,难度中档.。
江苏省南通中学2014-2015学年高一数学上学期期中试题一、填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{}1,0,1A =-,{}1,2B =,则A B=U ▲ . 2.下列四个图像中,是函数图像的是 ▲ .3.设集合A ={(x ,y )|x -y =0},B ={(x ,y )|x +y +4=0},则A ∩B = ▲ . 4.函数()110,1x y aa a -=+>≠过定点 ▲ .5.已知函数1)(3++=bx ax x f ,且()f a -=6,则()f a = ▲ .6.若()22144f x x x +=+,则()f x 的解析式为 ▲ .7.设函数22,0()log ,0x x f x x x -⎧≤=⎨>⎩,若()4f a =,则实数a = ▲ .8. 已知定义在R 上的奇函数()f x ,当0x >时有()312xf x x ⎛⎫=- ⎪⎝⎭,则当0x <时()f x =▲ .9.如果二次函数y =3x 2+2(a -1)x +b 在区间(),1-∞上是减函数,在区间[)1,+∞上是增函数,那么a 的取值集合是 ▲ .10.定义在R 上的函数()y f x =的值域为[1,2],则(1)2y f x =+-的值域为 ▲ . 11.若函数231()54x f x x ax +=++的定义域为R ,则实数a 的取值范围是▲ .12.函数()221f x x x a =-+-存在零点01,22x ⎛⎤∈⎥⎝⎦,则实数a 的取 值范围是 ▲ .13.定义在区间[]2,2-上的奇函数()x f ,它在(]0,2上的图象是一条如图所示线段(不含点()0,1), 则不等式()()f x f x x -->的解集为 ▲ .14.若函数2,[0,1](),[0,1]x f x x x ∈=∉⎧⎨⎩,则使[()]2f f x =成立的实数x 的集合为 ▲ .二.计算题:本大题共6小题,共90分,解答应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)已知集合A={|x y =,{}21,B y y x x x ==++∈R .(1)求A ,B ;(2)求A B U ,A B R I ð. 16.(本题满分14分)已知函数()12()51m h x m m x +=-+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()g x h x =在10,2x ∈⎡⎤⎢⎥⎣⎦的值域.17.(本题满分14分)函数lg ,(10)()(4)1,(10)2x x g x ax x >⎧⎪=⎨--≤⎪⎩ (1)若(10000)(1)g g =,求a 的值;(2)若()g x 是R 上的增函数,求实数a 的取值范围.18.(本题满分16分)在经济学中,函数()f x 的边际函数()Mf x 定义为()(1)()Mf x f x f x =+-,某公司每月最多生产100台报警系统装置,生产x (*x ∈N )台的收入函数为2()300020R x x x =-(单 位:元),其成本函数为()5004000C x x =+(单位:元),利润是收入与成本之差. (1)求利润函数()P x 及边际利润函数()MP x ;(2)利润函数()P x 与边际利润函数()MP x 是否具有相同的最大值?说明理由.19.(本题满分16分)已知函数2))(1()(xa x x x f ++=为偶函数. (1)求实数a 的值;(2)记集合{(),{1,1,2}}E y y f x x ==∈-,21lg 2lg 2lg5lg54λ=++-,判断λ与E 的关系;(3)令2()()h x x f x ax b =++,若集合{}()A x x h x ==,集合(){}B x x h h x ==⎡⎤⎣⎦,若A =∅,求集合B .高一数学期中考试参考答案(考试时间120分钟,满分160分)3.设集合A ={(x ,y )|x -y =0},B ={(x ,y )|x +y +4=0},则A ∩B = ▲ .(){}2,2--4.函数()110,1x y a a a -=+>≠过定点 ▲ .()1,25.已知函数1)(3++=bx ax x f ,且()f a -=6,则()f a = ▲ .4-6.若()22144f x x x +=+,则()f x 的解析式为 ▲ .2()1f x x =-7.设函数22,0()log ,0x x f x x x -⎧≤=⎨>⎩,若()4f a =,则实数a = ▲ .2-或168. 已知定义在R 上的奇函数()f x ,当0x >时有()312xf x x ⎛⎫=- ⎪⎝⎭,则当0x <时()f x =▲ .3()2x f x x =--9.如果二次函数y =3x 2+2(a -1)x +b 在区间(),1-∞上是减函数,在区间[)1,+∞上是增函数,那么a 的取值集合是 ▲ .{}2-10.定义在R 上的函数()y f x =的值域为[1,2],则(1)2y f x =+-的值域为 ▲ . [1,0]-11.若函数231()54x f x x ax +=++的定义域为R ,则实数a 的取值范围是 ▲ .44,55-⎛⎫⎪⎝⎭12.函数()221f x x x a =-+-存在零点01,22x ⎛⎤∈⎥⎝⎦,则实数a 的取值范围是 ▲ . []0,213.定义在区间[]2,2-上的奇函数()x f ,它在(]0,2上的图象是一条如图所示线段(不含点()0,1), 则不等 式()()f x f x x -->的解 集为 ▲ .[2,1)(0,1)--U 14.若函数2,[0,1](),[0,1]x f x x x ∈=∉⎧⎨⎩,则使[()]2f f x =成立的实数x 的集合为 ▲ .{}012x x x ≤≤=或二.计算题:本大题共6小题,共90分,解答应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)已知集合A ={}2|x y x x =-,{}21,B y y x x x ==++∈R .(1)求A ,B ;(2)求A B U ,A B R I ð.解 (1)由x (x -1)≥0,解得0x ≤或1x ≥,所以(,0][1,)A =-∞+∞U .由y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34≥34,得B =⎣⎢⎡⎭⎪⎫34,+∞.……………………………7分(2)因为∁R B =⎝⎛⎭⎪⎫-∞,34,所以A ∪B =(,0][,)34-∞+∞U ,A ∩(∁R B )=(,0]A =-∞.………14分16.(本题满分14分)已知函数()12()51m h x m m x +=-+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()12()g x h x h x =-在10,2x ∈⎡⎤⎢⎥⎣⎦的值域.解 (1) 0m = ……………………………………………………………6分(2)1,12⎡⎤⎢⎥⎣⎦…………………………………………………………………14分17.(本题满分14分)函数lg,(10)()(4)1,(10)2x xg x ax x>⎧⎪=⎨--≤⎪⎩(1)若(10000)(1)g g=,求a的值;(2)若()g x是R上的增函数,求实数a的取值范围.解 (1)2a=-……………………………………………………………6分(2) a的取值范围为38,85⎡⎫⎪⎢⎣⎭………………………………………………14分18.(本题满分16分)在经济学中,函数()f x的边际函数()Mf x定义为()(1)()Mf x f x f x=+-,某公司每月最多生产100台报警系统装置,生产x(*x∈N)台的收入函数为2()300020R x x x=-(单位:元),其成本函数为()5004000C x x=+(单位:元),利润是收入与成本之差.(1)求利润函数()P x及边际利润函数()MP x;(2)利润函数()P x与边际利润函数()MP x是否具有相同的最大值?说明理由.……8分……16分19.(本题满分16分)已知函数2))(1()(x a x x x f ++=为偶函数.(1)求实数a 的值;(2)记集合{(),{1,1,2}}E y y f x x ==∈-,21lg 2lg 2lg5lg54λ=++-,判断λ与E 的关系;(3)令2()()h x x f x ax b =++,若集合{}()A x x h x ==,集合(){}B x x h h x ==⎡⎤⎣⎦,若A =∅,求集合B .解: (Ⅰ))(x f Θ为偶函数(Ⅲ)22()()11h x x ax b x ax b =++=++--若存在x ,使()h x x ≤,则由2() 1 (,)h x x ax b a b =++-∈R 开口向上,因此存在x ,使()h x x >,于是()f x x =有实根∵A =∅ ∴()h x x >∴()()h h x h x x >>⎡⎤⎣⎦,于是()h h x x =⎡⎤⎣⎦无实数根即B =∅.………………………………………………………………16分 20.(本题满分16分)函数f (x )=x n+bx +c (n ∈N +,b ,c ∈R ).(1)设n ≥2,b =1,c =-1,证明:f (x )在区间⎝ ⎛⎭⎪⎫12,1内存在唯一零点; (2)设n =2,若对任意x 1,x 2∈[-1,1]有|f (x 1)-f (x 2)|≤4,求b 的取值范围.解:(1)当b =1,c =-1,n ≥2时,f (x )=x n+x -1. ∵f ⎝ ⎛⎭⎪⎫12f (1)=⎝ ⎛⎭⎪⎫12n -12×1<0.∴f (x )在⎝ ⎛⎭⎪⎫12,1内存在零点.……………………3分又任取12112x x <<<,∵()()21122112122()11()1()0n n n nf x x x x x x f x x x x x =+--+-=⎡⎤⎛⎫⎢⎥--+-< ⎪⎢⎥⎝⎭⎣⎦∴f (x )在⎝ ⎛⎭⎪⎫12,1上是单调递增的, ∴f (x )在⎝ ⎛⎭⎪⎫12,1内存在唯一零点.………………………………………………8分 (2)当n =2时,f (x )=x 2+bx +c .对任意x 1,x 2∈[-1,1]都有|f (x 1)-f (x 2)|≤4等价于f (x )在[-1,1]上的最大值与最小值之差M ≤4. ………………………10分 据此分类讨论如下:①当⎪⎪⎪⎪⎪⎪b 2>1,即|b |>2时,M =|f (1)-f (-1)|=2|b |>4,与题设矛盾.②当-1≤-b2<0,即0<b ≤2时,M =f (1)-f ⎝ ⎛⎭⎪⎫-b 2=⎝ ⎛⎭⎪⎫b 2+12≤4恒成立.③当0≤-b2≤1,即-2≤b ≤0时, M =f (-1)-f ⎝ ⎛⎭⎪⎫-b 2=⎝ ⎛⎭⎪⎫b 2-12≤4恒成立.综上可知,-2≤b ≤2. ……………………………………………………………16分注:②,③也可合并证明如下:用max{a ,b }表示a ,b 中的较大者.。