液压伺服控制
- 格式:doc
- 大小:131.50 KB
- 文档页数:2
液压伺服系统的特点及原理
随着液压伺服控制技术的飞速发展,液压伺服系统的应用越来越广泛,以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服控制系统原理:
液压伺服控制系统的工作特点:(1)在系统的输出和输入之间存在反馈连接,从而组成闭环控制系统。
反馈介质可以是机械的,电气的、气动的、液压的或它们的组合形式。
(2)系统的主反馈是负反馈,即反馈信号与输入信号相反,两者相比较得偏差信号控制液压能源,输入到液压元件的能量,使其向减小偏差的方向移动,既以偏差来减小偏差。
(3)系统的输入信号的功率很小,而系统的输出功率可以达到很大。
因此它是一个功率放大装置,功率放大所需的能量由液压能源供给,供给能量的控制是根据伺服系统偏差大小自动进行的。
综上所述,液压伺服控制系统的工作原理就是流体动力的反馈控制。
即利用反馈连接得到偏差信号,再利用偏差信号去控制液压能源输入到系统的能量,使系统向着减小偏差的方向变化,从而使系统的实际输出与希望值相符。
液压伺服系统工作原理1.1 液压伺服系统工作原理液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。
液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服系统的工作原理可由图1来说明。
图1所示为一个对管道流量进行连续控制的电液伺服系统。
在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。
阀板转动由液压缸带动齿轮、齿条来实现。
这个系统的输入量是电位器5的给定值x i。
对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。
阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。
液压缸下腔的油液则经伺服阀流回油箱。
液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。
同时,液压缸活塞杆也带动电位器6的触点下移x p。
当x p所对应的电压与x i 所对应的电压相等时,两电压之差为零。
这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。
图1 管道流量(或静压力)的电液伺服系统1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。
反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。
用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。
而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。
液压缸位置伺服控制系统的设计与优化液压是一种广泛应用于工业领域的技术,而液压缸作为其中的重要组成部分,起到了控制和传动力的关键作用。
液压缸的位置伺服控制系统设计与优化是一个不断发展的领域,本文将从控制原理、设计方法和优化策略三个方面探讨液压缸位置伺服控制系统的发展和应用。
一、控制原理液压缸的位置伺服控制系统是基于反馈控制原理的。
该系统的目标是通过对液压油的控制,使液压缸的位置达到期望值。
控制器根据外部的输入信号和反馈信息,对液压系统进行控制和调节,以实现位置的精确控制。
在液压缸位置伺服控制系统中,主要采用的控制方式有比例控制、积分控制和微分控制。
比例控制通过调节控制信号与反馈信号之间的比例关系,使系统的响应更为迅速。
积分控制通过积分控制器对误差进行积分,以消除系统的稳态误差。
微分控制则通过微分控制器对误差的变化率进行调节,以提高系统的动态响应性能。
二、设计方法液压缸位置伺服控制系统的设计方法主要包括系统分析、参数选取、控制器设计和系统仿真等步骤。
在系统分析中,需要确定系统的目标、输入和输出,并对系统进行建模和分析。
参数选取则是根据系统的要求和性能指标,选择合适的液压元件和参数数值。
控制器设计是根据系统的特点和需求,设计出合适的控制算法和参数。
系统仿真则是通过软件模拟系统的运行和反馈信息,以评估系统的性能和稳定性。
在液压缸位置伺服控制系统的设计中,还需要考虑到系统的非线性和动态特性。
液压系统的非线性主要体现在油液的粘性、压力和温度对系统性能的影响等方面。
为了解决这些非线性问题,可以采用模糊控制、神经网络控制等方法来调节系统的响应。
而系统的动态特性则需要通过对控制系统的参数进行调节和优化,以提高系统的动态性能和稳定性。
三、优化策略液压缸位置伺服控制系统的优化策略主要包括参数优化、结构优化和控制策略优化。
参数优化是根据系统的性能指标和要求,通过试验和仿真等方法对系统的参数进行调整和优化。
结构优化是通过改变系统的结构和组件,以提高系统的性能和效率。
液压伺服系统的控制算法与性能研究引言液压伺服系统广泛应用于机械控制领域,具有高速、高力和可靠性等突出优点。
然而,由于其本质上是一种非线性、时变的控制系统,液压伺服系统的控制算法和性能一直是研究领域的热点之一。
本文将探讨液压伺服系统的控制算法,以及通过优化控制算法来提高系统性能的方法。
1. 液压伺服系统的基本原理液压伺服系统由液压执行器、液控元件、电控元件和传感器组成。
其基本原理是通过电控系统对液控系统进行反馈控制,实现对液压执行器的精确控制。
在伺服系统中,液压执行器是核心组件,用于产生力和位置的控制。
2. 常见的液压伺服系统控制算法2.1 PID控制算法PID(比例-积分-微分)控制算法是目前应用最广泛的控制算法之一。
它通过调节比例、积分和微分三个参数来实现对系统的控制。
PID控制算法简单易用,但在非线性系统或动态响应要求较高的情况下可能会存在一定的局限性。
2.2 模糊控制算法模糊控制算法是一种基于模糊逻辑的控制方法,适用于非线性、时变系统的控制。
模糊控制算法通过建立模糊规则集来实现对系统的控制,可以更好地处理系统的模糊性和不确定性。
2.3 自适应控制算法自适应控制算法是一种能够根据系统实时状态和参数变化进行调整的控制方法。
自适应控制算法通过反馈机制和参数估计来实现对系统的控制,可以提高系统的稳定性和鲁棒性。
3. 提高液压伺服系统性能的方法3.1 系统建模和参数辨识系统建模和参数辨识是提高液压伺服系统性能的关键步骤。
通过对系统进行建模和参数辨识,可以准确地描述系统的动态特性,为后续的控制算法设计和优化提供基础。
3.2 控制算法优化控制算法优化是提高液压伺服系统性能的有效途径。
基于建模和参数辨识的结果,可以通过优化控制算法来改善系统的动态性能。
常见的优化方法包括遗传算法、粒子群算法和模型预测控制等。
3.3 传感器和执行器的选型和优化传感器和执行器的选型和优化对液压伺服系统的性能影响巨大。
选择合适的传感器可以提高系统的测量精度和稳定性;优化执行器设计可以提高系统的输出能力和响应速度。
1液压传动系统与液压控制系统的异同:
同:液压控制技术是在液压传动技术的基础上发展起来的(介质相同、元件大部分相同、遵循的物理规律相同、融合了控制理论) 异:①目的不同(传递动力;对运动量进行精确的控制) ②组成不同(5个组成部分、开环;7个组成部分、闭环)
③设计理念不同(以静态参数设计为主;静动态结合,动为主) ④特点不同(有的缺点被放大(对污染的敏感度),有点缺点被消除(传动比))
2液压控制系统的工作原理
3液压控制系统的组成及作用: ①输入元件:(指令元件)给出输入信号(指令信号)加于系统的输入端。
②反馈测量元件:测量系统的输出并转换为反馈信号。
③比较元件:将反馈信号与输入信号进行比较,给出偏差信号。
④放大转换元件(中枢元件):将偏差信号故大、转换成液压信号(流量或压力)。
⑤执行元件:产生调节动作加于控制对象上,实现调节任务。
⑥控制对象:被控制的机器设备或物体,即负载。
⑦液压能源装置:定压源
4液压控制系统的特点 具有负反馈的闭环控制系统
优:(1)液压元件的功率—重量比和力矩-惯量比大 可以组成结构紧凑、体积小、重量轻、加速性好的控制系统。
(2)液压动力元件快速性好,系统响应快。
(3)液压控制系统抗负载的刚度大,即输出位移受负载变化的影响小,定位准确,控制精度高。
缺:(1) 液压元件,特别是精密的液压控制元件(如电液伺服阀)抗污染能力差,对工作油液的清洁度要求高。
(2) 油温变化时对系统的性能有很大的影响。
(3) 当液压元件的密封设计、制造相使用维护不当时.容易引起外漏,造成环境污染。
(4) 液压元件制造精度要求高,成本高。
(5) 液压能源的获得和远距离传输都不如电气系统方便。
22 控制系统的分类:
⑴按系统输入信号的变化规律:定值,程序,伺服(随动),比例; ⑵按被控物理量的名称:位置,速度,力;
⑶按液压动力元件的控制方式或液压控制元件的形式:节流式(阀控),容积式(变量泵控或变量马达控),阀控系统根据液压能源型式的不同可分为恒压控制系统和恒流控制系统; ⑷按信号传递的介质的形式:机械,电液,气动。
5液压放大元件的功能(液压放大元件考了定义) 也称液压放大器,是一种以机械运动控制流体动力的元件。
将输入的机械信号(位移或转角)转换为液压信号(流量,压力)输出,并进行功率放大
6液压放大元件分为:滑阀,喷嘴挡板阀和射流管阀等 7滑阀
⑴结构分类及其特点
通道数(4、3、2)工作边数(4、2、1)凸肩数(2、3、4)预开口型式(+、0、-) ⑵滑阀的P-Q 特性方程 ⑶滑阀的静态特性曲线
流量特性曲线 压力特性曲线 压力-流量特性曲线
⑷滑阀的三个阀系数
①流量增益:定义为 ,是流量特性曲线在某一点的切线斜率,表示负载压降一定时,阀单位输入位移所引起的负载流量变化的大小,其值越大,阀对负载流量的控制就越灵敏。
直接影响系统的开环增益,对系统的稳定性,响应特性,稳态误差有直接影响。
②流量-压力系数:定义为 ,是压力-流量曲线的切线斜率冠以负号,流量-压力系数表示阀开度一定时,负载压降所引起的负载流量变化。
K 值小,阀抵抗负载变化的能力大,即阀的刚度大。
直接影响阀空执行元件的阻尼比和速度刚度。
③压力增益:定义为 ,是压力特性曲线的切线斜率,通常压力增益是指q =0时阀单位输入位移所引起的负载压力变化的大小。
此值大,阀对负载压力的控制灵敏度高。
表示阀控执行元件组合启动大惯量或大摩擦力负载的能力。
8三种液压放大元件的性能特点及适用场合比较 圆柱滑阀 双喷嘴挡板阀 射流管阀
①工作原理:前两者流量特性,后者能量转换和守恒定理; ②输入量:阀芯位移,挡板位移,射流管摆角; ③输出量:负载流量和压力,皆为负载压力 ④运动惯量:滑阀>射流管阀>双; ⑤响应速度:双>射流管阀>滑阀; ⑥功放系数:滑阀>射流管阀>双; ⑦抗污染能力:射流管阀>双>滑阀; ⑧适用场合:
9液压动力元件的基本概念及其分类
液压动力元件(或称液压动力机构)是由液压放大元件(液压比控制元件)、液压执行元件以及负载组成。
四种基本型式的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸、泵控液压马达。
10阀控液压缸
⑴模型组成:比例环节,积分换节,二阶振荡环节
⑵阀控缸动力机构主要性能参数为阀控液压缸的增益Kq/Ap 、液压固有频率 、液压阻尼比
①动力机构的增益速度放大系数Kq/Ap :直接影响系统的稳定性、响应速度和精度。
提高增益可以提高系统的响应速度和精度,但使系统的稳定性变坏。
②液压固有频率 表示液压动力元件的响应速度。
③液压阻尼比表示系统的相对稳定性。
⑶提高“阀控缸”动力机构的液压固有频率 ①提高油液的体积弹性模量 ;(可通过提高供油压力来实现)②增大液压缸活塞面积③减小总压缩容积 ,主要是减小液压缸的无效容积和连接管道的容积
④减小折算到活塞上的总质量
⑷提高阻尼比(因素:总流量-压力系数K ,负载的粘性阻尼洗漱B )①设置旁通泄漏通道②采用正开口阀,正开口阀的K 值大,可以增加阻尼③增加负载的粘性阻尼
11阀控马达动力机构数学模型(化解为最简单) 12泵控马达动力机构数学模型(化解为最简单) 13三种动力机构的性能特点比较
控制元件相同,执行元件不同(阀控缸与阀控马达)时的比较:两者的动态特性完全相同(只需做变量替换,数学模型即完全一致) 控制元件不同,执行元件相同(阀控马达与泵控马达)时的比较:两者的动态特性类似(数学模型结构一致,但参数特征不同) 阀控响应速度高于泵控(80%-90%),但能量损失大(至少三分之一),效率低;泵控工作效率高,最大效益可达90%,适应于大功率,对响应速度要求不高的系统。
14电液伺服阀的组成及个部分功能 ⑴力矩马达(或力马达)即电机转换元件—把输入的电气控制信号转换为力矩或力控制液压放大器运动; ⑵液压放大器(先导级和功率级)即机液转换元件—控制液压能源流向液压执行机构的流量或压力;
⑶反馈机构(平衡机构)--将输出级(功率级)的阀芯位移,或输出流量,或输出压力以位移,力或电信号的形式反馈到第一级或第二级的输入端,也有反馈到力矩马达衔铁组件力矩马达输入端的。
15采用反馈机构是为了使伺服阀的输出流量或输出压力获得与输入电气控制信号成比例的特性。
由于反馈机构的存在,使伺服阀本身成为一个闭环控制系统,提高了伺服阀的控制性能。
16按反馈形式可分为:
滑阀位置反馈 负载流量反馈 负载压力反馈 17典型电液伺服阀的结构及工作原理 ⑴力矩马达
⑵力反馈两级电液伺服阀(闭环)考了工作原理 (不能直接控制负载信号,因为反馈信号不是力,是滑阀的位移) 第一级液压放大器为双喷嘴挡板阀,由永磁动铁式力矩马达控制,第二级液压放大器为四通滑阀,阀芯位移通过反馈杆与衔铁挡板组件相连,构成滑阀位移力反馈回路。
⑶直接反馈两级电液伺服阀(闭环)前置级是带两个固定节流孔的四通阀(双边滑阀),功率级是零开口四边滑阀,功率级阀芯也是前置级的阀套,构成直接位置反馈
⑷弹簧对中型两极(开环)第一级是双喷嘴,第二级是滑阀,阀芯两端各有一根对中弹簧,当有控制电流输入时,对中弹簧力与喷嘴挡板阀输出的也压力相平衡,使阀芯取得一个相应的位移,输出相应流量
18电液伺服阀的性能参数(电液伺服阀考了定义)
⑴静态特性
1、压力-流量特性
2、空载流量特性
流量曲线非常有用,它不仅给出阀的极性、额定空载流量、名义流量增益,而且从中还可以得到阀的线件度、对称度、滞环、分辨率,并揭示阀的零区特性。
3、压力特性:压力特性曲线是输出流量为零(两个负载油门关闭)时,负载压降与输入电流呈回环状的函数曲线。
4、内泄漏特性
5、零漂
⑵动态特性主要是用频率响应和瞬态响应表示。
19电液比例阀的种类:根据用途分为:电液比例压力阀,流量阀,方向阀,复合阀,复合阀的功能与伺服阀类似,可以控制流量和方向,进而控制执行元件的速度。
未经改良的比例阀动特性不如伺服阀:①有死区②不带内部反馈通道,内开环,无法对阀芯位移精确控制。
20电液控制系统的设计
⑴明确设计要求。
⑵拟定控制方案,画出系统图。
⑶静态计算,确定动力元件参数,选择系统的组成元件。
⑷动态计算,确定系统组成元件的动态参数,画出方框图,计算系统的稳定性、快速性和精度。
⑸校验系统的动、静态品质,如需要,对系统进行校正。
(6)伺服油源设计。
设计开始时需要明确以下要求:
①明确被控制的物理量是什么,控制规律是恒值还是随动;②明确负载特性,即负载的类型,大小和负载的运动规律,确定负载的最大位移,最大速度,最大加速度,最大消耗功率及控制范围;③控制精度的要求;④动态品质的要求;⑤明确工作环境;⑥其他要求:如尺寸质量,可靠性,寿命及成本。
21液压伺服系统的油源与普通液压系统相比有哪些不同
⑴液压伺服油源要求是恒压源,可采用定量泵+溢流阀或恒压变量泵两种形式。
⑵液压伺服油源在泵出口油路上要设置精密滤油器。
⑶液压伺服油源需要设置专门的冷却回路,对油液的温度进行控制。