4
2-1 连续系统的最小值原理
问题 2-1 设系统的状态方程是
x f [x(t),u(t),t]
(2-1)
其中 f 是 n 维连续可微的向量函数;状态 x(t) Rn,其初态已
知是
x(t0 ) x0
终态应满足边界条件
(2-2)
[x(t f ),t f ] 0 其中 是 r 维连续可微的向量函数,r n;
tf t0
{L(x,
w,t)
T[
f
(x,
w,t)
x]
T[g(x,
w,t)
z2]}dt
(2-8)
的极值。
为 简 便 计 , 令
H(x,,w ,t)L(x,w ,t)Tf(x,w ,t)
(2-9)
(x,x,w,w ,z,z,,,t) H(x,,w ,t)TxT[g(x,w ,t)z2]
(2-10)
8
于 是 (2-8)式 可 写 成
J(u) [x(tf)t,f]vT[x(tf)t,f]
tt0f (x,x ,w ,w ,z,z,,,t)dt
(2-11)
现 在 求 广 义 性 能 指 标 (2-11)的 一 阶 变 分 :
JJtfJxJwJz
(2-12)
式 中 Jtf, Jx, Jw, Jz分 别 是 由 于tf , x , w和z的 微 变
tf t0
(x,x,w,w ,z,z,,,t)d
=0
分步积分
J w
t f
t0
(wT
w
w T
w )dt
wT
(t
)
w
t
t
f
t f wT t0
d dt
w
dt