第1课时 三视图
- 格式:ppt
- 大小:3.29 MB
- 文档页数:25
29.2三视图第1课时1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念.明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.阅读教材P108-110,弄清楚视图、主视图、俯视图、左视图的概念,以及画三视图时的位置和视图之间的大小关系.自学反馈独立完成后展示学习成果①当我们从某一角度观察一个物体时,所看到的图象叫做物体的一个_______,也可以看作物体在某一角度的光线下的_________.②主视图是在正面内得到的由______向_______观察物体的视图;俯视图是在水平面内得到的由_______向________观察物体的视图;左视图是在侧面内得到的由_______向________观察物体的视图.③主视图与俯视图的____对正,主视图与左视图的_____平齐,左视图与俯视图的宽______.④三视图一般规定主视图要在______,俯视图在______,左视图在_______,其中主视图反映物体的____和____,左视图反映物体的____和____,俯视图反映物体的____和____.活动1小组讨论例1画出如图所示一些基本几何体的三视图.解:教师点拨:画这些基本几何体的三视图时,要注意从三个方面观察它们,具体画法为:确定主视图的位置,画出主视图;在主视图下方画出俯视图,注意与主视图“长对正”;在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.活动2跟踪训练(独立完成后展示学习成果)1.主视图、俯视图、左视图分别反映物体哪些长度特征?教师点拨:可根据画三视图的依据来得出此题结论.2.教材P112页练习题第1题.3.画出半球和圆锥的三视图.教师点拨:要注意三视图的位置和视图之间的大小关系.活动1小组讨论例2画出如图所示的支架(一种小零件)的三视图,支架的两个台阶的高度和宽度都是同一长度.解:如图是支架的三视图.教师点拨:对于由几种基本几何体组合而成的几何体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上下、前后、左右位置关系.活动2跟踪训练(小组讨论完成后展示学习成果)1.一个几何体的主视图、俯视图、左视图都是正方形,那么这个几何体可能是________.2.下列图中能表示一个圆台的主视图的是()1.如图是一个圆台,它的三视图在(1)、(2)、(3)中,其中(1)是______,(2)是_______,(3)是_______.活动1小组讨论例3如图是一根钢管的直观图,画出它的三视图.解:如图是钢管的三视图,其中之一的虚线表示钢管的内壁.教师点拨:钢管有内外壁,从一定角度看它时,看不见内壁,为全面地反映立体图形的形状,画图时规定,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.活动2跟踪训练(小组讨论完成后展示学习成果)如图中的立体图形可以看成由哪些基本几何体经过怎样的变化得到的?画出它的三视图.教师点拨:画三视图时,一要注意三个视图的位置摆放,二要做到“长对正”、“高平齐”、“宽相等”,三要注意虚线与实线的区别:看得见的部分画实线,看不见的轮廓线画虚线.画复杂几何体的三视图时,把复杂几何体分解为简单几何体的组合,从而将复杂的问题转化为已知的简单的问题.活动3课堂小结学生试述:这节课你学到了些什么?教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①视图投影②前后上下左右③长高相等④左上边主视图下方主视图的右边长高高宽长宽【合作探究1】活动2跟踪训练1.主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽2.略3.略【合作探究2】活动2跟踪训练1.正方体2.C3.主视图或左视图,俯视图,左视图或主视图【合作探究3】活动2跟踪训练圆柱中挖出一个长方体得到的图略第2课时进一步明确三视图的意义,由三视图想象出实物原型.自学反馈独立完成后展示学习成果①由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形_____面、______面、______面,然后再结合起来考虑整体图形.②一个立体图形的俯视图是圆,则这个图形可能是__________.③下列几何体中,其主视图、左视图与俯视图均相同的是()A.正方体B.三棱柱C.圆柱D.圆锥④一个立体图形的三视图是一个正方形和两个长方形,则这个图形是()A.正方体B.长方体C.四面体D.四棱锥教师点拨:像这类给出选项的选择题可以根据选项反推理,从而得出答案.活动1小组讨论例1根据三视图说出立体图形的名称.解:图1从三个方向看立体图形都是矩形,可以想象出:整体是长方体.图2从正面和侧面看立体图形,图象都是等腰三角形,从上面看,图象是圆,可以想象出:整体是圆锥体.如图所示.教师点拨:由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.活动2跟踪训练(独立完成后展示学习成果)1.仅由三视图中的一个视图或者两个视图能确定几何体吗?教师点拨:已知三视图中的一部分视图不能确定几何体的形状,只有三视图全部已知,才能根据三视图想象出几何体(实物).2.如图,三视图所表示的物体是______.3.由下列三视图想象出实物形状.4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是_____个.5.如图,下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同另一个不同的几何体是________.6.由三视图想象出实物形状.活动1小组讨论例2已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图.教师点拨:有些三视图反映的是两个或多个基本几何体,我们可以从三视图中分解出各个基本几何体的三视图,先想象出各个基本几何体,再根据它们三视图的位置关系确定这些基本几何体的组合关系.活动2跟踪训练(小组讨论完成后展示学习成果)由下面的三视图想象出实物的形状.教师点拨:视图中的虚线是被遮挡的物体的轮廓线,要根据其在视图中的位置去想象它在对应的实物中的形状和位置.活动3课堂小结学生试述:这节课你你到了些什么?教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①前上侧②球体③A④B【合作探究1】活动2跟踪训练1.不能确定2.五棱锥3.A是四棱锥B是球体C是三棱柱子4.85.BC6.略【合作探究2】活动2跟踪训练略第3课时能根据几何体的三视图求几何体的侧面积、表面积、体积等,进而解决实际生活中的面积、体积方面的用料问题.阅读教材P114-115,学会根据三视图确定几何体的形状,并会求其体积问题,解决实际问题.自学反馈 独立完成后展示学习成果①圆锥沿它的一条母线剪开的侧面展开图是_________.②圆柱沿它的一条母线剪开的侧面展开图是_________.③正方体、长方体的六个面展开平面图的面积它的表面积______.(填“大于”、“等于”或“小于”)活动1 小组讨论例 已知某混凝土管道的三视图设计者已经给出某混凝土管道的三视图,请你按照三视图确定浇灌每段这种管道所需混凝土的方数.(π≈3.14)解:所求管道的体积等于外部大圆柱的体积减去内部空心部分圆柱体的体积,于是所求体积为V=π×(20.10.80.1++)2×3-π×(20.8)×3=0.27π=0.8478(m 3).答:浇灌每段这种管道所需混凝土为0.8478m 3.教师点拨:在实际生活中经常遇到与本题类似的问题,设计人员只供给图纸上的图形和数据,要把它还原成立体实物,再根据它的展开图求出相应的量.活动2 跟踪训练(独立完成后展示学习成果)1.根据图1、图2几何体的三视图画出它的平面展开图?2.由如图3所示的三视图,求该物体的表面积.教师点拨:先确定其几何体的实物形状,再画出它的平面展开图.3.如图,以Rt △ABC 的直角边AC 所在直线为轴,将Rt △ABC 旋转一周,所形成的几何体的俯视图是( )4.如图4所示的平面图形,可以制成的立体图形是______.5.如图5是一个包装盒的三视图,则这个包装盒的体积是多少?6.如图是一粮仓,其顶部是一圆锥,底部是圆柱.①画出粮仓的三视图;②若圆柱的底面圆的半径为1米,高为2米,求圆柱的侧面积;③假设粮食最多只能装至圆柱同样高,则最多可以存放多少立方米的粮食?7.如图是一个几何体的主视图和俯视图,求该几何体的体积.(π取3.14)活动3课堂小结1.由三视图求几何体的表面积和体积,可首先根据三视图想象出几何体,然后进行几何体的相关计算.2.利用几何体的表面展开图可以计算几何体的表面积以确定实际生产中的用料问题,还可以解决一些最优化问题,可以起到化曲折为平直的作用;用到“空间问题平面化”的数学思想.教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①扇形②矩形③等于【合作探究】活动2跟踪训练1.略2.1500+20033.A4.圆锥体5.2883cm36.①略②4π米2③2π米37.40048cm3。
空间几何体的三视图和直观图(第一课时)木井中学陈文杰一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。
另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。
同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。
所以在人们的日常生活中有着重要意义。
二、教学目标(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。
(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。
三、设计思路本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。
直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。
通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。
培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。
教学的重点、难点(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。
(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。
四、学生现实分析本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。
九年级数学《三视图》教案课时:1课时课型:新授课教具:板书、投影仪、多媒体计算机、几何体实物模型教学目标:1.知识与技能:通过探究与学习, 理解视图、三视图的概念, 掌握三视图画法, 能够进行三视图与几何图之间的转化。
感受从不同方向观察同一物体可能看到不一样的结果, 培养学生全面观察的能力。
2.过程与方法:通过对三视图的分析, (采用实物模型)以小组探究的方法掌握三视图的基本画法, 促使学生的思维活动外显, 提高学生的合作探究能力。
3.情感态度与价值观:通过三种视图才能确定一物体, 启发学生认识问题要从多个角度进行分析。
教学重点:理解三视图, 并掌握三视图的画法教学难点:几何体与其三视图之间的相互转化教学方法:讲授法、讨论法、体验学习教学法、演示法教学内容及过程:(一)导入《题西林壁》横看成岭侧成峰, 远近高低各不同。
不识庐山真面目, 只缘身在此山中。
【设计意图】切入主题, 激发学习兴趣, 另外也能展现学科间并不是孤立的, 有其互益性, 数学也可以充满文学是色彩。
(二)授新课1、联系上节课所学的“正投影”, 讲解“视图”的概念视图:用正投影的方法, 把物体轮廓形状向投影面投影所得的图形称为视图。
2、三视图及其关系在PPT中展示几张“三视图”在生活中和工程设计中的应用的图片提问:确定一物体需要几个方向的视图?讲解:(PPT动画展示)主视图:从物体的前面向后面投射所得的视图称主视图, 反映物体的长和高俯视图:从物体的上面向下面投射所得的视图称俯视图, 反映物体的长和宽左视图:从物体的左面向右面投射所得的视图称左视图, 反映物体的宽和高关系:长对正, 高平齐, 宽相等3、小组合作探究, 学会画几何体:“四棱柱”“三棱柱”“圆柱”“圆锥”、“球体”。
(1)将学生分为十组, 每组4-5人。
将“四棱柱”“三棱柱”“圆柱”“圆锥”、“球体”的实物模型分发给各组, 其中每两个组所发模型相同。
说明活动任务:小组合作, 画出几何体的三视图。
1.2空间几何体的三视图和直观图(第一课时)教学设计一、教学内容分析(一)教材地位和作用三视图是立体几何的基础之一,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间观念的基础和训练学生几何直观能力的有效手段。
在近几年的高考考查中,利用三视图求直观图体积或表面积的题型屡见不鲜,这种题型的本质即为由三视图还原直观图,所以要求学生掌握由三视图还原直观图这部分内容显得尤其重要。
三视图对部分对学生的逻辑思维能力和空间想象能力提出了较高的要求,使学生谈“图”色变。
本节课是普通高中新课程人教版《必修2》第一章第二节第一课时的内容,是在学习空间几何体的结构特征之后,直观图之前,尚未学习点、直线、平面位置关系的情况下教学的。
学生在义务教育阶段,已经初步接触了正方体、长方体的几何特征以及简单几何体的表面积、体积的计算,会从不同的方向看物体得到不同的视图的方法。
与初中教学内容相比较,本节增加学习了台体的有关内容,简单组合体涉及柱体、锥体、台体以及球体,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多。
通过本节知识的学习,为下一章点、直线、平面之间的位置关系学习打下基础,同时有利于培养学生空间想象能力,几何直观能力的,有利于培养学生学习立体几何的兴趣,体会数学的实用价值。
(二)教学内容及结构本章的主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。
从学生熟悉的物体入手,使学生对物体形状的认识由感性上升到理性;通过三视图和直观图的学习,进一步认识空间几何体的结构。
本节课教材从了解中心投影和平行投影出发介绍三视图是利用三个正投影来表示空间几何体的的方法,并给出三视图的概念及作图规则。
要求学生能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型。
在此基础上,学习画出简单组合体(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并识别三视图所表示的简单组合体。
(三)教学重难点1、重点:(1)画出空间几何体及简单组合体的三视图,(2)给出三视图,还原或想象出原实际图的结构特征,体会三视图的作用。