【新课标-经典汇编】2018年最新苏教版七年级数学下册《多项式乘多项式》同步检测题及答案解析一
- 格式:docx
- 大小:25.95 KB
- 文档页数:6
苏科版七年级数学下册《多项式乘多项式》教案及教学反思一、教学内容概述1.教学目标通过本节课的学习,使学生了解多项式乘多项式的定义和性质,能够应用基本的运算法则进行计算,并培养学生综合运用所学知识进行问题解决的能力。
2.教学重点1.掌握多项式乘法的概念和运算法则。
2.能够化简和求解多项式乘法的运算结果。
3.教学难点1.多项式乘法的基本概念及其性质。
2.解决多项式乘法问题的应用能力。
二、课前准备1.教学资源苏科版七年级数学下册,P68-692.教学工具黑板、白板、粉笔/马克笔3.教学环节1.引入新课,通过简单的问题激发学生思考的兴趣;2.围绕问题展开内容讲解,让学生逐渐领悟和掌握多项式乘法的基本概念和运算方法;3.分组完成应用性练习,培养团队协作和解决实际问题的能力; 4.回顾本节课内容,进行讲解和总结。
三、教学过程1.引入新课通过以下问题开展相关讨论:如果将(x+1)和(x-2)进行乘法运算,你们会得到什么结果呢?引导学生思考,同时让他们知道本节课要学习的内容是多项式乘法。
2.内容讲解(1)概念解析多项式是由不等式的代数和常数构成的代数式,常用的多项式有单项式、一元多项式和二元多项式。
两个多项式的乘积是两个多项式各项的乘积之和,即可用特定的运算法则。
(2)具体运算多项式乘法的运算法则可以用FOIL法则来表示,即:(a+b)(c+d)=ac+ad+bc+bd。
这个一般可以用框图来表达,可以帮助学生理解和记忆运算法则。
在具体运算中,需要用到分配律、结合律和交换律等基本法则。
通过数学计算题和实例演练,让学生掌握多项式乘法的基本运算方法。
3.学生练习学生根据题目要求,在分组合作的方式下完成下列练习:1.把算式 (x-3)(2x+4) 用分配律,列式计算,并把结果化简。
2.求解 3a(a-1)-5a(a+2)的结果。
3.判断下列等式是否成立:(a+b)(c+d)=ac+bd。
4.课堂总结为了确保学生已经掌握课堂的重点、难点内容,进行课堂总结,让学生自我评价,强化学习效果。
苏教科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!苏科版初中数学和你一起共同进步学业有成!9.3 多项式乘多项式(第二课时)一、教学目标:1、 通过练习进一步巩固单项式乘单项式,单项式乘多项式,多项式乘多项式法则。
2、 利用多项式乘多项式的法则推导公式:(x+a)(x+b)=(a+b)x+ab ,并能利用上式公式准确地进行计算。
3、 会用法则对代数式进行化简,解决相关问题。
二、教学重难点: 利用所学法则准确、熟练地进行计算、化简。
三、教学方法:启发、引导式教学,讲练结合。
四、教学过程:(一)创设情境,感悟新知1、知识回顾 说出单项式乘单项式,单项式乘多项式,多项式乘多项式法则。
1、 计算:(1)(-5a 2b 3)·(-3a) (2)(2x)3(-5x 2y 3)(3)(-4x)(2x 2+3x-1) (4)( ab b ab 21)2322⋅-(5)(x+2y)(5a+3b) (6)(3x+y)(x-2y)(二)探索活动,揭示新知例1 计算(1)(x+2)(x+3) (2)(y+5)(y-6)(3)(a-4)(a-1) (4)(m-8)(m+12)认真观察上面四个式子,然后提问:1、 某个式子左边的两个因式所含的字母有什么关系?字母的系数是多少?2、结果中的二次项系数是多少?一次项系数与左边两个因式中的常数项有何关系?右边的常数项与左边两个因式中的常数项有何关系?通过观察,我们把发现的规律用字母表示为:(x+a )(x+b)=x 2+(a+b)x+ab(板)(三)拓展延伸,练习巩固例2 直接用上述公式说出答案 (1)(x+10)(x+8) (2)(y-7)(y+5)(3)(a+b)(a-1) (4)(m-11)(m-6)(5)(ab+5)(ab+10) (6)(a 3-4)(a 3-5)例3 计算:(1)(4×105)2·(5×106)3·(3×104) (2)(-0.25)10·(-4)11 例4 化简,再求值:(1)(-2xy 2)3·(3x 2y 2)+4x 3y 2·20x 4y 6,其中x=,y= 3223 (2)(3x+1)(2x-3)-(6x-5)(x-4),其中x=-2例5 解下列方程:(1)2(x 2-2)-6x(x-1)=4x(1-x)16(2)(2x+3)(x-1)-28=(1+x)(2x+11)例6 计算:125×21+125×35+125×24(四)课堂小结,优化新知1、 掌握(x+a )(x+b)=x 2+(a+b)x+ab,可作公式使用。
(新课标)苏教版2017-2018学年七年级下册9.5 多项式的因式分解一.选择题1.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣42.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1 3.已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣45.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a (2a+1)26.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2) D.b(a+b)27.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.228.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:州、爱、我、苏、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.苏州游C.爱我苏州D.美我苏州9.设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a10.多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y11.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4)D.12.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y) B.x2+y2=(x+y)2C.x2+xy=x(x+y)D.x2+6x+9=(x+3)213.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个14.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形15.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;...;第十名胜x10局,负y10局,若记M=x12+x22+ (x102)N=y12+y22+…+y102,则()A.M<N B.M>NC.M=N D.M、N的大小关系不确定二.填空题16.分解因式:a3﹣4a2b+4ab2= .17.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.18.分解因式:2a(b+c)﹣3(b+c)= .19.分解因式:4x2﹣4xy+y2= .20.分解因式:(m+1)(m﹣9)+8m= .21.分解因式:(2a+b)2﹣(a+2b)2= .22.将m3(x﹣2)+m(2﹣x)分解因式的结果是.三.解答题23.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18=启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p 的所有可能值是.25.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2=②2x2﹣xy﹣6y2+2x+17y﹣12=③x2﹣xy﹣6y2+2x﹣6y=(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.26.通过对《因式分解》的学习,我们知道可以用拼图来解释一些多项式的因式分解.如图1中1、2、3号卡片各若干张,如果选取1号、2号、3号卡片分别为1张、2张、3张,你能通过拼图2形象说明a2+3ab+2b2=(a+b)(a+2b)的分解结果吗?请在画出图形.27.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.28.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得,经过四次“F”运算得,经过五次“F”运算得,经过2016次“F”运算得.(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).29.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).30.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与试题解析一.选择题1.(2017•静安区一模)下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.2.(2016•潍坊)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.【点评】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.3.(2016•台湾)已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子【分析】根据a、b的最大公因子为12,a、c的最大公因子为18,得到a为12与18的公倍数,再由a的范围确定出a的值,进而表示出b,即可作出判断.【解答】解:∵(a,b)=12,(a,c)=18,∴a为12与18的公倍数,又[12,18]=36,且a介于50与100之间,∴a=36×2=72,即8是a的因子,∵(a,b)=12,∴设b=12×m,其中m为正整数,又a=72=12×6,∴m和6互质,即8不是b的因子.故选B【点评】此题考查了公因式,弄清公因式与公倍数的定义是解本题的关键.4.(2016•自贡)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.5.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a (2a+1)2【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.6.(2016•梅州)分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2) D.b (a+b)2【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.7.(2016•台湾)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c (a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).8.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:州、爱、我、苏、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.苏州游C.爱我苏州D.美我苏州【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,苏,州,∴结果呈现的密码信息可能是“爱我苏州”,故选C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键.9.(2016•厦门)设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a【分析】根据乘法分配律可求a,将b变形为2015×2016﹣(2015﹣2)×(2016+2),再注意整体思想进行计算,根据提取公因式、平方差公式和算术平方根可求c,再比较大小即可求解.【解答】解:∵a=681×2019﹣681×2018=681×(2019﹣2018)=681×1=681,b=2015×2016﹣2013×2018=2015×2016﹣(2015﹣2)×(2016+2)=2015×2016﹣2015×2016﹣2×2015+2×2016+2×2=﹣4030+4032+4=6,c=====<681,∴b<c<a.故选:A.【点评】本题考查了因式分解的应用,熟记乘法分配律、平方差公式的结构特点是解题的关键.注意整体思想的运用.10.多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y【分析】直接利用十字相乘法分解因式得出即可.【解答】解:2x2﹣xy﹣15y2=(2x+5y)(x﹣3y).故选:B.【点评】此题主要考查了十字相乘法分解因式,熟练应用十字相乘法分解因式是解题关键.11.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4)D.【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A、是单项式乘单项式的逆运算,不符合题意;B、右边结果不是积的形式,不符合题意;C、a2﹣3a﹣4=(a+1)(a﹣4),符合题意;D、右边不是几个整式的积的形式,不符合题意.故选C.【点评】本题考查了因式分解的意义.这类问题的关键在于能否正确应用分解因式的定义来判断;同时还要注意变形是否正确.12.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y) B.x2+y2=(x+y)2 C.x2+xy=x (x+y)D.x2+6x+9=(x+3)2【分析】分别利用平方差公式以及完全平方公式和提取公因式法分别分解因式进而判断即可.【解答】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2+y2,无法分解因式,故此选项正确;C、x2+xy=x(x+y),正确,不合题意;D、x2+6x+9=(x+3)2,正确,不合题意;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式分解因式是解题关键.13.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个【分析】分别利用完全平方公式分解因式得出即可.【解答】解:①x2﹣10x+25=(x﹣5)2,不符合题意;②4a2+4a﹣1不能用完全平方公式分解;③x2﹣2x﹣1不能用完全平方公式分解;④=﹣(m2﹣m+)=﹣(m﹣)2,不符合题意;⑤不能用完全平方公式分解.故选:C.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.14.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【解答】解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.【点评】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;...;第十名胜x10局,负y10局,若记M=x12+x22+ (x102)N=y12+y22+…+y102,则()A.M<N B.M>NC.M=N D.M、N的大小关系不确定【分析】根据题意,对M和N作差,然后与零比较大小即可解答本题.【解答】解:由题意可得,x n+y n=9,∴y n=(9﹣x n),∴M﹣N=x12+x22+…+x102﹣(y12+y22+…+y102)=x12+x22+…+x102﹣,=﹣810+18(x1+x2+…+x10),∵10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,x1+x2+…+x10=45,∴﹣810+18(x1+x2+…+x10)=﹣810+18×45=﹣810+810=0,∴M=N,故选C.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要的条件.二.填空题16.分解因式:a3﹣4a2b+4ab2= a(a﹣2b)2.【分析】首先提公因式a,然后利用完全平方公式即可分解.【解答】解:原式=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案是:a(a﹣2b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(2016•黔南州)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2 .【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.18.(2016•南京)分解因式:2a(b+c)﹣3(b+c)= (b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.19.(2016•赤峰)分解因式:4x2﹣4xy+y2= (2x﹣y)2.【分析】符合完全平方公式的特点:两项平方项,另一项为两底数积的2倍,直接利用完全平方公式分解因式即可.【解答】解:4x2﹣4xy+y2,=(2x)2﹣2×2x•y+y2,=(2x﹣y)2.【点评】本题考查运用完全平方公式分解因式,熟练掌握公式结构特点是解题的关键.20.(2016•荆门)分解因式:(m+1)(m﹣9)+8m= (m+3)(m﹣3).【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点评】本题考查了利用公式法分解因式,先利用多项式的乘法运算法则展开整理成一般多项式是解题的关键.21.(2016•威海)分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.22.(2016•贺州)将m3(x﹣2)+m(2﹣x)分解因式的结果是m(x﹣2)(m﹣1)(m+1).【分析】先提公因式,再利用平方差公式进行因式分解即可.【解答】解:原式=m(x﹣2)(m2﹣1)=m(x﹣2)(m﹣1)(m+1).故答案为:m(x﹣2)(m﹣1)(m+1).【点评】本题考查的是多项式的因式分解,掌握提公因式法和平方差公式是解题的关键.三.解答题23.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).【分析】(1)原式提取x,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=x(x2﹣6x+9)=x(x﹣3)2;(2)原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).【点评】此题考查了因式分解﹣分组分解法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18= (x﹣2)(x+9)启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p 的所有可能值是7或﹣7或2或﹣2 .【分析】(1)原式利用题中的方法分解即可;(2)方程利用因式分解法求出解即可;(3)找出所求满足题意p的值即可.【解答】解:(1)原式=(x﹣2)(x+9);(2)方程分解得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x=2或x=4;(3)﹣8=﹣1×8;﹣8=﹣8×1;﹣8=﹣2×4;﹣8=﹣4×2,则p的可能值为﹣1+8=7;﹣8+1=﹣7;﹣2+4=2;﹣4+2=﹣2.故答案为:(1)(x﹣2)(x+9);(3)7或﹣7或2或﹣2.【点评】此题考查了因式分解﹣十字相乘法,弄清题中的分解因式方法是解本题的关键.25.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2= (3x﹣4y)(2x﹣3y)②2x2﹣xy﹣6y2+2x+17y﹣12= (x﹣2y+3)(2x+3y﹣4)③x2﹣xy﹣6y2+2x﹣6y= (x﹣3y)(x+2y+2)(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;③同②的方法分解;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【解答】解:(1)①6x2﹣17xy+12y2=(3x﹣4y)(2x﹣3y),②2x2﹣xy﹣6y2+2x+17y﹣12=(x﹣2y+3)(2x+3y﹣4),③x2﹣xy﹣6y2+2x﹣6y=(x﹣3y)(x+2y+2),故答案为:①(3x﹣4y)(2x﹣3y),②(x﹣2y+3)(2x+3y ﹣4),③(x﹣3y)(x+2y+2),(2)如图,m=3×9+(﹣8)×(﹣2)=43或m=9×(﹣8)+3×(﹣2)=﹣78.【点评】此题是因式分解﹣十字相乘法,主要考查了二元二次多项式的分解因式的方法,解本题的关键是选好那个字母当做常数对待,再用十字相乘法分解.26.通过对《因式分解》的学习,我们知道可以用拼图来解释一些多项式的因式分解.如图1中1、2、3号卡片各若干张,如果选取1号、2号、3号卡片分别为1张、2张、3张,你能通过拼图2形象说明a2+3ab+2b2=(a+b)(a+2b)的分解结果吗?请在画出图形.【分析】根据题意可知:a2+3ab+2b2=(a+b)(a+2b),可以看作长为a+2b,宽为a+b的长方形面积,由此画出图形.【解答】解:如图所示:∵大长方形的面积=a2+3ab+2b2,大长方形的面积=(a+b)(a+2b),∴a2+3ab+2b2=(a+b)(a+2b).【点评】此题主要考查因式分解的运用,注意利用已知的等式转化为图形解决问题,这是数形结合思想的运用.27.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.【分析】(1)根据“快乐数”的定义计算即可;(2)设三位“快乐数”为100a+10b+c,根据“快乐数”的定义计算.【解答】解:(1)∵12+02=1,∴最小的两位“快乐数”10,∵19→12+92=82→82+22=68→62+82=100→12+02+02=1,∴19是快乐数;证明:∵4→37→58=68→89→125→30→9→81→65→61→37,37出现两次,所以后面将重复出现,永远不会出现1,所以任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设三位“快乐数”为100a+10b+c,由题意,经过两次运算后结果为1,所以第一次运算后结果一定是10或者100,则a2+b2+c2=10或100,∵a、b、c为整数,且a≠0,∴当a2+b2+c2=10时,12+32+02=10,①当a=1,b=3或0,c=0或3时,三位“快乐数”为130,103,②当a=2时,无解;③当a=3,b=1或0,c=0或1时,三位“快乐数”为310,301,同理当a2+b2+c2=100时,62+82+02=100,所以三位“快乐数”有680,608,806,860.综上一共有130,103,310,301,680,608,806,860八个,又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,所以只有310和860满足已知条件.【点评】本题考查的是因式分解的定义、“快乐数”的定义,正确理解“快乐数”的定义、掌握分情况讨论思想是解题的关键.28.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得351 ,经过四次“F”运算得153 ,经过五次“F”运算得153 ,经过2016次“F”运算得153 .(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).【分析】(1)根据“F运算”的定义得到111经过三次“F运算”的结果,经过四次“F运算”的结果,经过五次“F运算”的结果,经过2016次“F运算”的结果即可;(2)首先根据题意可设a+b+c+d=3e,则此四位数1000a+100b+10c+d可表示为999a+99b+9c+a+b+c+d,即3(333a+33b+3c)+3e,所以可得这个四位数就可以被3整除.【解答】(1)解:1113(13+13+13=3)27(33=27)351(23+73=351)153(33+53+13=153)153(13+53+33=153)153(33+53+13=153).故数字111经过三次“F”运算得351,经过四次“F”运算得153,经过五次“F”运算得 153,经过2016次“F”运算得 153.(2)证明:设a+b+c+d=3e(e为整数),这个四位数可以写为:1000a+100b+10c+d,∴1000a+100b+10c+d=999a+99b+9c+a+b+c+d=3(333a+33b+3c)+3e,∴=333a+33b+3c+e,∵333a+33b+3c+e是整数,∴1000a+100b+10c+d可以被3整除.故答案为:351,153,153,153.【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想是解决这类问题的方法.同时考查了数的整除性问题.注意四位数的表示方法与整体思想的应用.29.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).【分析】(1)先分解因式得到x3﹣xy2=x(x﹣y)(x+y),然后利用题中设计密码的方法写出所有可能的密码;(2)利用勾股定理和周长得到x+y=13,x2+y2=121,再利用完全平方公式可计算出xy=24,然后与(1)小题的解决方法一样.【解答】解:(1)x3﹣xy2=x(x﹣y)(x+y),当x=15,y=5时,x﹣y=10,x+y=20,可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:解得xy=24,而x3y+xy3=xy(x2+y2),所以可得数字密码为24121.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题;考查了用类比的方法解决问题;(2)小题中计算出xy的值为解决问题的关键.30.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 C .A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4。
9.3多项式乘多项式一、选择题1.计算的结果为( )A. B. C. D.2.若,则( )A. B.C. D.3.若,则的值是( )A. B. C. D. 14.已知,,那么的值为( )A. B. C. 0 D. 55.设,,则A、B的大小关系为( )A. B. C. D. 无法确定6.下列各式中,计算正确的是( )A. B.C. D.7.若与的乘积中不含x的一次项,则n的值为( )A. B. 2 C. 0 D. 18.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为( )A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,79.如图,边长为的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为( )A. B. C. D.10.若a,b,k均为整数,则满足等式的所有k值有( )个.A. 2B. 3C. 6D. 8二、填空题11.计算:_________________.12.若矩形的面积为,长为,则宽为______.13.已知,则c的值为_____________.14.把化成的形式后为__________.15.已知多项式恰等于两个多项式和的积,则______.16.已知,则代数式的值为______ .17.小青和小红分别计算同一道整式乘法题:,小青由于抄错了一个多项式中a的符号,得到的结果为,小红由于抄错了第二个多项式中的x的系数,得到的结果为,则这道题的正确结果是______.18.若,那么________.三、计算题19.计算:四、解答题20.欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;(2)当,时,求绿化面积.22.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证恒等式成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试将等式______补充完整,并用上述拼图的方法说明它的正确性.答案和解析1.【答案】B【解析】【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.了多项式乘多项式,熟练掌握运算法则是解本题的关键.原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式,故选:B.2.【答案】D【解析】解:,而,,,,,.故选D.首先根据多项式的乘法法则展开,然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.3.【答案】A【解析】解:,,解得:,,.故选:A.直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.4.【答案】C【解析】【分析】此题考查了整式的混合运算化简求值,涉及的知识有:多项式乘多项式,去括号合并,以及合并同类项法则,熟练掌握法则是解本题的关键.所求式子利用多项式乘多项式法则计算,整理后将与xy的值代入计算即可求出值.【解答】解:当、时,,故选C.5.【答案】A【解析】解:,,,;故选:A.根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.6.【答案】B【解析】【分析】本题考查了单项式与多项式相乘的法则、平方差公式、完全平方公式、多项式乘以多项式法则;熟记公式和法则是解决问题的关键.根据单项式与多项式相乘的法则得出选项A不正确;根据平方差公式得出选项B正确;根据完全平方公式得出选项C不正确;根据多项式乘以多项式法则得出选项D不正确;即可得出结论.【解答】解:,选项A不正确;B.,选项B正确;C.,选项C不正确;D.,选项D不正确;故选B.7.【答案】A【解析】解:,又与的乘积中不含x的一次项,,;故选:A.根据多项式乘以多项式的法则,可表示为,再根据与的乘积中不含x的一次项,得出,求出n的值即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.8.【答案】A【解析】解:长为,宽为的长方形的面积为:,类卡片的面积为,B类卡片的面积为,C类卡片的面积为ab,需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.根据长方形的面积长宽,求出长为,宽为的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.9.【答案】B【解析】【分析】此题主要考查了多项式乘法,正确利用图形面积关系是解题关键.首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:,拼成的长方形一边长为m,.故另一边长为:.故选:B.10.【答案】C【解析】解:,,,,,b,k均为整数,,,;,,;,,;故k的值共有6个,故选:C.先把等式左边展开,由对应相等得出,;再由a,b,k均为整数,求出k的值即可.本题考查了多项式乘以多项式,是基础知识要熟练掌握.11.【答案】【解析】【分析】此题主要考查多项式乘多项式直接利用平方差公式计算解答即可.【解答】解:,故答案为.12.【答案】a【解析】解:矩形的宽,故答案为:a.根据多项式除以多项式的运算法则计算即可.本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.13.【答案】【解析】【分析】本题考查了多项式乘多项式,已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出c的值即可【解答】解:已知等式整理得:,则,故答案为.14.【答案】【解析】【分析】本题考查了二次函数的三种形式:一般式:b,c是常数,,该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是;顶点式:h,k是常数,,其中为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为,熟练掌握二次函数的一般式是解题的关键,根据二次函数的一般式形式把整理即可.【解答】解:,把化成的形式后为.故答案为.15.【答案】【解析】解:,由题意知,,则,所以,故答案为:.先计算出,根据得出n、a的值,代入计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.16.【答案】【解析】【分析】此题主要考查了多项式乘以多项式以及代数式求值,正确利用整体思想代入是解题关键.直接利用已知得出,再利用多项式乘法去括号进而求出答案.【解答】解:,,.故答案为.17.【答案】【解析】解:根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为,那么,可得,小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知,即,可得,解关于的方程组,可得,,.故答案为:.根据小青由于抄错了一个多项式中a的符号,得到的结果为,可知,根据等于号的性质可得;再根据小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得,解关于的方程组即可求a、b的值,进而可求一次项系数.本题考查了多项式乘以多项式的法则、解方程组,解题的关键是理解题目表达的意思.18.【答案】1【解析】【分析】本题考查了多项式的乘法,完全平方公式等有关知识,先用完全平方公式计算出,再确定,、、、的值,得结论.【解答】解:,,,,,.故答案为1.19.【答案】解:原式;原式【解析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【解析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.【答案】解:根据题意得:长方形地块的面积,正方形雕像的面积为:,则绿化面积,即用含a,b的代数式表示绿化面积,把,代入,得,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.根据绿化面积长方形地块的面积正方形雕像的面积,列式计算即可,把,带入所求结果,计算后可得到答案.22.【答案】;;如图所示:恒等式是.故答案为:.【解析】【分析】本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.根据图形是一个长方形求出长和宽,相乘即可;正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.【解答】解:观察图乙得知:长方形的长为:,宽为,面积为:;故答案为:.见答案.。
(新课标)苏教版2017-2018学年七年级下册多项式乘多项式一、选择题1.一个三项式与一个二项式相乘,在合并同类项之前,积的项数是【】A.五项B.六项C.三项D.四项2.下列4个算式:①(a-2b)(3a+b)=3a2-5ab-2b2;②(a+2b)(a+2b)=a2+2ab+4b2;③(a-2)(a+3)=a2—6;④(a-2) (a+2)=a2-4.其中,结果正确的有【】A.3个B.2个C.1个D.0个3.要使(x-a)(x+1)的积中不含x的一次项,则a的值为【】A.-1 B.1 C.0 D.24.方程(x-2)(x+3)=(x+4)(x-5)的解是【】A.x=-7 B.x=7 C.x=13 D.x=-13 5.当x=1时,代数式ax2+bx+1的值为3,(a+b-1)(1-a-b)的值等于【】A.1 B.-1 C.2 D.-2二、填空题6.(1) (x+y) (x-y)=____________;(2) (x-y)2=____________;(3) (3x+y)(x-2y)=____________;(4) (x-1)(x2+x+1)=____________;(5) (3x+1)(x+2)=____________;(6) (2x-3)(4-x)=____________.7.若(x+1)(x—m)的最后计算结果中没有一次项,则m=____________.8.已知(x+2)(x+3)=x2+ax+b,则a=____________,b=____________.三、解答题9.计算:(1) (x+2)(x+3);(2) (x一4)(x+1);(3) (x-3)(2x+7);(4) (3x+1)2.10.计算:(1) (x+2y+1)2;(2) n(n+1)(n-2).11.先化简,再求值:(a-4)(a-2)-(a-1)(a-3),其中a=-2.5.12.有一个多项式除以2x2+4x-3,商为x+1,余式为5x+8,求这个多项式.13.已知三角形的底边是6a+2b,底边上的高是2b-6a,求三角形的面积.四、拓展题14.若(x2+mx+1)(x+7)的积中不含x的一次项,求m的值.12.32+++x x x2625。
(新课标)苏教版2017-2018学年七年级下册 第9章《整式乘法与因式分解》9.3 多项式乘多项式 选择题
1.已知:a+b=m ,ab=-4,化简:(a-2)(b-2)的结果是( )
A .6
B .2m-8
C .2m
D .-2m
2.下列多项式相乘结果为a 2-3a-18的是( )
A .(a-2)(a+9)
B .(a+2)(a-9)
C .(a+3)(a-6)
D .(a-3)(a+6)
3.已知(x+a )(x+b )=x 2-13x+36,则a+b 的值是( B )
A .13
B .-13
C .36
D .-36
4.(x-a )(x 2+ax+a 2)的计算结果是( )
A .x 3+2ax+a 3
B .x 3-a 3
C .x 3+2a 2x+a 3
D .x 2+2ax 2+a 3
5.若(x-1)(x+3)=x 2+mx+n ,那么m ,n 的值分别是( )
A .m=1,n=3
B .m=4,n=5
C .m=2,n=-3
D .m=-2,n=3
6.计算(a+m )(a+12
)的结果中不含关于字母a 的一次项,则m 等于( ) A .2 B .-2 C .12 D .- 12
7.利用形如a (b+c )=ab+ac 的分配性质,求(3x+2)(x-5)的积的第一步骤是( )
A .(3x+2)x+(3x+2)(-5)
B .3x (x-5)+2(x-5)
C .3x2-13x-10
D .3x2-17x-10
8.若(x+4)(x-3)=x 2+mx-n ,则( )
A.m=-1,n=12 B.m=-1,n=-12 C.m=1,n=-12 D.m=1,n=12
9.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()A.a=b B.a=0 C.a=-b D.b=0
10.已知m+n=2,mn=-2,则(1-m)(1-n)的值为()
A.-3 B.-1 C.1 D.5
11.如果多项式4a4-(b-c)2=M(2a2-b+c),则M表示的多项式是()A.2a2-b+c B.2a2-b-c C.2a2+b-c D.2a2+b+c 12.下列运算中,正确的是()
A.2ac(5b2+3c)=10b2c+6ac2
B.(a-b)2(a-b+1)=(a-b)3-(b-a)2
C.(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a+b-c
D.(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)2
13.下面的计算结果为3x2+13x-10的是()
A.(3x+2)(x+5)B.(3x-2)(x-5)C.(3x-2)(x+5)D.(x-2)(3x+5)14.已知(5-3x+mx2-6x3)(1-2x)的计算结果中不含x3的项,则m的值为()
A.3 B.-3 C.- 1
2
D.0
15.下列多项式相乘的结果是a2-3a-4的是()
A.(a-2)(a+2)B.(a+1)(a-4)C.(a-1)(a+4)D.(a+2)(a+2)
16.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的矩形,则需要A类卡片张,B类卡片张,C类卡片张,请你在右下角的大矩形中画出一种拼法.(标上卡片名称)
17.若(x+p)与(x+2)的乘积中,不含x的一次项,则p的值是.18.若(x+1)(2x-3)=2x2+mx+n,则m= ,n= .19.(x-2)(x+3)= .
20.若计算(-2x+a)(x-1)的结果不含x的一次项,则a= .21.若(x-2)(x-n)=x2-mx+6,则m= ,n= .22.如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为.23.已知a2-a+5=0,则(a-3)(a+2)的值是.
选择题
1、D .
2、故选C .
解:A 、(a-2)(a+9)=a 2+7a-18,故本选项错误;
B 、(a+2)(a-9)=a 2-7a-18,故本选项错误;
C 、(a+3)(a-6)=a 2-3a-18,正确;
D 、(a-3)(a+6)=a 2+3a-18,故本选项错误.
3、故选B
解:(x+a )(x+b )=x 2+(a+b )x+ab ,
又∵(x+a )(x+b )=x 2-13x+36,
所以a+b= -13.
4、故选B .
解:(x-a )(x 2+ax+a 2),
=x 3+ax 2+a 2x-ax 2-a 2x-a 3,
=x 3-a 3.
5、C
6、故选D .
解:∵(a+m )(a+12 )=a 2+(m+12 )a+12
•m , 又∵不含关于字母a 的一次项,
∴m+12
=0,
∴m= -12
7、A 8、D 9、C 10、A 11、C
12、故选D .
分析:根据多项式乘以多项式的法则.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
解:A 、应为2ac (5b 2+3c )=10ab 2c+6ac 2,故本选项错误;
B 、应为(a-b )2(a-b+1)=(a-b )3+(b-a )2,故本选项错误;
C 、应为(b+c-a )(x+y+1)=x (b+c-a )-y (a-b-c )-a-b-c ,故本选项错误;
D 、(a-2b )(11b-2a )=(a-2b )(3a+b )-5(2b-a )2.
13、C
14、故选B .
分析:把式子展开,找到所有x 3项的所有系数,令其为0,可求出m 的值. 解:∵(5-3x+mx 2-6x 3)(1-2x )=5-13x+(m+6)x 2+(-6-2m )x 3+12x 4. 又∵结果中不含x 3的项,
∴-2m-6=0,解得m=-3.
15、B
填空题
16. 分析:首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.
解:长为2a+b ,宽为a+b 的矩形面积为(2a+b )(a+b )=2a 2+3ab+b 2, A 图形面积为a 2,B 图形面积为b 2,C 图形面积为ab ,
则可知需要A 类卡片2张,B 类卡片3张,C 类卡片1张.
故本题答案为:2;1;3.
17、-2 18、-1,-3 19、x 2+x-6
20、解:(-2x+a )(x-1)=-2x 2+(a+2)x-a , 因为积中不含x 的一次项,则a+2=0,
解得a=-2.
21、解:∵(x-2)(x-n )=x 2-(n+2)x+2n =x 2-mx+6,
∴n+2=m ,2n=6,
解得m=5,n=3.
22、 解:原式=x 3-5ax 2+ax+x 2-5ax+a , =x 8+(1-5a )x 2-4as+a ,
∵不含x 2项,
∴1-5a=0,
解得a=15
23、 解:(a-3)(a+2)=a 2-a-6,
∵a 2-a+5=0,
∴a 2-a=-5,
∴原式=-5-6=-11.。