变分法简介(简单_明了_易懂)
- 格式:doc
- 大小:592.51 KB
- 文档页数:12
§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。
它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。
这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。
约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。
后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。
有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。
在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。
伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。
第一章 变分原理与变分法1.1 关于变分原理与变分法(物质世界存在的基本守恒法则)一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;对运动事物:能量守恒,动量(矩)守恒,熵增原理等。
变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。
Examples :① 光线最短路径传播;② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron );③CB AC EB AE +>+Summary : 实际上光的传播遵循最小能量原理;在静力学中的稳定平衡本质上是势能最小的原理。
二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论数学上的泛函定义定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映射)关系特征描述法:{ J :R x R D X ∈=→⊂r J )(|}Examples :① 矩阵范数:线性算子(矩阵)空间 数域‖A ‖1 = ∑=ni ij ja 1max ;∑=∞=nj ij ia A 1max;21)(1122∑∑===n j ni ij a A② 函数的积分: 函数空间数域 D ⊂=⎰n ba n f dxx f J )(Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。
Discussion :① 判定下列那些是泛函:)(max x f f b x a <<=;x y x f ∂∂),(; 3x+5y=2; ⎰+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。
物理问题中的泛函举例① 弹性地基梁的系统势能i. 梁的弯曲应变能: ⎰=∏l b dx dxw d EJ 0222)(21ii. 弹性地基贮存的能量: dx kw l f ⎰=∏0221 iii. 外力位能: ⎰-=∏l l qwdx 0iv. 系统总的势能:000;})({221222021===-+=∏⎰dxdww x dx qw kw dxw d EJ l泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统势能。
变分法基础老大中变分法是数学和物理学中一种重要的数值计算方法,它在许多领域中都有广泛的应用。
本文将介绍变分法的背景和重要性。
变分法源于数学中的变分计算问题,最早起源于的变分问题。
它是一种求函数最值的方法,旨在寻找函数的极值点或稳定点。
变分法的发展历程经过了数学家们的不断研究和推导,逐渐形成了现代变分法的基础理论。
在物理学中,变分法广泛应用于解决各种力学和场的问题。
通过将物理问题转化为最值问题,可以用变分法来求解微分方程和泛函方程,从而获得物理系统的稳定解、极值解或最优解。
变分法在力学、电磁学、量子力学等领域起到了重要的作用。
在工程学中,变分法常用于优化设计问题和界面问题的求解。
通过对设计参数进行变分,可求解出具有最优性能的工程结构或系统。
变分法的应用可以降低系统的能耗、提高系统的效率,并优化系统与环境的交互效果。
总之,变分法作为一种重要的数值计算方法,在数学、物理学和工程学中都有着广泛的应用和重要的意义。
通过变分法的运用,可以获得优化问题的解析解或近似解,为各个领域的研究和实践提供有力的支持和指导。
泛函泛函是一个函数的集合,其中每个函数都将一个输入映射到一个输出。
在变分法中,我们将研究泛函的性质和优化问题。
变分变分是指对函数的微小变化。
在变分法中,我们将通过对函数进行变分来研究泛函的性质和优化问题。
变分法公式变分法公式是一种用于求解泛函优化问题的数学工具。
它涉及将变分应用于泛函,并通过求解变分问题来得到泛函的极值。
变分法公式可以表示为:对于给定的泛函J[y],寻找函数y 使得J[y]取极值应用变分运算符,通过对函数y 进行变分,得到变分问题求解变分问题,得到泛函J[y]的极值函数y变分法是一种数学方法,广泛应用于不同领域,包括物理学和工程学。
下面列举了一些变分法在这些领域中的应用示例:物理学量子力学:变分法可以用于求解量子系统的基态能量和波函数形式。
经典力学:变分法可以用于求解约束系统的最小作用量路径。
变分法基本引理变分法是数学中一种重要的数学工具,广泛应用于物理学、工程学、经济学等领域。
其基本引理为变分法的核心思想,是变分法的基础和出发点。
本文将围绕变分法基本引理展开讨论,介绍其基本概念、原理和应用。
一、引言变分法是数学中研究变量函数的极值问题的一种方法。
其基本思想是通过将极值问题转化为一个函数的极值问题,从而求解原问题。
变分法的基本引理是变分法的基础,为后续的推导和应用提供了重要的理论支持。
二、变分法基本引理的概念变分法基本引理是对于函数的变分的一种数学表述。
它指出,如果函数在某一点处取得极值,那么在该点处的变分为零。
换言之,如果一个函数在某一点处的变分不为零,那么该点不是函数的极值点。
三、变分法基本引理的原理变分法基本引理可以通过泛函导数的概念来理解。
泛函导数是对函数的变分的一种推广,它表示函数在某一点处的变分相对于该点处的微小变动的比率。
根据变分法基本引理,如果一个函数在某一点处的泛函导数为零,那么该点是函数的极值点。
四、变分法基本引理的应用变分法基本引理在实际问题中有着广泛的应用。
以经济学为例,我们可以将经济系统的效用函数看作一个泛函,通过变分法求解该泛函的极值,得到最优的经济决策。
类似地,变分法在物理学中的应用也十分广泛,例如用于求解最短路径、最小作用量和最小曲面等问题。
五、变分法基本引理的思考虽然变分法基本引理在理论和应用上都具有重要的意义,但在实际问题中的应用也面临一定的挑战。
首先,变分法需要对变分进行严格的数学推导,这对于一些复杂的问题来说是一项困难的任务。
其次,变分法在求解极值问题时并不一定能得到全局最优解,而可能仅能得到局部最优解。
六、结论变分法基本引理是变分法的核心思想,是变分法的基础和出发点。
通过对变分法基本引理的理论分析和应用示例的介绍,我们可以看到变分法在实际问题中的重要性和应用价值。
在今后的研究和应用中,我们应进一步深化对变分法的理解,不断拓展其应用领域,为解决复杂问题提供更有效的数学工具。