连续控制部分第七章 最优控制
- 格式:ppt
- 大小:2.30 MB
- 文档页数:2
最优控制又叫动态优化工程技术领域里的过程(物理过程或化学过程),通常都是可以控制的过程控制:使过程的发展变化按人们的需要进行动态优化问题的四个要素:1.建立过程的动态模型(动态系统的状态方程)2.指定所需的初始状态和结束状态(状态方程的边界条件)3.确立在可行控制策略4.性能指标动态系统的变化,可以看成对应状态的变化,其中每一个状态对应着n维状态空间中的一个点,系统的运动将在状态空间中画出一条状态曲线动态系统的状态方程:1.是对研究对象的动态数学建模2.体现了系统运动时应遵循的规律,反映了系统的动态特征3.一般是微分方程组描述状态方程f[x(t),u(t),t]的数学性质:1.f[x(t),u(t),t]是向量函数,维数与状态变量维数相同2.f[x(t),u(t),t]是关于x(t)/u(t)/t的连续函数3.f[x(t),u(t),t]是关于x(t)/t的连续可微函数4.u(t)是关于t的分段连续函数,只有有限个第一类间断点系统的初始时刻t0和初始状态x0一般都是已知的系统的结束时刻tf:固定或者不固定系统的结束状态xf:全部固定/全部不固定/部分固定性能指标:1.要根据实际任务确定,例如过程持续的时间最少/过程消耗的能量最少/成本最小/利益最大等等2.种类:终值型/积分型/复合型,它们都是关于x(t)/t的连续可微函数最优控制一定是容许控制,即最优控制策略(最优控制函数)在控制函数空间中的一个子集中选择当最优控制轨迹确定后,通过系统的状态方程,可以确立对应的最优状态轨迹现代控制理论相对于经典控制理论的优点:1.从时不变系统延伸到时变系统2.从单输入单输出系统延伸到多输入多输出系统3.从频域回到时域,采用能够揭示系统内部各状态变化规律的状态空间描述法最优控制理论属于现代控制理论的分支从数学角度来看,最优控制问题本质上是求泛函极值的变分学问题变分法分为古典变分法和现代变分法(最大值原理/动态规划)古典变分法只能解决容许控制集为开集的最优控制问题实际最优控制问题的容许控制集都是闭集,可以用现代变分法解决函数分为两类:普通函数和泛函普通函数随自变量t变化有确定值对应泛函随普通函数(称为泛函的宗量函数)的形式变化有确定值对应,t已确定或不产生影响复合函数也是普通函数,随自变量t变化有确定值对应具有某些相同特征的所有函数组成一个函数类,或称函数空间在函数空间内,每一个函数(形式不同的)成为函数空间的一个点,例如sin(x)和sin(2x)是正弦函数空间的两个点泛函宗量的变分:1.同一函数空间中的两个函数的差(t已确定或不产生影响)2.宗量的变分仍然是一个普通函数3.这里“变分”的意思是改变量宗量的维数为m时,则宗量的变分在m维函数空间中进行,其中每一维函数空间各自是具有某些相同特征的函数类两个普通函数k阶相近的定义,从几何上来看就是曲线的相似程度两个普通函数间的k阶距离定义,从几何上来看就是曲线的差异程度m维函数空间中,与点[x0(t),x1(t),...xm(t)]距离相同的点构成m维空间中的一个球面泛函k阶连续的定义(利用两个普通函数间的k阶距离来定义)线性泛函的定义:满足齐次性与可加性泛函的变分:1.是泛函增量的关于宗量变分的线性主部2.是关于宗量变分的线性连续泛函3.仍然是一个泛函4.泛函的变分是唯一的5.这里变分的意思相当于普通函数的微分泛函变分的计算公式,是关于宗量变分的泛函,也是关于alpha的普通函数,从普通函数极值条件出发推导得到泛函极值条件求普通函数的极值,必要条件是:极值在稳定点获得,稳定点即普通函数导数为0的点求泛函的极值,必要条件是:极值在泛函变分为0的点取得Lagrange/Mayer/Bolza形式指标的相互转换欧拉--拉格朗日方程的推导过程欧拉--拉格朗日方程是一个二阶微分方程欧拉--拉格朗日方程成立的前提:1.宗量函数对自变量的二阶导数存在2.积分函数二阶连续可微欧拉--拉格朗日方程的能积分出最优解的特殊情况含有多个宗量函数的欧拉--拉格朗日方程组形式等式约束条件下的泛函极值问题采用拉格朗日乘子思想等式约束下的多变量普通函数极值问题,拉格朗日乘子是m维常向量等式约束下的泛函极值问题,拉格朗日乘子是m维普通函数,称为协态变量拉格朗日乘子法的步骤:原问题-->辅助泛函-->解等式约束+欧拉方程-->用边界条件确定未知系数-->判断极大/极小/鞍点等式约束下的泛函极值问题中,拉格朗日乘子(本质上是普通函数)的欧拉方程就是原问题的等式约束条件对于最优控制问题,控制函数u(t)和状态函数x(t)都看成是泛函的宗量,系统的动态方程作为等式约束条件Hamilton函数是泛函,其t的范围由x(t)/u(t)中的t范围确定,可以看成是mayer型泛函Hamilton函数的作用:积分型泛函J对u(t)的等式约束条件极值问题,转换成H对u(t)的无约束条件机制问题Hamilton函数方法解决最优控制问题,是基于必要条件,而不是充分条件Hamilton函数沿着最优空之轨迹和最优状态轨迹,对时间t的全导数等于偏导数当Hamilton函数不显含t时,H是不依赖于t的常数基础数理化:数学是理路,物理和化学是实践;工程中的物理和化学变化过程都是可控的;过程:与时间有关,随着时间推荐的变化,又叫动态过程;动态过程的数学模型又称状态方程,为OEDs或者DAEs形式对一个过程实施控制往往可以选择的策略不唯一,为了使得任务完成得最好,需要选择最优控制策略;最优的意义:根据任务确定的技术或者经济指标,可以是时间上最快、能量上最省、成本最低、利润最大等;状态微分方程f[x(t),u(t),t]是关于u(t),x(t),t的连续函数,是关于x(t),t的连续可微函数,u(t)只有有限个第一类间断点;状态、状态空间、动态系统的变化过程对应于状态空间中的点运动轨迹、点运动轨迹的起始点和结束点就是状态方程的边界条件;系统的初始时间t0和初始状态x0通常是给定的;系统的结束状态根据结束时间tf是否固定和结束状态是否固定可分为6种情况;性能指标的类型:终值型(Mayer型)、积分型(Lagrange型)、复合型(Bolza型;)终值型(Mayer型)是x(t),t的连续可微函数;积分型(Lagrange型)是u(t),x(t),t的连续函数,是x(t),t的连续可微函数,u(t)只有有限个第一类间断点;注意终值型(Mayer型)指标中不含u(t);最优控制轨迹往往在m维控制函数空间的一个子集omiga中选择;经典控制论的特点:针对SISO、线性、时不变(定常)、集中参数系统,以laplace变换作为分析工具,频域内;现代控制论的特点:针对MIMO、非线性、时变、分布参数系统,以状态空间分析方法为分析工具,时域内分析;对系统的状态空间描述,最大好处在于能够反映系统内部各状态变量之间的关系;最优控制理论属于现代控制理论的一部分;最优控制问题在数学上来说属于求泛函极值的变分学领域;古典变分法的局限性:只能处理u(t)无约束或者为开集的泛函极值问题;现代变分学的两个代表:最大值原理(苏联,Pontryagin提出)和动态规划(美国,Bellman 提出);现代计算机的发展推动了控制理论和优化理论的发展与应用,增加了基于计算的科研活动方式;函数分为一般函数和泛函两类;一般函数:自变量形式唯一,当自变量确定为某一值时,函数值也随之确定;泛函:自变量形式和取值(范围)已经确定,当宗量函数形式确定时,泛函值也随之确定;复合函数属于一般函数;终值型泛函中,tf能被确定,所以泛函值取决于终值型泛函的宗量形式;积分型泛函中,被积函数往往是u(t),x(t),dx(t)/dt,t的函数,u(t),x(t)都属于积分型泛函的宗量;积分型泛函中,由于宗量的维数大于1:宗量为u(t),x(t),且各自维数也可能大于1,所以积分型泛函属于多维泛函(宗量为多维,在多维函数空间内取值);Hamiltonian属于多维泛函,自变量取值范围为t0~tf,宗量包括控制函数u(t),状态函数x(t),协态函数y(t);函数空间:具有相同性质的函数类(按函数不同形式区分函数类中的单个函数),构成了一维函数空间(一根轴),每个属于该函数类的具体形式函数都是该一维函数空间(轴)上的一个点;宗量函数的变分deltax(t):是同一函数类中两个一般函数的差,或者说是某一维函数空间中两个点之间的距离,本质上仍然是一个一般函数;一般函数相近的几何意义:曲线形态相似;泛函连续性的定义及与宗量函数相近(宗量函数的变分趋于0)的关系;线性泛函的定义:满足针对宗量函数的齐次性和可加性(将宗量看成一般函数的自变量);泛函变分detalJ[x(t)]:是泛函增量关于“宗量函数变分”的线性主部,是关于“宗量函数变分”的线性连续泛函,本质是泛函;泛函的变分具有唯一形式;求一个泛函的变分不直接使用定义,而用偏导数方法获得,这与一般函数的微积分知识相似;泛函达到极值的必要条件:泛函在宗量函数x*(t)处的变分为0,有三种情况:非极值,极大值,极小值;古典变分法中的欧拉方程由积分型泛函变分为0的必要条件推出,所以欧拉方程也是泛函达到极值的必要条件;欧拉方程本质上是一个二阶偏微分方程;欧拉方程成立的前提是:L[x(t),dx(t)/dt,t]对宗量函数x(t)、宗量函数的导数dx(t)/dt、自变量t存在二阶偏导数;注意L[x(t),dx(t)/dt,t]本身不能称为泛函(自变量的值没有给定),也不能称为宗量函数(宗量函数是x(t));欧拉方程可以求解的条件:L[x(t),dx(t)/dt,t]中不显含x(t)、dx(t)/dt、t三者其一或其二;宗量函数为向量函数时,欧拉方程也成为向量二阶偏微分方程(二阶偏微分方程组);phi(tf)这条终端曲线实际靠测试获得,并作为已知曲线;横街条件反应的是:极值曲线终端斜率与给定曲线斜率之间的关系横街条件成立的前提:L[x(t),dx(t)/dt,t]对宗量函数x(t)、宗量函数的导数dx(t)/dt、自变量t存在二阶偏导数;phi(t)对自变量t存在一阶偏导数;终端点可变情况下,泛函极值的必要条件共有两个:欧拉方程、横街条件;Lagrange型泛函的一阶变分和二阶变分的表达式;泛函极值属性的判断需要借助二阶变分表达式,它是一个对称函数矩阵;涉及到最优控制问题时,最优状态轨迹不仅要使目标函数最优,更重要的是满足系统的状态方程;系统的状态方程(等式)可以看成是求泛函极值问题时的微分等式约束;带等式约束的泛函极值问题,处理思想和一般函数的等式约束极值问题思路一样,采用拉格朗日乘子法思想;带等式约束的泛函极值问题,拉格朗日乘子是一般函数(一般函数的等式约束极值问题中,拉格朗日乘子是常数);带等式约束的泛函极值问题,与一般函数的等式约束极值问题相比,梯度为0的必要条件进化成为变分为0(欧拉方程的满足);带等式约束的泛函极值问题,原等式约束可以视为F[x(t),dx(t)/dt,lamda(t),t]对宗量函数lamda(t)的欧拉方程;利用古典变分法求解最优控制问题,是将控制函数u(t)和拉格朗日乘子函数lamda(t)都作为泛函的宗量函数;Hamiltonian的作用是将dx(t)/dt从F[u(t),x(t),dx(t)/dt,lamda(t),t]中分离出去,它们的关系是:H[u(t),x(t),lamda(t),t]=F[u(t),x(t),dx(t)/dt,lamda(t),t]-lamda(t)dx(t)/dt正则方程组的推导既可以从F[u(t),x(t),dx(t)/dt,t]的欧拉方程推导,也可以直接从变分=0的必要条件推导(欧拉方程从变分=0的必要条件中推导出来);推导tf固定、tf自由时的最优控制问题必要条件时,辅助函数的做法:终态约束等式约束放在积分号外面,状态方程等式约束放在积分号里面;tf固定时的三种情况:x(tf)固定(仅需要欧拉方程无需横截条件)属于x(tf)自由的特殊情况,x(tf)自由又属于x(tf)受约束的情况;tf自由时的三种情况:x(tf)固定(仅需要欧拉方程无需横截条件)属于x(tf)自由的特殊情况,x(tf)自由又属于x(tf)受约束的情况;tf固定又属于tf自由时的特殊情况,仅缺少关于最优时间的方程,所以6种情况最终都可以归类为tf自由、x(tf)受约束的情况处理;Hamiltonian沿着最优控制轨迹和最优状态轨迹(即H[u(t),x(t),lamda(t),t]中的u(t),x(t),lamda(t)都在最优轨迹上取值)时,对时间的偏导数等于对时间的全导数;以上性质说明:沿着最优控制轨迹和最优状态轨迹时,若Hamiltonian不显含t,则Hamiltonian为常数;不等式约束泛函极值问题?古典变分法要求u(t)属于一个全函数空间或者一个函数空间中的开集;现代变分法从实际出发,u(t)可以属于一个函数空间中的闭集;现代变分法中的代表:极小值原理(苏联,Pontryagin)和动态规划(美国,Bellman)极小值原理比古典变分法的进步:u(t)可以属于一个函数空间内的闭集,不要求Hamiltonian对u(t)可微;当u(t)属于一个函数空间内的闭集时,H对u(t)的偏导数可能不为0(在闭函数空间内取不到极点)、deltau(t)可以为0,两方面原因造成古典变分法不再适用;与古典变分法对应的是,极小值原理也有6种情况,最普遍的是tf可变、x(tf)受约束的情况;对于tf可变的情况,需要增加一个确定tf的方程(属于横截条件的一部分);Hamiltonian达到极小值的定义?极小值原理仅是最优控制问题的必要条件;如果x(tf)有终端约束,那么两点边值问题的求解难度会增加很多,常用方法为打靶法(扫描法);协态变量就是等式约束泛函极值问题的拉格朗日乘子函数;状态变量终态的自由与固定,对应协态变量终态的固定与自由;状态变量微分方程求解联合协态变量微分方程求解体现了原问题--对偶问题的共同求解思想?目标泛函对u(t)求偏导,实际是泛函对宗量函数求偏导;从理论分析可以得到,目标泛函对u(t)的梯度(偏导数)在最优控制问题中与Hamiltonian 对u(t)的梯度(偏导数)等价;最优控制(动态优化)问题转换成静态优化问题的理论:通过对u(t)的离散化,将函数空间变为向量空间?从而可以直接使用静态优化算法;处理x(tf)受约束的方法除了惩罚函数法还有其他方法没?[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
最优控制理论总结宫庆义2010.6.301. 最优控制问题可用下列泛函表示:[][]0()00min (),(),(),..(1)()(),(),,()(2)(),0ft f f t u t f f J x t t L x t u t t dt s t xt f x t u t t x t x x t t ϕψ∈Ω⎡⎤=+⎣⎦==⎡⎤=⎣⎦⎰2. 最优控制的应用类型:(一) 积分型性能指标: []0(),(),ft t J L x t u t t dt =⎰(1) 最小时间控制: 00ft f t J dt t t ==-⎰(2) 最少燃耗控制: 01()fmt jt j J u t dt ==∑⎰(3) 最少能量控制: 0()()ft T t J u t u t dt =⎰(二) 末值型性能指标: (),f f J x t t ϕ⎡⎤=⎣⎦ (三) 复合性能指标:(1) 状态调节器:011()()()()()()22f t T T Tf f t J x t Fx t x t Qx t u t Ru t dt ⎡⎤=++⎣⎦⎰ (2) 输出跟踪系统:011()()()()()()()()()22f t T T Tf f t J e t Fe t e t Qe t u t Ru t dt e t z t y t ⎡⎤=++=-⎣⎦⎰3. 欧拉-拉格朗日方程:0L d L x d t x ∂∂⎛⎫-= ⎪∂∂⎝⎭注: 若()min (,,)..(,,)0ft x t J g x xt dt s t f x xt ==⎰ (,,,)(,,)()(,,)TL x xt g x x t t f x x t λλ=+例题:(1)求通过点(0,0)及(1,1)且使120()J x xdt =+⎰取极值的轨迹*()x t 解: 欧拉-拉格朗日方程: 2(2)0dx x dt-= 即 0x x -= ()c o s h s i n hx t a t b t =+ 由初始条件:(0)00x a =⇒= 末端条件: 1(1)1sinh1x b =⇒= 因而极值轨迹为:*1()sinh sinh1x t t = (2)求使指标1230()J xx dt =+⎰取极值的轨迹*()x t , *(0)0x = 解:这是终端自由的情况, 欧拉-拉格朗日方程为:()2230dx x dt+= 即 223x x C += 令()xt at b =+ 由(0)00x b =⇒= 又末端自由, 横截条件为:2310ft t Lx x x=∂⎡⎤=+=⎣⎦∂ 即 2230a a +=得:0a =或23a =-, *()0,0x t J ==对应局部极小, *24(),327x t t J =-=对应局部极大(3)设系统状态方程: x u = 边界条件为: (0)1,()0,f f x x t t ==自由性能指标为: 2012f t f J t u dt =+⎰ 要求确定最优控制*u , 使J 最小解: 这是f t 自由问题, 末端状态固定, ()0f x t =是满足约束集的特殊情况, 即 (),()0f f f x t t x t ψ⎡⎤==⎣⎦(),f f f x t t t ϕ⎡⎤=⎣⎦哈密顿函数: 212H u u λ=+ 正则方程: 0HHxu xλλ∂∂===-=∂∂ 控制方程: 0Hu u uλλ∂=+=⇒=-∂()1f fH t t ϕ∂=-=-∂ 即 : 221()()10()2f f f t t t λλλ-+=⇒=由正则方程: ()0t λ= 所以 ()t λ=于是 *()u t =再由正则方程: xu λ==- 可得()x t c =+ 由初始条件 (0)1x = 得 1c =故最优轨迹为: *()1x t =+ *()02f f x t t =⇒=(4) 设系统的状态方程为: ()()()xt x t u t =-+ 边界条件为: (0)1,()0f x x t ==, 求()u t , 使221()2f t J x u dt =+⎰为最小解: 221()()2H x u x u λ=++-+协态方程和控制方程为: H x x λλ∂=-=-+∂ Hu uλ∂=+=0∂ 即 u λ=- 故可得正则方程: ()()()xt x t t λ=-- ()()()t x t t λλ=-+ 拉氏变换: ()(0)()()sX s x X s s λ-=-- ()(0)())s s X s s λλλ-=-+( 解代数方程得:()(0)(0)()(0)(0)s x X s x λ==拉氏反变换:()()()()()(0)1)1)(0)()(0)1)1)(0)t e x e x t ee x λλλ⎤=-++⎦⎡⎤=-++⎣⎦由: (0)1,()0f x x t ==得:(0)f fλ=*()()1)1)u t t eeλ⎧⎫⎪⎤=-=-+⎬⎦⎪⎭注: 拉氏变换表(5)设系统状态方程为: 122()()()()x t x t xt u t == 初始条件为: 12(0)(0)1x x ==, 末端条件为: 12(1)0(1)x x =自由要求确定最优控制*()u t , 使泛函1201()2J u t dt =⎰取极小值 解: 边界条件222()(1)0(1)f t x ϕλλ∂===∂ 哈密顿函数: (,,)(,,)T H L x u t f x u t λ=+ 212212u x u λλ=++ 正则方程: 12112()0()()H Ht t t x x λλλ∂∂=-==-=-∂∂ 状态方程: 1222()()()()xt x t xt t λ==- 极值条件:0Hu∂=∂ ⇒ 20u λ+= 即 : *2()()u t t λ=- 边界条件: 12(0)1(0)1x x ==1222(1)0()(1)0(1)f x t x ϕλλ∂====∂ 对正则方程和状态方程进行拉氏变换:11222211221()(0)()()(0)()()(0)0()(0)()sX s x X s sX s x s s s s s s λλλλλλ-=-=--=-=-解以上代数方程得:11221222112123234111()(0)()(0)(0)1111111()(0)(0)()(0)(0)s s ss s X s X s s s ss s s sλλλλλλλλλ==-=--=+-+拉氏反变换:2312122111()1(0)(0)26()(0)(0)x t t t t t tλλλλλ=+-+=- 利用末端条件: 1212(1)0,(1)0(0)(0)6x λλλ==⇒== 最优状态轨迹:*231()13x t t t t =+-+ 最优协态:*2()6(1)t t λ=- 最优控制: **2()()6(1)u t t t λ=-=-(6) 设系统的状态方程为:10()()()001xt x t u t ⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦指标泛函: 2201()2J u t dt =⎰ 边界条件: 10(0)(2)10x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦求使指标泛函取极值的极值轨线*()x t 和极值控制*()u t 解: []121212221,,2T f x x g u f f u xλλλ-⎡⎤⎡⎤====⎢⎥⎢⎥-⎣⎦⎣⎦ 拉格朗日标量函数: 2121221()()2TL g f u x xu x λλλ=+=+-+- 欧拉方程:1111122222000L d L a x dt x L d L at b x dt xL d L u u at bu dt uλλλλλλ∂∂-===∂∂∂∂-=+==-+∂∂∂∂-=+==-∂∂由于状态约束方程:22223212112111262xu at b x at bt c xx at bt c x at bt ct d==-=-+==-+=-++代入边界条件: 10(0)(2)10x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦得: 73,,12a b c d ====于是极值轨线: *321**22()0.5 1.751()3 3.5() 1.5 3.51x t t t t u t t x t t t ⎡⎤⎡⎤-++==-⎢⎥⎢⎥-+⎢⎥⎣⎦⎣⎦*x =(7)设性能指标泛函: 0ft J =⎰(0)1,()()2f f f x x t c t t ===-求使泛函为极值的最优轨线*()x t 及相应的**,ft J 解: L = 欧拉-拉格朗日方程:22220,()1L d L d C C x a x t at b x dt x dt C⎡⎤∂∂-=-=⇒===⇒=+∂∂- 由(0)1x =得: 1b =由横截条件:()(10()11ffTf t t L L cx x xt a x ⎤∂⎡⎤+-=--=⇒=⇒=⎢⎥∂⎣⎦最优轨线为: *()1x t t =+当f t t =时, ()()f f x t c t = 即: 12f f t t +=-, 求得末端时刻 *12f t = 将**(),f x t t 代入指标泛函,可得最优性能指标*J =(8) 设系统方程为: 122()()()()x t x t xt u t == 初态:12(0)(0)0x x == 末端时刻: 1f t = 末端约束: 12(1)(1)1x x += 性能指标: 121()2J u t dt =⎰ 求使J 最小的最优控制*()u t 和相应的最优轨线*()t x 解: 2121()0,()()(1)(1)12f f t L u t x x ϕψ⎡⎤⎡⎤===+-⎣⎦⎣⎦ x x212212H u x u λλ=++ 由协态方程: 1110()H t a x λλ∂=-==∂2122()H t at b x λλλ∂=-=-=-+∂由极值条件:220Hu u at b uλλ∂=+=⇒=-=-∂由状态方程:2222321211()2111()262xu at b x t at bt c xx at bt c x t at bt ct d==-=-+==-+=-++由初态: 12(0)(0)00x x c d ==⇒== 由目标集: 12(1)(1)10496x x a b +-=⇒-=根据横截条件:1212(1)(1)(1)(1)x x ψψλγγλγγ∂∂====∂∂即: 121(1)(1)2a b λλ=⇒=于是解得: 36,77a b =-=-最优解为: *3()(2)7u t t =-- 最优轨线: *211()(6)14x t t t =-- *23()(4)14x t t t =--例题:(1) 最短时间控制问题:状态方程: 122,x x xu == 初始条件: 101220(0)(0)(0)x x x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦x = 末端条件: 12()()0f f x t x t ==约束控制: ()10f u t t t ≤≤≤求使性能指标0ft f J dt t ==⎰取极小的最优控制.解: 1221T H L f x u λλ=+=++λ协态方程: 110H x λ∂=-=∂ 212H x λλ∂=-=-∂12()()t at at b λλ==-+选择u 使H 取极小 []2221()0()sgn ()1()0t u t t t λλλ<⎧==⎨->⎩2()t λ为t 的线性函数, u 最多改变一次符号当()1u t =时, 状态方程的解为:220212010()1()2x t t x x t t x t x =+=++ 消去t 得相轨迹方程: 2121()()2x t x t C =+ 当()1u t =-时, 状态方程的解为:220212010()1()2x t t x x t t x t x =-+=-++ 消去t 得相轨迹方程: 2121()()2x t x t C '=-+ 相轨迹的方向总是逆时针两簇曲线中, 每一簇中有一条曲线的半支进入末端状态点(原点) ()1u t =的曲线簇中, 通过原点的曲线方程为: 21221()()()02x t x t x t =≤ 记: γ+()1u t =-的曲线簇中, 通过原点的曲线方程为:21221()()()02x t x t x t =-≥ 记: γ-,γγ+-称为开关线, 其方程为: 1221()()()2x t x t x t =-开关线左侧区域用R +表示, 开关线右侧区域用R -表示 于是最优控制律, 可以表示为状态[]12,Tx x x =的函数, 即*121,(,)1,x R u x x x R γγ++--∈⎧=⎨-∈⎩(2)最少燃料控制问题状态方程: 122,xx x u == 初始条件: 101002020()()()x t x t x t x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦x = 末端条件: 12()()0f f x t x t == 约束控制: 0()1f u t t t t ≤≤≤ 求使性能指标0()ft t J u t dt =⎰取极小的最优控制. 解: 122()T H L f u t x u λλ=+=++λ协态方程: 110H x λ∂=-=∂ 212H x λλ∂=-=-∂ 12()()t a t at b λλ==-+使H 取得极小值, 等价于求下式的极小值2()min ()()()u t u t t u t λ∈⎡+⎤⎣⎦Ω 使H 取得极小值的最优控制律为:[]222220()1()sgn ()()10()1()11()0()1t u t t t u t t u t t λλλλλ⎧<⎪=⎨->⎪⎩≤≤=--≤≤= 当()1u t =时, 2121()()2x t x t C =+ (开口向右--抛物线) 当()1u t =-时, 2121()()2x t x t C =-+ (开口向左--抛物线) 当()0u t =时, 220110200(),()()x t x x t x x t t ==+- (水平线)由状态方程得: 21120211120110222112112121222121222221:()1()20:()()()()()()1:0()()10()()()()2f f u x t t x x t t x t x u x t x t Cx t x t x t t t u x t t t x t x t t t t t =-=-+=-++====+-==+-=+-+-由以上6个方程, 来解6个未知数:(3)设系统状态方程为: 122()(),()()xt x t x t u t == 边界条件: 12121(0)(0)0,()()4f f x x x t x t ==== 控制约束: ()1u t ≤, 末端时刻f t 自由求: 最优控制*()u t 使性能指标20()f t J u t dt =⎰最小 解: 22212221221124H u x u u x λλλλλ⎛⎫=++=++- ⎪⎝⎭ 由极小值条件知:2*2221()21()()()221()2t u t t t t λλλλ<-⎧⎪⎪=-≤⎨⎪->⎪⎩ 由协态方程: 1112122()0()()()()H t t a x H t t t at b x λλλλλ∂=-==∂∂=-=-=-+∂ *211()()()22u t t at b λ=-=- 代入状态方程: 22232121111()()()24211()()()124x t u at b x t at bt c x t x t x t at bt ct d ⎧==-⇒=-+⎪⎪⎨⎪=⇒=-++⎪⎩ 由初始条件: 12(0)(0)00x x c d ==⇒==根据末端条件: 321221()12441()424f f f f f f a b x t t t a b x t t t =-==-= 根据H 沿最优轨线变化律: 2122()()()()()()0f f f f f f H t u t t x t t u t λλ=++=解得: 323(2)31,0,39f f f ff t t a b t t t --===== 最优控制: *1()()218t u t at b =-= 验证: 在0,f t ⎡⎤⎣⎦区间上, 2()1,()2u t t λ≤≤满足要求 最优轨线: *3*21211(),()10836x t t x t t == 最优性能指标: 23*01()36J u t dt ⎡⎤==⎣⎦⎰7. 对于线性连续系统, 提出二次型目标函数:00011()()()()()()()22()()()()(),(),(),(),()f t T T T f f J x t Px t x t Qx t u t R t u t dt x t A t x t B t u t x t x R t P t Q t ⎡⎤=++⎣⎦=+=⎰ 正定半正定 0,f t t 固定求: 最优反馈控制, 并论述如何选择二次型目标函数中的加权矩阵.解: []1()()()()()()()()()()2T T T H x t Qx t u t R t u t t A t x t B t u t λ⎡⎤=+++⎣⎦ 协态方程: ()()()()T H Q t x t A t t xλλ∂⎡⎤=-=-+⎣⎦∂ 控制方程: 1()()()()0()()()()T T H R t u t B t t u t R t B t t u λλ-∂=+=⇒=-∂ 横截条件: 1()()()()()()2T f f f f f f t x t Px t Px t x t x t ϕλ∂∂⎡⎤===⎢⎥∂∂⎣⎦由此可见, 协态()t λ状态()x t 在末端时刻f t 成线性关系.设: ()()()t K t x t λ= 代入状态方程:1()()()()()()()()T x t A t x t B t R t B t K t x t -=- 由协态方程: ()()()()()()()()()()T t K t x t K t x t Q t x t A t K t x t λ⎡⎤=+=-+⎣⎦ 将()xt 代入: 1()()()()()()()()()()()()0T T K t K t A t K t B t R t B t K t A t K t Q t x t -⎡⎤+-++=⎣⎦ ()K t 由下面的黎卡提矩阵微分方程确定:1()()()()()()()()()()()T T K t K t A t A t K t K t B t R t B t K t Q t -=--+- 边界条件: ()f K t P =由此可得最优反馈控制: 1()()()()()()()T u t R t B t K t X t G t x t -=-=- 加权阵的选择: 若已知各加权变量允许的最大值为:1max 2max max ,,,n x x x 和1max 2max max ,,,n u u u1m a x 2m a x m a x 111,,,,n Q d i a gx x x ⎡⎤=⎢⎥⎣⎦ , 1max 2max max 111,,,,n R diag u u u ⎡⎤=⎢⎥⎣⎦8. 最优性原理: 一个多级决策问题的最优决策具有这样的性质: 当把其中任何一级及其及其状态作为初始级和初始状态时, 则不管初始状态是什么, 达到这个初始状态的决策是什么, 余下的决策对此初始状态必定构成最优策略.例题:(1) 系统方程为: (1)()()x k x k u k +=+, (0)x 给定 (1)122011(2)()22k J cx u k ==+∑ (2) 要求: 用动态规划寻找最优控制序列(0),(1)u u 使J 最小解: 先考虑最后一步, 即从(1)(2)x x → 这时由(1),(2)得:(2)(1)(1)x x u =+[]222211111(2)(1)(1)(1)(1)2222J cx u c x u u =+=++ 求(1)u 使1J 最小, 得:[]1(1)(1)(1)(1)0(1)(1)1J cx c x u u u u c∂=++=⇒=-∂+ 将(1)u 代入1J 和(2)x 得: 2*1(1)(1)(2)211c x x J x c c==++ 再考虑倒数第二步, 即从(0)(1)x x → 这时: (1)(0)(0)x x u =+[]22*22011(1)1(0)(0)(0)(0)22122(1)c x c J J J u u x u c c =+=+=++++ 求(0)u 使J 最小得:[](0)(0)(0)0(0)1J c u x u u c∂=++=∂+ (0)(0)12cx u c=-+ 于是最优性能指标与最优状态转移为: 2*(0)2(12)cx J c =+ 1(1)(0)(0)(0)12c x x u x c +=+=+ 9. (1)直接法: 在每一步迭代中, ()u t 不一定要满足H 取极小值的必要条件, 而是逐步改善它, 在迭代终了使它满足这个必要条件, 而且, 积分状态方程是从0f t t →, 积分协态方程是从0f t t →, 这样就避免了去寻找缺少的协态初值0()t λ的困难. 常用的有: 梯度法, 二阶梯度法, 共轭梯度法(2)间接法: 在每一步迭代中, ()u t 都要满足H 取极小值的必要条件, 而且要同时积分状态方程和协态方程,两种方程的积分都是从0f t t →或从0f t t →. 常用的有边界迭代法, 拟线性化法.10. 分离定理: 按照此定理, 可以把最优控制问题和状态变量的最优估计问题分开讨论.在研究最优控制问题时, 假定所有状态变量都可以直接得到, 而在研究状态变量的最优估计时, 则假定控制信号是已知的确定性函数.最后把控制器中的状态变量用其估计值代替, 就得到了随机线性系统的最优控制.11. 分离定理应用: 在随机线性系统最优控制中, 目前理论上和应用上比较成熟的是所谓LQG 问题, 即线性系统, 二次型指标, 高斯分布噪声情况下的最优调节器问题. 这时分离定理可以成立.根据分离定理: 可将LQG 分成两部分, 即根据确定性系统来求出最优反馈控制律, 再由卡尔曼滤波器来测定最优状态估计值, 将这个状态估计值代替状态变量本身, 就得到了最优反馈控制.。
最优控制学院专业班级姓名学号1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。
钱学森1954年所着的《工程控制论》直接促进了最优控制理论的发展和形成。
最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
这类问题广泛存在于技术领域或社会问题中。
从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。
解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。
最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。
最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。
苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。
线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
最优控制理论-主要方法解决最优控制问题的主要方法解决最优控制问题,必须建立描述受控运动过程的运动方程为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。
第7章最优控制原理总结第7章的最优控制原理是指在动态系统中,通过分析系统的状态和控制输入,确定最佳的控制策略,以达到系统的最优性能。
这一原理在工程、经济和生态等领域都有广泛的应用。
本文将从最优控制的基本概念、最优控制方法以及最优控制的应用方面进行总结。
最优控制的基本概念包括系统模型、性能指标和约束条件。
系统模型描述了动态系统的行为,可以通过微分方程或差分方程表示。
性能指标用来衡量系统的性能,可以是一些状态的值、系统的能耗等。
约束条件是系统在控制过程中必须满足的限制条件,例如系统的输入上下限、状态的约束等。
最优控制方法主要包括动态规划、变分法和数值优化等。
动态规划是一种通过将问题分解为一系列子问题来求解最优控制策略的方法。
通过选取最优子问题解来确定最优策略,并使用递推算法进行求解。
变分法是一种通过构建泛函,并通过最小化泛函来求解最优控制策略的方法。
通过求解欧拉-拉格朗日方程,得到最优控制策略的微分方程,并通过求解微分方程得到最优策略。
数值优化是一种通过数值计算方法求解最优化问题的方法。
通过建立优化模型,将最优控制问题转化为最优化问题,并应用优化算法进行求解。
最优控制在实际应用中有广泛的应用。
在工程领域,最优控制可以应用于飞行器、机器人和自动控制系统等。
例如,对于无人机飞行控制问题,可以通过最优控制方法来实现自动飞行,提高飞行性能。
在经济领域,最优控制可以应用于经济模型和金融产品的定价等。
例如,在股票市场中,可以通过最优控制方法来确定最佳交易策略,以最大化利润。
在生态领域,最优控制可以应用于生态系统的保护和管理等。
例如,通过最优控制方法来优化捕鱼策略,保护渔业资源。
最优控制原理的研究还面临一些挑战和问题。
首先,最优控制问题的求解往往需要耗费大量的计算资源和时间。
因此,如何提高求解效率是一个重要的问题。
其次,最优控制的求解通常需要对系统进行建模,而模型的准确性对最优控制的效果有重要影响。
因此,如何建立准确的系统模型也是一个关键问题。