当前位置:文档之家› 4.3-1制动效能-制动减速度

4.3-1制动效能-制动减速度

前后制动器制动力分配 - 前后制动器制动力分配

第四章 汽车制动性 第四节 制动力分配 一、制动力分配要求 根据制动稳定性的要求,前轮的附着率应大于后轮,即b1b2j j >,也就是说μ1 1μ22Z Z F F F F >制动方向稳定性的极限条件为: g g 210μ12g 1g g 1μ221g 20Z Z Z Z h h l F mg z z F l h z F l l l h h l F F l h z F mg z z l l l +++====--- (4-16)式中:μ1F 、μ2F —前、后轮的理想制动力。 又由式(4-14),得: μ2μ1F F z mg mg =- (4-17) 当给定一个μ1 F mg 值,即可从式(4-16)和(4-17)求出z 值和μ2 F mg 值,这样就可得出如图4- 16所示制动方向稳定性极限曲线。制动力处于该曲线上时,可使车辆制动距离最短,是理想的前后制动器制动力分配曲线,称为I 线。欧洲制动法规规定,轿车在0.150.8z ??范围内应满足b1b2j j >的要求。只要车辆制动力分配处于I 线下方,就可保证前轮先抱死,使车辆处于制动稳定状态。

图4-16 稳定性界限(I 曲线)和最大制动距离界限 为使制动距离不至于过长,上述法规又要求满足: p 0.10.85(0.2)z j ?+- (4-18) 因为在I 线下方,前轮先达到峰值附着率,这时前轴制动力为: 21p ()g h l F mg z l l m j =+ (4-19)给定p j 值,即可从式(4-18)求出z 取值范围,由式(4-19)得到μ1 F mg 的范围,随即从式(4- 17)求得μ2 F mg 的范围,这样可在图4-16上画出制动距离允许的极限曲线。 车辆前后轴制动力分配不得超越上述两条极限曲线。对于前后轴制动力定比分配的车辆,有: μ2 μμ2μ1F k F F =+; μ2μμ1μ1F k F mg k mg =- (4-20)式中:μk 为常数,是前后轴制动力的分配比。

列车制动力计算公式

1,紧急制动计算列车总制动力列车制动力计算 B h K h (kN) 式中K h ------ 全列车换算闸瓦压力的总和,kN; h --- 换算摩擦系数; 列车单位制动力的计算公式 b B 1000 1000 h K h ( N / kN ) ( P G) g ( P G) g 其中 (P K h G) g h ( N / kN ) ,则b 1000 h h 式中P G ------------ 列车的质量,t ; h --- 换算摩擦系数; h ------------------ 列车制动率; K h ------ 全列车换算闸瓦压力的总和,kN; 2,列车常用制动计算 b c 1 c b 由此可得b c c b 1000 h h c ( N / kN ) 式中 c ------------- 常用制动系数 b c ------- 列车单位制动力 表1 常用制动系数p1 为列车管空气压力 列车管减压量r/kPa 50 60 70 80 90 100 110 120 130 140 150 160 170 旅客 p1 600kPa 列车0.19 0.29 0.39 0.47 0.55 0.61 0.69 0.76 0.82 0.88 0.93 0.98 1.00 货物 p1 600kPa 列车0.17 0.28 0.37 0.46 0.53 0.60 0.67 0.73 0.78 0.83 0.88 0.93 0.96

p1 600kPa 0.19 0.32 0.42 0.52 0.60 0.68 0.75 0.83 0.89 0.95 --- --- --- 3, 多种摩擦材料共存时列车制动力的计算 同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦 压力与该种闸瓦的换算摩擦系数乘积的总和。即 B h1 K h1 h2 K h2 h3 K h3 ( h K h )(kN) 式中,K h1 ,h1 代表机车的闸瓦制动,K h 2 ,h2 代表车辆的闸瓦 制动,K h3 , h3 代表车辆的盘形制动,等等。 列车单位制动力 1000 ( h b K h) 1000 ( h h )( N / kN ) 。 ( P G) g 4,列车制动的二次换算法 表2 不同摩擦材料换算闸瓦压力的二次换算系数 类别 基型高磷(中磷)闸瓦高摩合成闸片高摩合成闸瓦 高磷(中磷)闸瓦 1.0 0.56 0.63 高摩合成闸片 1.8 1.0 1.1 高摩合成闸瓦 1.6 0.9 1.0 低摩合成闸瓦0.8 0.45 0.5 粉末冶金闸瓦 1.3 0.7 0.8 种类 表3 机车的计算质量及每台换算闸瓦压力表 机型计算质量/t 闸瓦种别每台换算闸瓦压力 /kN SS1、SS3 、SS6 138 铸铁700<435>《355》 SS 3B 、SS 6B 138 高摩合成300(480)《240》

斜井制动减速度计算

斜井提升机安全制动减速度 根据《煤矿安全规程》433条,倾角18°时,上提重载a 上≤g(sin18° +fcos18°)=3.168m/s 2 ;下放重载a 下≥0.3*g(sin18° +fcos18°)=0.950m/s 2 (f 取0.015) 提升大件∑M=22300kg 提升F 上=81kN F=Wg (sin α+f 1cos α)+qLg(sin α+f 2cos α) =16200×9.8(0.309+0.015×0.951)+6.04×1105×9.8(0.309+0.15 ×0.951) =51322+29541=81KN 式中:F:提升时最大静拉力。 W:翻斗矿车自重与沙石重量之和 W=16200Kg (提升6辆矿车); α:提升倾角α=18°,sin α=0.309,cos α=0.951; f 1;平板车与轨道的摩擦系数 f 1=0.015; q :每米钢丝绳重量 q=6.02kg/m ; L:钢丝绳悬重长度 L=1105m f 2: 钢丝绳与地滚摩擦系数 f2=0.25 下放F 下=52kN F=(Wg+qLg)sin α-(qLgf 2+Wgf 1)cos α =69268-17141 =52127=52KN 1、计算下放重物最小制动力矩 Fzmin=Dg F 10002M a ?-? ∑下下()=142.7kNm 81*3=Dg F 10002M a ?-? ∑下 下()

下放减速度最小=3.26>0.950 满足规程要求。 2、计算上提重物最大制动力矩为0. 0=Dg F 10002 M a ?-?∑下 下() 上提减速度最大=3.03<3.168 满足规程要求。 综上所述,绞车制动力矩满足《煤矿安全规程》433条之规定。

刹车制动力分配试验方法09

编制部门:技术部文件编号:SAF-P009 XXXX汽车工业有限公司 刹车制动力分配试验方法 第(1)版 编制:日期:年月日 审核:日期:年月日 批准:日期:年月日发布日期:2004年月日实施日期:2004年月日

刹车制动力分配试验方法修订一览表 页次 1/1 版次 日 期 修订人 修订页次 修订内容概述 第一版 2004/11/4 新出

1、目的 本标准是测定车辆的前轮及后轮制动力分配的相关试验方法。 2、适用范围 乘用车、商用车。 3、试验方法 3.1.试验条件 3.1.1.供试部品 (1)蹄片(PAD)、刹车碟片(ROTOR)、来令(LINING)及刹车鼓(DRUM),在试验时原则上使用新品,但开发需要时PAD的μ值,LINING的BEF值已知品亦可实施; (2)车装置需符合正规式样、并具有正常机能。 3.1.2.供试车辆 (1)车辆之重量在同一车型、同一刹车规格中,取最大的积载(G.V.W.)重量式样实施, 重量包含试验人员及试验用计测器的状态,但LOCK试验时为1名成员状态的重量分配; (2)使用标准装配之轮胎,必要时选用件轮胎亦实施,胎压为一般道路走行之正规胎压。 3.1.3.路面及气象 (1)试验路为标准铺装良好路面(如水泥路等); (2)需为干燥的路面。 3.1. 4.计测器 (1)数字显示型温度计; (2)踏力及液压SENSOR及踏力或液压指示计; (3)U-字管(减速度计); (4)车轮扭力计(Wheel Torque meters); (5)信号放大器; (6)AR1100或相当的记录器。 3.2.试验方法 试验时需注意以下要点 (1)原则上需要磨合200回,但如有必要于PAD及LINING于新品时、磨合途中及热履历 后亦可; (2)试验时需监测和记录PAD和LINING温度; (3)以得到图1减速度的波形来操作刹车踏板,但车辆在车轮锁死(LOCK)的条件下得到如图2的波形亦可。

制动力分配调节装置

前后轮制动力分配的调节装置 一、概述 1.目的 如本章第一节所述,最大制动力f bmax,受轮胎与地面之间附着力fψ的限制。即: f ≤fψ=gψ bma x 当f b一旦等于fψ后,车轮便停止转动被“抱死”,而在地面上滑拖。制动管路中的工作压力再增大,也不可能使制动力f b增加。车轮一旦抱死便会失去抗侧滑的能力。如前轮抱死时,会使汽车失去方向操纵性,无法转向;如后轮抱死而前轮滚动时,会使汽车失去方向稳定性,丧失了对侧向力的抵抗能力而侧滑(甩尾),造成极为严重的恶果。可见,后轮抱死的危险性远大于前轮。因此,要使汽车既能得到尽可能大的制动力,又能保持行驶方向的操纵性和稳定性(不失控、不甩尾),即最佳制动状态,就必须使汽车前后轮同时达到“抱死”的边缘。其同步条件是:前后车轮制动力之比等于前后车轮对路面垂直载荷之比。 但是,随着装载量不同和汽车制动时减速度所引起载荷的转移不同,汽车前后车轮的实际垂直载荷比是变化的。因此,要满足最佳制动状态的条件,汽车前后轮制动力的比例也应是变化的。 2.前后轮制动管路压力分配特性曲线 (1)无制动力调节装置的汽车,其前后车轮控制管路的工作压力p1、p2基本是相等的,其压力比p2/ p1永远等于1(如图20-71虚线所示)。这就使得不论前后车轮制动器的型式、尺寸如何不同,但制动力的分配比例却永远是个常数,不可能使汽车在各种条件下都能获得最佳的制动状态。

图20-71 理想的前后轮制动管路压力分配特性曲线 p1-前轮制动管路中的压力;p2-后轮制动管路中的压力;c-质心 (2)理想的前后轮制动管路压力分配特性曲线如图20-71实线所示。由于汽车满载较空载时质心c后移,p2应相应增加,故其曲线较空载曲线上移。又因制动强度的增加(即工作压力p的增加),质心向前转移程度的增加,压力比p2/ p1应相应减小(小于1),故随压力p1的增加,曲线变得平缓。 为满足上述理想特性的要求,在一些汽车上采用了各种制动力调节装置,来调节前后车轮制动管路中的工作压力。常用的有限压阀、比例阀和感载比例阀。 二、液压式限压阀 1.安装位置 限压阀是一种最简单的压力调节阀,串联在制动主缸与后轮制动器的管路之间。 2.作用 它的作用是当前后制动管路压力p1和p2由零同步增长到一定值后,即自动将后轮制动器管路中的液压限定在该值不变,防止后轮抱死。

制动力计算

汽车制动力计算 G4 6个电池组6X28=168KG 总重量530KG 车辆中心位置(x,y,z ): -8 , 261, 1559 (原点在前轮轴中间) 车轮轴距离地面的距离为230; 轴间距L=2370 地面对前轮的法向反作用力为:F1=(mg/L)[b+(h g/g)(du/dt)] 地面对后轮的法向反作用力为:F2=(mg/L)[a-(h g/g)(du/dt)] L——汽车轴距;=2370mm a --- 重心到前轴中心线的距离;=1559mm b——重心到后轴中心线的距离;=2370-1559=811mm hg -- 汽车重心高度;261+230=490mm du/dt ――汽车制动减速度; 国家规定汽车的制动数据为:制动初速度为80km/h,制动的距离为50m 2 因此:du/dt=4.9m/s 所以地面对后轮的法向反作用力F2: =(450*9.8/2370){1558-[ (200+89)/9.8]*4.9} =2630N B = (b+? hg) /L=(811+0.7*490)/2370=0.49 汽车的前后轮制动力为: F U1+F U2=?G; F U1/F U2= (b+ ?h) /(a- ? h) ? ――附着系数,(干沥青路面,取0.7 ) F U1 < (mg ? /L) (b+? h g) F U2W (mg? /L) (a- ? h g) F U2W (mg ? /L) (a- ? h g) 所以G4的后轮制动力为: =530*9.8*0.7*(1559-0.7*490)/2370 =1865N

对于轮缸式制动器和盘式制动器,制动力F: F ui=2p*(Pi*D i2/4)*n i*C i*R i/r d F U2 =2p2*(Pi*D 22/4)*n 2*C2*RJr d F ui, U2――分别为前、后轮的制动力,N; D , D2—分别为前、后轮缸直径,m n i,n2 ------ 分别为前、后制动器单侧油缸数目(仅对于盘式制动器而言); C,C2――分别为前、后制动器的效能因数; R,R――分别为前、后制动器的工作半径,m r d ------ 轮胎动负荷半径; 效能因数是指在制动鼓或制动盘的作用半径上所得到的摩擦力与输入力之比。 C=(M/r)/F 0 M制动器输出的制动力矩 r――制动鼓或者制动盘的作用半径 F。一一为制动器输入力 制动器的效能因数取决与制动器的类型、结构特点和结构参数等因素,并受摩擦片的摩擦系数变化的影响。(参见“汽车工程手册设计篇”,表格5-3-1和5-3.3) 鼓式刹车的效能因数:(参见“汽车工程手册基础篇191页”) 盘式刹车的效能因数:(参见“汽车工程手册基础篇195页”) 同步附着系数?。=(LB -b ) / h g B――制动力分配系数;既前轴制动器制动力与前、后轴制动器总制动力的比值表示。一般取0.6

安全制动减速度验证

安全制动减速度验证 1.上提重物时 a 3=R M M m j z ∑+ 式中:Mz 力矩的油压(50-45)kg/cm 2时 制动力矩20865.6kg.m 见前 Mj 最大静张力差力矩 5834.5kg.m R 制动半径 ∑m 提升张力的变位质量 ∑m=Q+2Qz+n 1pLp+n 2qLq+2Gt+Gj+Gd Q: 一次提升量5000kg Qz :容器自重 n 1:主绳根数 P :主绳每米重量1.96kg/m Lp :主绳每根长度500m n 2:尾绳根数 2根 Lq :尾绳每根的长度390m q :尾绳每米重量 4.18kg Gt :天轮变位重量 2600kg Gj :提升机的变位重量(包括试电机) 6230kg Gd :电动机转子变位重量 4459kg ∑m=5000+2×7300+4×1.96×500+2×390×4.18+2× 2600+6230+4489 =5000+14600+3920+3260.4+5200+6230+4489=42699.4kg

则a 3=2 .14.426998.95.58346.20865??+)( =5.1>5m 2 /s 采用二级制动 一级制动力矩 Mz=∑m ·a ·2 d +Mj Q 2x 下放重物时的允许机械减速度规程规定大于1.5m/s 2 取1.7m/s 2 则有 Mz=42699.4×1.7×1.2+5834.5×9.8 =144284.9N ·M a 3=R M M ?∑+m j z =2.14.426991.571789.144284?+=3.5m/s <5m/s 合格 二级制动油压的确定: 一级制动时投入制动闸为全部闸的21,4×21=2时 产生的制动力矩Mz 2= 2 x zm ?M =21×20865.6 =10432.8kg.m 另外两副闸应产生的力矩为: Mz 2=(Mz 0-Mz 2) =144284.9-10432.8×9.8 =42043.46N ·M 对应的油压 Px=2n S RmM z 1???M =2 213835.02.14290???? =18.5kg/cm 2 式中符号意义同前 则溢流线8对应压力P Ⅱ=50-18.5=31.5kg/cm 2 即为二级制动油压指示数31.5kg/cm 2

制动力矩计算

鼓式制动器制动力矩的计算 1、制动器效能因数计算 根据制动器结构参数可知: A 、 B 、 C 、r 、φ、(结构参数意义见附图二) 其中θ为最大压力线和水平线的夹角。 由以下公式计算μ=0.35时(μ为摩擦片与制动鼓间摩擦系数),制动器领蹄和从蹄的制动效能因数。 θ=)tan(B C ar μγt a n ar = )t a n s i n s i n t a n (θφφφφθ+-=ar e θθγλ-+=e θθγλ+-=e ' φφφρsin 2sin 4+= r B A +=ξ r C B k 22+= 领蹄制动效能因数: 1sin cos cos 1-=?γ θρλξ?e k K 从蹄制动效能因数:

1 sin cos 'cos 2+=?γ θρλξ ?e k K 制动器的总效能因数,可由领、从蹄的效能因数按如下公式计算: 2 11 24??φ?????+?=K K K K K 2、制动器制动力矩计算 单个制动器的制动力矩M 为: R P K M ??= 其中:K 为制动器效能因数 P 为制动器输入力,加于两制动蹄的张开力的平均值; R 制动鼓的作用半径,即制动器的工作半径r 制动器输入力η??=i F P /2 其中:F 为气室推杆推力,由配置的气室确定 i 为凸轮传动比,e L i /= (L 为调整臂臂长,e 为凸轮力臂,即凸轮基圆半径) η为传动效率,一般区0.63 例:某Φ400X180制动器,A=150 B=150 C=30 r=0.2 Φ=115° μ=0.35 η=0.63 通过上公式计算得1??K =1.530 2??K =0.543 2 11 24??φ?????+?K K K K K ==1.603 取F=9900N(0.6MPa 气压下气室输出力) L=125 e=12 R P K M ??==R L F K ????η/2e=1.603*9900*125*0.63*0.2/(2*12) =10414N.m

制动力计算方法

《机动车运行安全技术条件》(GB7258-2004)有关制动方面的: 1.1 台试检验制动性能 1.1.1 行车制动性能检验 1.1.1.1 汽车、汽车列车在制动检验台上测出的制动力应符合表 6 的要求。对空载检验制 动力有质疑时,可用表 6 规定的满载检验制动力要求进行检验。 摩托车及轻便摩托车的前、后轴制动力应符合表 6 的要求,测试时只允许乘坐一名驾 驶员。 检验时制动踏板力或制动气压按7.13.1.3 的规定。 表 6 台试检验制动力要求 1.1.1.2 制动力平衡要求(两轮、边三轮摩托车和轻便摩托车除外) 在制动力增长全过程中同时测得的左右轮制动力差的最大值,与全过程中测得的该轴左 右轮最大制动力中大者之比,对前轴不应大于20% ,对后轴(及其它轴)在轴制动力不小 于该轴轴荷的60% 时不应大于24%;当后轴(及其它轴)制动力小于该轴轴荷的60% 时,在制动力增长全过程中同时测得的左右轮制动力差的最大值不应大于该轴轴荷的8% 。 依据国标要求,对前轴以外的制动力平衡计算分两种情况: 1、当该轴制动制动率 >= 60%时,过程差最大差值点的两个力分别 为f1和f2,如果f1 >= f2 不平衡率 = (f1 –f2)/f1 * 100 ; 如果f1 < f2不平衡率 = (f2 –f1)/f2 * 100 2、当该轴制动制动率 < 60%时,过程差最大差值点的两个力分别

为f1和f2,如果f1 >= f2 不平衡率 = (f1 –f2)/轴重 * 100 ;如果f1 < f2不平衡率 = (f2 –f1)/轴重 * 100 注意:以上为简约的计算,较为准确的计算要注意单位之间的换算:轴重是kg,制动力的单位是10N 例如: 轴重最大左最大右差值左差值右制动率不平衡率 2074 543 508 543 508 50.7 1.7 二轴不平衡率( 543-508)*10/(2074*9.8)*100= 1.722% 有关制动台仪表 制动台仪表的不平衡率算法说明书没有给出,不清楚其算法,对于前轴有可能是对的,对于后轴等仪表算法可定是错误的,制动台本身不能得到车辆的轴重,也就不能判断制动率是否 >=60,也就不能得出不平衡率。

主副井提升机制动减速度的验算

主、副井提升机制动减速度的验算 一、主井制动减速度验算 上提重载时 a=(Mz+Mj)/(∑M·R) 式中:a----制动减速度 Mz----安全制动力矩 Mj---静张力差力矩 ∑m—整个提升系统的变位质量(㎏s2/m) 安全制动力矩为二级制动力矩,工作油压最大值P为5.6Mpa储能器油压为P1为3.1Mpa Mz=2μNRmn=2[Pπ(D2-d2)/4-KΔ/n1-C]×μRmn 故Mz1=2·[56π(142-42)/4-4100×2/4-0.1] ×0.35×1.7×8/4 =16437.75kg·m=16437.75×9.8=161089.95N·m Mz2=2·[56π(122-42)/4-4100×2/4-0.1] ×0.35×1.7×8/4 =10952.25kg·m=10952.25×9.8=107332.05N·m Mz3=2·[(56-31)π(142-42)/4-4100×2/4-0.1] ×0.35×1.7×8/4 =5967.612kg·m=5967.612×9.8=58482.5976N·m Mz4=2·[(56-31)π(122-42)/4-4100×2/4-0.1] ×0.35×1.7×8/4 =3538.322kg·m=3538.322×9.8=34680.4566N·m

Mz=Mz1+Mz2+Mz3+Mz4=161089.95+107332.05+58482.5976+ 34680.4566=361584.8N·m Mj=Fcmax·R=73692.08×1.5=110538.12N·m ∑m=(Q+2Qz+2PL+2Gt+Gd+Gj) 式中:Q—一次提升重量 (㎏)6000 Qz—箕斗自重(㎏)5230 L—一根提升钢丝绳的总长度(m)373 Gt—天轮的变位重量(㎏)781 Gd—提升机主电机转子的变位重量(㎏)29095 Gj—提升机参与运动部分的变位重量(㎏)16300 ∑m=(6000+2×5230+2×5.86×373+2×781+29059+16300) = 67743.8(㎏s2/m) a=(Mz+Mj)/(∑M·R) =(361584.8+110538.12)/67743.8×1.5=4.65m/s2 下放重物时 a=(Mz-Mj)/(∑M·R) =(361584.8-110538.12)/67743.8×1.5=2.47m/s2 箕斗上提重物时,安全制动减速度为 4.65m/s2<5 m/s,下放重物时,安全制动减速度为2.47 m/s2>1.5 m/s符合《煤矿安全规程》第433条的规定。 一、副井制动减速度验算 安全制动力矩为二级制动力矩,工作油压最大值P为5.4Mpa储能器油压为P1为3Mpa,油缸活塞直径全部为120㎜

制动计算公式 (2)

平板台制动计算公式 一、前轴 1、前轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(动态轮荷左+动态轮荷右)×0.98】×100% 2、前轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% 二、后轴 1、后轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(动态轮荷左+动态轮荷右)×0.98】×100% 2、两种情况算法 (1)后轴行车制动率>60%时 后轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% (2)后轴行车制动率<60%时 后轴不平衡率=(过程差值大-过程差值小)÷【(动态)轮荷之和×0.98】×100% 滚筒制动台计算公式 一、前轴 1、前轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(轮荷左+轮荷右)×0.98】×100% 2、前轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% 二、后轴 1、后轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(轮荷左+轮荷右)×0.98】×100% 2、两种情况算法 (1)后轴行车制动率>60%时

后轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% (2)后轴行车制动率<60%时 后轴不平衡率=(过程差值大-过程差值小)÷【轮荷之和×0.98】×100% 注:(1)机动车纵向中心线位置以前的轴为前轴,其他轴为后轴; (2)挂车的所有车轴均按后轴计算; (3)用平板台测试并装轴制动力时,并装轴可视为一轴 整车制动率 整车制动率=最大行车制动力÷(整车轮荷×0.98)×100% 驻车制动率 驻车制动率=驻车制动力÷(整车轮荷×0.98)×100% 台式检验制动率要求(空载) 台式检验制动力要求(加载)

列车制动力计算公式

列车制动力计算 1,紧急制动计算 ①列车总制动力 )(kN K B h h ∑=? 式中 ∑h K ------全列车换算闸瓦压力的总和,kN ; h ?---换算摩擦系数; ②列车单位制动力的计算公式 )/()(1000)(1000kN N g G P K g G P B b h h ?+=?+?=∑? 其中 )/()(kN N g G P K h h ?=?+∑,则h h b ???=1000 式中 G P +------------列车的质量,t ; h ?---换算摩擦系数; h ?------------------列车制动率; ∑h K ------全列车换算闸瓦压力的总和,kN ; 2,列车常用制动计算 1≤= b b c c β 由此可得 )/(1000kN N b b c h h c c β??β=?= 式中 c β-----常用制动系数 c b -------列车单位制动力 表1 常用制动系数 1p 为列车管空气压力 列车管减压量r/kPa 50 60 70 80 90 100 110 120 130 140 150 160 170 旅客列车 kPa p 6001= 0.19 0.29 0.39 0.47 0.55 0.61 0.69 0.76 0.82 0.88 0.93 0.98 1.00

3,多种摩擦材料共存时列车制动力的计算 同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦压力与该种闸瓦的换算摩擦系数乘积的总和。即 ) )((kN 332211∑∑∑∑∑=???+++=h h h h h h h h K K K K B ????式中,1h K ,1h ?代表机车的闸瓦制动,2h K ,2h ?代表车辆的闸瓦制动,3h K ,3h ?代表车辆的盘形制动,等等。 列车单位制动力 )/()(1000)()(1000kN N g G P K b h h h h ∑∑∑?=?+= ???。 4,列车制动的二次换算法 表2 不同摩擦材料换算闸瓦压力的二次换算系数 类别 基型 高磷(中磷)闸瓦 高摩合成闸片 高摩合成闸瓦 高磷(中磷)闸瓦 1.0 0.56 0.63 高摩合成闸片 1.8 1.0 1.1 货物列车 kPa p 6001= 0.17 0.28 0.37 0.46 0.53 0.60 0.67 0.73 0.78 0.83 0.88 0.93 0.96 kPa p 6001= 0.19 0.32 0.42 0.52 0.60 0.68 0.75 0.83 0.89 0.95 --- --- ---

42_汽车制动性能检测项目检测方法及有关标准

汽车制动性能检测项目检测方法及有关标准 一、台试检验制动性能 1 制动性能台试检验的主要检测项目: (1)制动力; (2)制动力平衡要求; (3)车轮阻滞力; (4)制动协调时间。 2 制动性能检测方法 (1)用反力式滚筒试验台检验 制动试验台滚筒表面应干燥,没有松散物质即油污。驾驶员将车辆驶上滚筒,位置摆正,变速器置于空档,启动滚筒,使用制动,测取各轮制动力、每轴左右轮在制动力增长全过程中的制动力差、制动协调时间、车轮阻滞力和驻车制动力等参数值,并记录车轮是否抱死。 在测量制动时,为了获得足够的附着力以避免车轮抱死,允许在车辆上增加足够的附加质量和施加相当于附加质量的作用力(附加质量和作用力不计入轴荷;也可采取防止车轮移动的措施(例如加三角垫块或采取牵引等方法)。 (2)用平板制动试验台检验 制动试验台平板表面应干燥,没有松散物质或油污。驾驶员以5km/h~10km/h的速度将车辆对正平板台并驶上平板,置变速器于空档,急踩制动,使车辆停住,测得的各轮制动力、每轴左右轮在制动力增长全过程的制动力差、制动协调时间、车轮阻滞力和驻车制动力等参数值。 3 制动性能台试检验的技术要求

(1) (1) 制动性能台试检验车轴制动力的要求见表4-1。 表4-1 车辆类型制动力总和整车质量的百分比% 前轴制动力于轴荷 的百分比%空载满载 汽车、汽车列车 60 50 60* 注:空、满载状况下测试应满足此要求。 (2)制动力平衡要求 在制动力增长全过程中,左、右轮制动力差与该左、右轮中制动力大者比较对前轴不得大于20%,对于后轴不得大于24%。 (3)车轮阻滞力 汽车和无轨电车车轮阻滞力均不得大于该轴轴荷5%。 (4)驻车制动性能检验 当采用制动试验台检验车辆驻车制动的制动力时,车辆空载,乘坐一名驾驶员,使用驻车制动装置,驻车制动了的总和应不小于该车在测试状态下整车重量的20%。对总质量为整备质量1.2倍以下的车辆此值为15%。 (5)机动车制动完全释放时间限制 机动车制动完全释放时间(从松开制动踏板到制动消除所需要的时间)对单车不得大于0.8s。 根据GB7528-2003《机动车运行安全技术条件》中6.15.3的规定,当汽车经台架检验后对制动性能有质疑时,可用道路试验检验,并以满载的检验结果为准。 二、路试检验制动性能 1 制动性能路试检验项目 制动性能路试检验的主要检测项目

小型客车制动力分配比分析与优化

百度文库- 让每个人平等地提升自我 本科生毕业论文(设计)题目:小型客车制动力分配比分析与优化 专业代码:机械设计制造及其自动化(080301)作者姓名:陈哲 学号: 39 单位:汽车与交通工程学院 指导教师:楚晓华 2012 年5 月20日

原创性声明 本人郑重声明:所提交的学位论文是本人在导师指导下,独立进行研究取得的成果。除文中已经注明引用的内容外,论文中不含其他人已经发表或撰写过的研究成果,也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。本人承担本声明的相应责任。 学位论文作者签名:日期 指导教师签名:日期

摘要 汽车的制动性直接关系到交通安全。因此,改善汽车的制动性,成为了汽车设计制造和使用部门的重要任务。由于我国车辆种类繁多,为使本篇论文更有针对性,能够从一定程度上解决实际问题,所以只研究讨论了应用较为广泛的小型客车。 本文对汽车制动系统进行了全面的、系统的理论分析,在深入研究制动系统设计要求、制动性能的评价指标以及有关制动法规的基础上,在MATLAB环境下绘制了制动力分配曲线,通过对该曲线进一步研究分析,从而优化变量、设计确定目标函数、计算约束条件。 最后,本文结合小型客车实例对汽车制动力分配进行优化与制动性能计算,并最终得出结论。 关键词:小型客车,制动系统,制动力分配曲线

Abstract The car's braking is directly related to traffic safety. Therefore, to improve the braking of the car has become the automotive design and manufacturing and use of the important task of the department. A wide range of China's vehicle to make this paper more focused, to a certain extent to solve practical problems, so the only research and discussion is widely used mini-van. Automotive Brake Systems to conduct a comprehensive, systematic theoretical analysis, in-depth study of the braking system design requirements, evaluation of braking performance and brake regulations on the basis of the brake force distribution curve drawn in the MATLAB environment , further research and analysis of the curve, in order to optimize the variable, the design objective function to calculate the constraints. Finally, this paper minibuses instance to optimize the braking force distribution and brake performance computing, and finally concluded. Keywords: minivans, braking systems, brake-force distribution curve

(完整版)GB7258-2017新标准考试题含答案

GB7258-2017培训考试题 姓名:分数: 1、车速表指示误差(最大设计车速不大于 40 km/h 的机动车除外)车速表指示车速V1(单位:km/h)与实际车速V2(单位:km/h)之间应符合下列关系式:0 ≤ V1 - V2 ≤(V2/10) + 4,如果按照校车最高限速80km/h 检测,则合格范围应为: 76/11=69.11≤V2≤80 。 2、台试检验制动力要求时三轮汽车制动整车要求不评价;后轴制动要求≥ 60 %。 3、铰接客车、铰接式无轨电车、汽车列车规定的制动力总和与整车重量的百分比满载≥ 45 %,空载≥55 %;轴制动力与轴荷a的百分比不评价;其他汽车规定的制动力总和与整车重量的百分比满载≥50 %,空载≥ 60 %其中总质量小于等于整备质量的 1.2 倍的转向作业车应大于等于50%;轴制动力与轴荷a的百分比:前轴≥ 60﹪;后轴≥50﹪;挂车轴制动力与轴荷a的百分比:空载≥55﹪;满载≥45﹪; 4、用平板制动检验台检验乘用车、其他总质量小于等于3500kg 的汽车时,应按左右轮制动力最大时 刻所分别对应的左右轮动态轮荷之和计算。 5、机动车(单车)纵向中心线中心位置以前的轴为前轴,其他轴为后轴;

挂车的所有车轴均按后轴计算;用平板制动试验台测试并装轴制动力时,并装轴可视为一轴。 6、其他汽车规定后轴制动应≥50d,其中上标“d”的含义为:满载测试时后轴制动力百分比不做要求;空载用平板制动检验台检验时应大于等于 35 %;总质量大于 3500kg的客车,空载用反力滚筒式制动试验台测试时应大于等于 40 %,用平板制动检验台检验时应大于等于 30 %。 7、在规定的测试状态下,机动车使用驻车制动装置能停在坡度更大且附着系数符合要求的试验坡道上时,应视为达到了驻车制动性能检验规定的要求。 8、台试检验制动力平衡要求:新注册车前轴≤ 20 %;在用车≤ 24 %;后轴(及其他轴):轴制动力大于等于该轴轴荷 60%时,新车≤ 24 %,在用车≤ 30 %;制动力小于该轴轴荷 60%时,新车≤ 8 %,在用车≤ 10 %;前轮距大于 460mm 的正三轮摩托车和轻便摩托车除外硬扯制动力平衡。 9、阻滞率要求:进行制动力检验时,汽车、汽车列车各车轮的阻滞力均应小于等于轮荷的10% 。 10、汽车(三轮汽车除外)的车轮定位应与该车型的技术要求一致。对前轴采用非独立悬架的汽车(前轮采用双转向轴的除外),其转向轮的横向侧滑量,用侧滑台检验时侧滑量值应在±5m/km之间。 11、机动车(手扶拖拉机运输机组除外)应设置具有连续发声功能的喇叭,喇叭声级在距车前 2m、离地高 1.2m 处测量时,发动机最大净功率(或电动机最大输出功率总和)为 7 kW以下的摩托车为 80 dB(A)~112 dB(A),其他机动车为 90 dB(A)~115 dB(A)。教练车(三轮汽车除外)还应设置辅助喇叭开关,其工作应可靠。

机动车安检机构检验员试卷(含答案)(GB21861-2014)

机动车安检机构检验员考试试卷(GB21861-2014) 部门:姓名:工号: 大项一二三四五总分 得分 一、判断题(30分)【得分:】 1、GB21861-2014规定前照灯远近光水平偏移不做检验要求,而垂直偏移对部分车型需要检测。(√) 2、路试检验车辆的驻车制动性能是在空载状态下,车辆在坡道为20%(总质量为整备质量1.2倍以下的车辆为15%)、轮胎与路面间的附着系数不小于0.7的坡道上正反两个方向使用驻车制动装置5min以上保持固定不动。(√) 3、GB21861-2014规定在用机动车检验时保存车辆识别代码照片,而不用保存拓印膜。(√) 4、机动车同一轴上的轮胎型号和花纹应相同,转向轮不得装用翻新的轮胎。(√) 5、对于非营运小型、微型载客汽车GB21861-2014规定不再检验驻车制动。(×) 6、用台试检验车辆制动性能后对其制动性能有质疑时,可用路试检验进行复试。(√) 7、用滚筒反力式制动台检验汽车制动力与非测试车轮的制动性能有关。(√) 8、对于使用年限在10年以内的非营运小型、微型载客汽车但发生过造成人员伤亡交通事故,在送检时要增加底盘动态检验和车辆底盘部件检查等项目。(√) 9、校车和2011(2012)年9月1日起出厂的公路客车、旅游客车的前风窗玻璃以及外玻璃用于驾驶人视区部位的可见光透射比应大于70%,其他车窗玻璃的可见光透射比不小于50%(×) 10、乘用车自行加装的前后防撞装置及货运机动车自行加装的防风罩、水箱、工具箱、备胎架,应不影响安全。(√) 11、机动车前号牌板(架)应设于前面的中部或右侧(按机动车前进方向),后号牌板(架)应设于后面的中部或左侧。(√) 12、汽车总质量是指汽车装备齐全(包括燃油、润滑油、冷却水、备胎、随车工具以及司机及随车乘员质量)的自重与载质量(在良好路面上行驶时允许的最大装载质量)之和。(√) 13、汽车的整备质量是指汽车按出厂技术条件装备完整(如备胎、工具等安装齐备),各种油水添满后的重量。(×) 14、路试检验行车制动性能时,奔驰S350应在边缘线为3米宽的试车道上进行检验,检验时,车辆沿试车道的中线行驶到50km/h时急踩制动,若车辆的任何部位都不超出试车道的边线,即为合格。(×) 15、制动检验时,被检验车辆应尽量停正(与滚筒中心线垂直),否则极有可能由于左右两侧车轮与滚筒接触面积和状态的不同而导致制动力平衡达不到要求。(√) 16、行车制动的控制装置与驻车制动的控制装置必须结合在一起,便于驾驶员操作。(×) 17、GB21861-2014规定:机动车安全检验人工检验部分项目数为50项,一个编号对应的项目包括多项检查内容时,有任一项检查内容不合格则该项目不合格。(√) 18、机动车排气管应安装牢固,并且排气管口不得指向车身右侧和正下方。(×) 19、减振器属于机动车的传动系部件,不应有漏油现象,并且是成对更换。(×) 20、2013年5月1日起出厂的专用校车和2013年3月1日起出厂的发动机后置的其他客车应装备发动机舱自动灭火装置。(√)

制动器制动力矩的计算

制动扭矩: 领蹄: 111????=K r F M δ 从蹄:222????=K r F M α 求出1??K 、2??K 、1F 、 β θ 2F 就可以根据μ计算出制 动器的制动扭矩。 一.制动器制动效能系数1??K 、2??K 的计算 1.制动器蹄片主要参数: 长度尺寸:A 、B 、C 、D 、r (制动鼓内径)、b (蹄片宽)如图1所示; 角度尺寸: β 、 e (蹄片包角)、α(蹄片轴中心---毂中心连线的垂线和包角 平分线的夹角,即最大单位压力线包角平分线的夹角,随磨擦片磨损而增大); μ为蹄片与制动鼓间磨擦系数。 2.求制动效能系数的几个要点 1)制动时磨擦片与制动鼓全面接触,单位压力的大小呈正弦曲线分布,如图2,max P 位于蹄片轴中心---毂中心连线的垂线方向,其它各点的单位压力 σsin max ?=P P ; 2)通过微积分计算,将制动鼓 与磨擦片之间的单位压 力换算成一个等效压力, 求出等效压力的方向σ 和力的作用点1Z 、2Z (1OZ 、2OZ ),等效力 P 所产生的摩擦力1XOZ (等于μ?P )即扭矩(需建 立M 和蹄片平台受力F 之间的关系);实际计算必须找出M 与F 之间的关系式: ????=K r F M

3)制动扭矩计算 蹄片受力如图3: a. 三力平衡 领蹄:111OE H M ?= 从蹄:222OE H M ?= b. 通过对蹄片受力平衡分析(对L 点取力矩) ()1111G L H b a F ?=+? ()1111/G L b a F H +?= ∴ ()11111/G L OE b a F M ?+?= 111????=K r F M ∴ 111 1G L OE r B A K ? += ?? 同理: 2 22 2G L OE r B A K ? += ?? c. 通过图解分析求出1OE 、2OE 、11G L 、22G L 与制动器参数之间的关系,就可以计算出1??K 、1??K 。 3.具体计算方法: 11-?= ?ρ γ?K l K ; 1'2+?= ?ρ γ?K l K r B A l +=; r C B K 2 2+= 1) 在包角平分线上作辅助圆,求Z. 圆心通过O 点,直径=e e e r sin 2sin 4+?

安全检测标准限值(设备检验部分)

机动车安全检验标准限值 (设备检验部分) ——如无特殊声明,检验标准限值依据: 国标 GB7258-2012《机动车运行安全技术条件》 国标 GB21861-2014《机动车安全技术检验项目和方法》 1、速度表校验 车速表指示误差(最大设计车速不大于40 km/h的机动车除外) 车速表指示车速 V1(单位: km/h )与实际车速 V2(单位: km/h)之间应符合下列关系式: 0 ≤ V1 -V2≤ (V2/10)+ 4 ( 32.8---40) 2、侧滑检验 汽车(三轮汽车除外)的车轮定位应与该车型的技术要求一致。对前轴采用非独立悬架的汽车(前轴采用双转向轴时除外),其转向轮的横向侧滑量,用侧滑台检验时侧滑量值应在 ±5m/km 之间。 3、常规制动检验 行车制动项目包括车轮阻滞率、轴制动率、制动不平衡率、协调时间、整车制动率等指 标。驻车制动项目只有驻车制动率一个指标。 ( 1)行车制动率标准 制动力总和与整车重量的轴制动力与轴荷a的百机动车类型百分比分比 空载满载前轴b后轴b 三轮汽车——— c ≥60 乘用车、其他总质量不大于 3500kg≥60≥50≥60 c≥20 c 的汽车 铰接客车、铰接式无轨电车、汽车 ≥55≥45————列车 其他汽车≥60≥50≥60 c≥ 50d 普通摩托车——≥60≥55轻便摩托车——≥60≥50

a) 用平板制动检验台检验乘用车时应按左右轮制动力最大时刻所分别对应的左右轮动态轮荷之和计 算。 b) 机动车(单车)纵向中心线中心位置以前的轴为前轴,其他轴为后轴;挂车的所有车轴均按后轴计 算,且挂车整车制动和标准应大于等于55%;用平板制动试验台测试并装轴制动力时,并装轴可视 为一轴。 c) 空载和满载状态下测试均应满足此要求。 d) 满载测试时后轴制动力百分比不做要求;空载用平板制动检验台检验时应大于等于35%;总质量大于 3500kg 的客车,空载用反力滚筒式制动试验台测试时应大于等于40%,用平板制动检验台检验时应大于等于 30%。 ( 2)加载制动率标准 轴制动力与轴荷的百分比机动车类型制动力总和与整车重量的百分比a 其它轴 并装双轴、并装三轴的半 ≥ 45 挂车,组成汽车列车无 三轴及三轴以上载货汽 ≥ 50车 a其它轴:除了货车、与挂车组合成的汽车列车的第一轴和最后一轴 另:三轴及三轴以上的货车、采用并装双轴及并装三轴的挂车测试加载制动率和加载制动不 平衡率 ( 3)制动不平衡率合格标准 内容在用车要求新车要求 前轴(左右轮制动力差的最大值/ 左右轮最大 ≤ 24% ≤ 20% 制动力中的大值) 后轴及其他轴(轴制动力≥轴荷*60%时,左 右轮制动力差的最大值/ 左右轮最大制动力≤ 30%≤ 24% 中的大值) 后轴及其他轴(轴制动力<轴荷*60%时,左 ≤ 8% ≤ 10% 右轮制动力差的最大值 / 该轴轴荷) ( 4)驻车制动力合格标准 机动车类型合格标准 总质量 / 整备质量≥ 1.2驻车制动力总和占整车重量百分比≥20% 总质量 / 整备质量 <1.2驻车制动力总和占整车重量百分比≥15%( 5)行车制动在产生最大制动效能时的踏板力或手握力应小于等于: 乘用车和正三轮摩托车500N; 摩托车(正三轮摩托车除外)350N(踏板力)或 250N(手握力); 其他机动车, 700N 。 ( 6)驻车制动应通过纯机械装置把工作部件锁止,并且驾驶人施加于操纵装置上的力:

相关主题
文本预览
相关文档 最新文档