跟踪训练2
某研究机构对高三学生的记忆力x和判断力y进
行统计分析,得下表数据:
x 6 8 10 12
y
2
3
5
6
(1)请画出上表数据的散点图(要求:点要描粗);
解 (1)如图:
(2)请根据上表提供的数据 ,用最小二乘法求出 y 关于 x的线
性回归方程y=bx+a;
解
i=1 n
∑ xiyi=6×2+8×3+10×5+12×6=158,
题型二 求线性回归方程
例2 已知某地区4~10岁女孩各自的平均身高数据如下:
年龄x/岁
4
5
106
6
112
7
116
8
121
9
124
10
130
身高y/cm 100
求y对x的线性回归方程.
解 制表 i xi yi 1 4 100 2 5 106 3 6 112 4 7 116 5 8 121 6 9 124 7 10 130
可以用线性关系表示;
③通过线性回归方程y=a+bx,可以估计和观察变量的取值 和变化趋势; ④因为由任何一组观测值都可以求得一个线性回归方程,所 以没有必要进行相关性检验. 其中正确命题的个数是( )
A.1
B.2
C.3
D.4
解析 ①反映的正是最小二乘法思想,故正确. ②反映的是画散点图的作用,也正确. ③解释的是线性回归方程y=bx+a的作用,故也正确. ④是不正确的,在求线性回归方程之前必须进行相关性检验, 以体现两变量的关系.
B.在平面直角坐标系中用描点的方法得到表示具有相关关系 的两个量的一组数据的图形叫作散点图 C.线性回归方程最能代表具有线性相关关系的x,y之间的关系 D.任何一组观测值都能得到具有代表意义的线性回归方程