2017-2018学年山西省临汾一中、忻州一中、康杰中学高二下学期8月联考数学(理)试题
- 格式:doc
- 大小:1.24 MB
- 文档页数:13
2017年山西省临汾一中、忻州一中、长治二中、康杰中学联考高考数学二模试卷(文科)一、选择题(本大題共12小理,毎小题5分,共60分.在每小题给出的四个选項中,只有一项是符合题目要求的1.(5分)复数z=的共辗复数的虚部为()A.﹣i B.﹣ C.i D.2.(5分)设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是()A.{1,2,3,4,5}B.{1,2,3}C.{3,4}D.{4,5,6,7}3.(5分)下边是高中数学常用逻辑用语的知识结构图,则(1)、(2)处依次为()A.命题及其关系、或B.命题的否定、或C.命题及其关系、并D.命题的否定、并4.(5分)已知球O的半径为R,体积为V,则“R>”是“V>36π”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也必要条件5.(5分)在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是()A. B.C.D.6.(5分)执行如图所示的程序框图,则输出的x等于()A.16 B.8 C.4 D.27.(5分)在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)8.(5分)已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y﹣m)2=13(m <3)所截得的弦长为4,且P为圆C上任意一点,则|PA|的最大值为()A.﹣B.5+C.2+D.+9.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.30 B.31.5 C.33 D.35.510.(5分)现有3个命题:P1:函数f(x)=lgx﹣|x﹣2|有2个零点p2:∃x∈(,),sinx+cosx=p3:若a+b=c+d=2,ac+bd>4,则a、b、c、d中至少有1个为负数.那么,这3个命题中,真命题的个数是()A.0 B.1 C.2 D.311.(5分)已知定义在R上的函数f(x)满足f(x)=(x+2),且当﹣l≤x≤1时,f(x)=2|x|,函数g(x)=x+,实数a,b满足b>a>3.若∀x1∈[a,b],∃x 2∈[﹣,0],使得f(x1)=g(x2)成立,则b﹣a的最大值为()A.B.1 C.D.212.(5分)设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=3b(O为坐标原点),则该双曲线的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.(5分)若复数z=,则|z|=.14.(5分)若拋物线x2=24y上一点(x0,y0),到焦点的距离是该点到x轴距离的4倍,则y0=.15.(5分)已知[x]表示不大于x的最大整数,设函数f(x)=[log2],得到下列结论,结论1:当2<x<3 时,f(x)max=﹣1.结论2:当4<x<5 时,f(x)max=1结论3:当6<x<7时,f(x)max=3…照此规律,结论6为.16.(5分)定义在(0,+∞)上的函数f(x)满足x2f′(x)+1>0,f(1)=5,则不等式的解集为.[选修4-4:坐标系与参数方程]17.(10分)已知直线l的参数方程为(t为参数),在直角坐标系xOy 中,以O为极点,x轴正半轴为极轴建立极坐标系,圆N的方程为ρ2﹣6ρsinθ=﹣8(1)求圆N的圆心N的极坐标;(2)判断直线l与圆N的位置关系.[选修4-5:不等式选讲]18.已知不等式|x﹣2|<|x|的解集为(,+∞)(1)求实数m的值(2)若不等式a﹣5<|x+1|﹣|x﹣m|<a+2对x∈(0,+∞)恒成立,求实数a 的取值范围.[选修44:坐标系与参数方程]19.(12分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.[选修4一5:不等式选讲]20.已知不等式|x|+|x﹣3|<x+6的解集为(m,n).(1)求m,n的值;(2)若x>0,y>0,nx+y+m=0,求证:x+y≥16xy.解答题21.(12分)在△ABC 中,a、b、c分别为内角A、B、C 的对边,bsin A=(3b ﹣c)sinB(1)若2sin A=3sin B,且△ABC的周长为8,求c(2)若△ABC为等腰三角形,求cos 2B.22.(12分)如图,在各棱长均为4的直四棱柱ACCD﹣A1B1C1D1中,底面ABCD 为菱形,∠BAD=60°,E为梭BB1上一点,且BE=3EB1(1)求证:平面ACE丄平面BDD1B1(2)平面AED1将四棱柱ABCD﹣A1B1C1D1分成上、下两部分.求这两部分的休积之比(梭台的体积公式为V=(S′++S)h,其中S',S分別为上、下底面面积,h为棱台的高)23.(12分)如图,已知椭圆+y2=1(a>1)的长轴长是短轴长的2倍,右焦点为F,点B,C分别是该椭圆的上、下顶点,点P是直线l:y=﹣2上的一个动点(与y轴交点除外),直线PC交椭圆于另一点M.记直线BM,BP的斜率分别为k1、k2(1)当直线PM过点F时,求的值;(2)求|k1|+|k2|的最小值.24.(12分)已知函数f(x)=e x﹣1+ax,a∈R.(1)讨论函数f(x)的单调区间;(2)求证:e x﹣1≥x;(3)求证:当a≥﹣2时,∀x∈[1,+∞),f(x)+lnx≥a+1恒成立.2017年山西省临汾一中、忻州一中、长治二中、康杰中学联考高考数学二模试卷(文科)参考答案与试题解析一、选择题(本大題共12小理,毎小题5分,共60分.在每小题给出的四个选項中,只有一项是符合题目要求的1.(5分)(2017•山西二模)复数z=的共辗复数的虚部为()A.﹣i B.﹣ C.i D.【解答】解:∵z==,∴.∴复数z=的共轭复数的虚部为.故选:D.2.(5分)(2017•山西二模)设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是()A.{1,2,3,4,5}B.{1,2,3}C.{3,4}D.{4,5,6,7}【解答】解:根据题意,图中阴影部分表示的区域为只属于A的部分,即A∩(∁B),R∵A={x∈N|x2<6x}={x∈N|0<x<6}={1,2,3,4,5},B={x∈N|3<x<8}={4,5,6,7}∴∁R B={x|x≠4,5,6,7|},∴A∩(∁R B)={1,2,3}故选:B3.(5分)(2017•山西二模)下边是高中数学常用逻辑用语的知识结构图,则(1)、(2)处依次为()A.命题及其关系、或B.命题的否定、或C.命题及其关系、并D.命题的否定、并【解答】解:命题的否定在全称量词与存在量词这一节中,简单的逻辑联结词包括或、且、非,故选A.4.(5分)(2017•山西二模)已知球O的半径为R,体积为V,则“R>”是“V >36π”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也必要条件【解答】解:∵R>,∴>=>36π.∴“R>”是“V>36π”的充分不必要条件.故选:A.5.(5分)(2017•山西二模)在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是()A. B.C.D.【解答】解:当残差点比较均匀地落在水平的袋装区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明拟合精度越好,拟合效果越好,对比4个残差图,易知选项C的图对应的袋装区域的宽度越窄.故选:C.6.(5分)(2017•山西二模)执行如图所示的程序框图,则输出的x等于()A.16 B.8 C.4 D.2【解答】解:模拟执行程序,可得x=1,y=1不满足条件y≤0,y=﹣2,x=2不满足条件y=1,执行循环体,满足条件y≤0,y=﹣1,x=4不满足条件y=1,执行循环体,满足条件y≤0,y=0,x=8不满足条件y=1,执行循环体,满足条件y≤0,y=1,x=16满足条件y=1,退出循环,输出x的值为16.故选:A.}中,若=+,a1=8,则数列7.(5分)(2017•山西二模)在数列{a{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)【解答】解:∵=+,a 1=8,则数列{}为等差数列.∴=+(n﹣1)=(n+1).∴a n=2(n+1)2.故选:A.8.(5分)(2017•山西二模)已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y﹣m)2=13(m<3)所截得的弦长为4,且P为圆C上任意一点,则|PA|的最大值为()A.﹣B.5+C.2+D.+【解答】解:由题意,圆心C(﹣3,m)到直线4x+3y+1=0的距离为,∵m<3,∴m=2,∴|AC|=,∴|PA|的最大值为+,故选D.9.(5分)(2017•山西二模)某几何体的三视图如图所示,则该几何体的表面积为()A.30 B.31.5 C.33 D.35.5【解答】解:该几何体由一个直三棱柱(底面为直角三角形)截去一个直三棱柱(底面为直角三角形)而得到,它的直观图如右图所示,∴该几何体的表面积为:+1×=33.故选:C.10.(5分)(2017•山西二模)现有3个命题:P1:函数f(x)=lgx﹣|x﹣2|有2个零点p2:∃x∈(,),sinx+cosx=p3:若a+b=c+d=2,ac+bd>4,则a、b、c、d中至少有1个为负数.那么,这3个命题中,真命题的个数是()A.0 B.1 C.2 D.3【解答】解:由f(x)=lgx﹣|x﹣2|=0,得lgx=|x﹣2|,作出函数y=lgx,y=|x﹣2|的图象如图:由图可知,两函数图象有两个交点,从而函数f(x)=lgx﹣|x﹣2|有2个零点,故P1为真命题;∵sinx+,∴sin(x+)=,∵x∈(,),∴x+∈(),则x+,即x=,故P2为真命题;P3为真命题.用反证法证明如下:假设a、b、c、d没有1个为负数,即a≥0、b≥0、c≥0、d≥0,∴ad+bc≥0,∵a+b=c+d=2,∴(a+b)(c+d)=ac+bd+ad+bc=4,∵ac+bd>4,∴ad+bc<0,这与ad+bc≥0矛盾,故P3为真命题.∴正确命题的个数是3个.故选:D.11.(5分)(2017•山西二模)已知定义在R上的函数f(x)满足f(x)=(x+2),且当﹣l≤x≤1时,f(x)=2|x|,函数g(x)=x+,实数a,b满足b>a>3.若∀x 1∈[a,b],∃x2∈[﹣,0],使得f(x1)=g(x2)成立,则b﹣a的最大值为()A.B.1 C.D.2【解答】解:当x时,g(x),令2|x|=可得x=.∵f(x)=f(x+2),∴f(x)的周期为2,所以f(x)在[﹣1,5]的图象所示:结合题意,当a=,b=时,b﹣a取得最大值.最大值为1.故选:B.12.(5分)(2017•江西模拟)设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=3b(O为坐标原点),则该双曲线的离心率为()A.B.C.D.【解答】解:设该双曲线的离心率为e,依题意,||PF1|﹣|PF2||=2a,∴|PF1|2+|PF2|2﹣2|PF1|•|PF2|=4a2,不妨设|PF1|2+|PF2|2=x,|PF1|•|PF2|=y,上式为:x﹣2y=4a2,①∵∠F1PF2=60°,∴在△F1PF2中,由余弦定理得,|F1F2|2=|PF1|2+|PF2|2﹣2|PF1|•|PF2|•cos60°=4c2,②即x﹣y=4c2,②又|OP|=3b,+=2,∴2+2+2||•||•cos60°=4||2=36b2,即|PF1|2+|PF2|2+|PF1|•|PF2|=36b2,即x+y=36b2,③由②+③得:2x=4c2+36b2,①+③×2得:3x=4a2+72b2,于是有12c2+108b2=8a2+144b2,∴=,∴e==.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.(5分)(2017•山西二模)若复数z=,则|z|=.【解答】解:z===i,则|z|==.故答案为:.14.(5分)(2017•山西二模)若拋物线x2=24y上一点(x0,y0),到焦点的距离是该点到x轴距离的4倍,则y0=2.【解答】解:拋物线x2=24y上一点(x0,y0),到焦点的距离是该点到x轴距离的4倍,可得y0+=4y0,所以y0===2.故答案为:2.15.(5分)(2017•山西二模)已知[x]表示不大于x的最大整数,设函数f(x)=[log2],得到下列结论,结论1:当2<x<3 时,f(x)max=﹣1.结论2:当4<x<5 时,f(x)max=1结论3:当6<x<7时,f(x)max=3…照此规律,结论6为当12<x<13时,f(x)max=9.【解答】解:结论1:当2<x<3 时,f(x)max=﹣1.结论2:当4<x<5 时,f(x)max=1结论3:当6<x<7时,f(x)max=3…照此规律,一般性的结论为当2n<x<2n+1时,f(x)max=2n﹣3.结论6为当12<x<13时,f(x)max=9,故答案为当12<x<13时,f(x)max=9.16.(5分)(2017•山西二模)定义在(0,+∞)上的函数f(x)满足x2f′(x)+1>0,f(1)=5,则不等式的解集为(0,1).【解答】解:由x2f′(x)+1>0,设,则=>0.故函数g(x)在(0,+∞)上单调递增,又g(1)=0,故g(x)<0的解集为(0,1),即的解集为(0,1).故答案为:(0,1).[选修4-4:坐标系与参数方程]17.(10分)(2017•山西二模)已知直线l的参数方程为(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆N的方程为ρ2﹣6ρsinθ=﹣8(1)求圆N的圆心N的极坐标;(2)判断直线l与圆N的位置关系.【解答】解:(1)∵圆N的方程为ρ2﹣6ρsinθ=﹣8,∴圆N的直角坐标方程为x2+y2﹣6y+8=0,∴圆心N的直角坐标为N(0,3),∴=3,,∴圆心N的极坐标为N(3,).(2)∵直线l的参数方程为(t为参数),∴直线l的普通方程为3x+4y﹣7=0,由(1)知,圆N的圆心N(0,3),半径r=1,圆心N(0,3)到直线l的距离d==1,∴直线l与圆N相切.[选修4-5:不等式选讲]18.(2017•山西二模)已知不等式|x﹣2|<|x|的解集为(,+∞)(1)求实数m的值(2)若不等式a﹣5<|x+1|﹣|x﹣m|<a+2对x∈(0,+∞)恒成立,求实数a 的取值范围.【解答】解:(1)∵|x﹣2|<|x|,∴(x﹣2)2<x2,∴﹣4x+4<0,解得:x>1,故=1,解得:m=2;(2)由(1),m=2,不等式a﹣5<|x+1|﹣|x﹣m|<a+2对x∈(0,+∞)恒成立,即a﹣5<|x+1|﹣|x﹣2|<a+2对x∈(0,+∞)恒成立,即a﹣5<3<a+2,解得:1<a<8.[选修44:坐标系与参数方程]19.(12分)(2017•江西模拟)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.【解答】解:(1)曲线C1的参数方程为(α为参数),直角坐标方程为(x﹣2)2+(y﹣2)2=1,即x2+y2﹣4x﹣4y+7=0,极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+7=0直线C2的方程为y=,极坐标方程为tanθ=;(2)直线C2与曲线C1联立,可得ρ2﹣(2+2)ρ+7=0,设A,B两点对应的极径分别为ρ1,ρ2,则ρ1+ρ2=2+2,ρ1ρ2=7,∴+==.[选修4一5:不等式选讲]20.(2017•山西二模)已知不等式|x|+|x﹣3|<x+6的解集为(m,n).(1)求m,n的值;(2)若x>0,y>0,nx+y+m=0,求证:x+y≥16xy.【解答】解:(1)当x≤0时,﹣x﹣x+3<x+6,即x>﹣1,∴﹣1<x≤0;当0<x<3时,x+3﹣x<x+6,即x>﹣3,∴0<x<3;当x≥3时,x+x﹣3<x+6,即x<9,∴3≤x<9.综上,不等式|x|+|x﹣3|<x+6的解集为(﹣1,9),∴m=﹣1,n=9.证明:(2)∵x>0,y>0,nx+y+m=0,m=﹣1,n=9,∴9x+y=1,∴==()==≥=1,∴x+y≥16xy.解答题21.(12分)(2017•山西二模)在△ABC 中,a、b、c分别为内角A、B、C 的对边,bsin A=(3b﹣c)sinB(1)若2sin A=3sin B,且△ABC的周长为8,求c(2)若△ABC为等腰三角形,求cos 2B.【解答】(本题满分为12分)解:(1)∵bsin A=(3b﹣c)sinB,可得:ab=(3b﹣c)b,…2分∴a=3b﹣c,即a+c=3b,…3分∵2sinA=3sinB,∴2a=3b,∴a+b+c=4b=8,可得:b=2,解得a=c=3,…6分(2)若a=b,则c=2b,∴a+b=c,与三角形两边之和大于第三边矛盾,故a≠b,同理可得c≠b,…8分∴a=c,∵a+c=3b,可得b=a,…9分∴cosB===,…11分∴cos2B=2cos2B﹣1=…12分22.(12分)(2017•山西二模)如图,在各棱长均为4的直四棱柱ACCD﹣A1B1C1D1中,底面ABCD为菱形,∠BAD=60°,E为梭BB1上一点,且BE=3EB1(1)求证:平面ACE丄平面BDD1B1(2)平面AED1将四棱柱ABCD﹣A1B1C1D1分成上、下两部分.求这两部分的休积之比(梭台的体积公式为V=(S′++S)h,其中S',S分別为上、下底面面积,h为棱台的高)【解答】(1)证明:∵底面ABCD为菱形,∴AC⊥BD,在直四棱柱ACCD﹣A1B1C1D1中,∵BB1⊥底面ABCD,∴BB1⊥AC,∵BB1∩BD=B,∴AC⊥平面BDD1B1,又AC⊂平面ACE,∴平面ACE丄平面BDD1B1;(2)解:连接BC1,过E作EF∥BC1交B1C1于F,则B1F=1,则平面AED1与侧面BCC1B1相交的线段为EF,故平面AED1将四棱柱ACCD﹣A1B1C1D1分成上下两部分.上部分是三棱台B1EF﹣A1AD1,取A1D1的中点G,连接B1G,∵底面ABCD为菱形,∠BAD=60°,∴△ABD为正三角形,即△A1B1D1也为正三角形,∴B1G⊥A1D1,又AA1⊥底面A1B1C1D1,∴AA1⊥B1G,而A1D1∩A1A=A1,∴B1G⊥平面AA1D1,∵,,,∴=.又四棱柱ABCD﹣A1B1C1D1的体积为,∴.∴.23.(12分)(2017•山西二模)如图,已知椭圆+y2=1(a>1)的长轴长是短轴长的2倍,右焦点为F,点B,C分别是该椭圆的上、下顶点,点P是直线l:y=﹣2上的一个动点(与y轴交点除外),直线PC交椭圆于另一点M.记直线BM,BP的斜率分别为k1、k2(1)当直线PM过点F时,求的值;(2)求|k1|+|k2|的最小值.【解答】解:(1)由椭圆(a>1)的长轴长是短轴长的2倍,得a=2,由题意B(0,1),C(0,﹣1),焦点F(,0),当直线PM过点F时,则直线PM的方程为,即y=,令y=﹣2,得x=﹣,则P(﹣,﹣2),联立,解得或(舍),即M(),∵=(),=(),∴==.(2)设P(m,﹣2),且m≠0,则直线PM的斜率k=,则直线PM的方程为y=﹣,联立,化简,得(1+)x2+=0,解得M(﹣,),∴k1==,=﹣,∴|k1|+|k2|=|﹣|+||≥2=,∴|k1|+|k2|的最小值为.24.(12分)(2017•山西二模)已知函数f(x)=e x﹣1+ax,a∈R.(1)讨论函数f(x)的单调区间;(2)求证:e x﹣1≥x;(3)求证:当a≥﹣2时,∀x∈[1,+∞),f(x)+lnx≥a+1恒成立.【解答】解:(1)f'(x)=e x﹣1+a,当a≥0时,f'(x)>0,∴函数f(x)在R上单调递增,当a<0时,令f'(x)=0,即x=ln(﹣a)+1,f'(x)>0,得x>ln(﹣a)+1;f'(x)<0,得x<ln(﹣a)+1,所以,当a≥0时.函数f(x)在R上单调递增,当a<0时,f(x)的增区间是(ln(﹣a)+1,+∞)单调递减区间是(﹣∞,ln(﹣a)+1),(2)证明:令a=﹣1,由(1)得f(x)的增区间是(+1,+∞)单调递减区间是(﹣∞,1),函数f(x)=e x﹣1﹣x的最小值为f(1)=0,∴e x﹣1﹣x≥0即e x﹣1≥x;(3)证明:f(x)+lnx≥a+1恒成立⇔f(x)+lnx﹣a﹣1≥0恒成立.令g(x)=f(x)+lnx﹣a﹣1=e x﹣1+a(x﹣1)+lnx﹣1,则g′(x)=e x﹣1++a.当a≥﹣2时,g′(x)=e x﹣1++a≥x++a≥2=2+a≥0,∴x∈[1,+∞)时,g(x)单调递增,所以g(x)≥g(1)=0,即当a≥﹣2时,∀x∈[1,+∞),f(x)+lnx≥a+1恒成立.参与本试卷答题和审题的老师有:sxs123;whgcn;lcb001;沂蒙松;742048;zlzhan;qiss;双曲线;changq;刘老师;w3239003;陈高数(排名不分先后)菁优网2017年5月19日。
山西省康杰中学2017-2018学年高二下学期期中考试(理)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.i 是虚数单位,33ii+=( ) A.13412i - B.13412i + C.1326i + D.1326i - 2. 设()ln ,f x x x =若0()2f x '=,则0x =( ) A. 2eB. eC.ln 22D. ln 23. 用反证法证明命题:“若,,,,1,1a b c d R a b c d ∈+=+=,且1ac bd +>,则,,,a b c d 中至少有一个负数”的假设为( ) A. ,,,a b c d 中至少有一个正数 B. ,,,a b c d 全都为正数 C. ,,,a b c d 全都为非负数D. ,,,a b c d 中至多有一个负数4. 已知a 为函数3()12f x x x =-的极小值点,则a =( ) A. -9B. -2C. 4D. 25. 函数xxy e =在[0,2]上的最大值是( ) A.1eB.22e C. 0 D.12e6. 观察243()2,()4,(cos )sin x x x x x x '''===-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )A. ()f xB. -()f xC. ()g xD. -()g x7. 某市教育局人事部门打算将甲、乙、丙、丁4名大学生安排到该市三所不同的学校任教,每校至少安排一人,其中甲、乙不能安排在同一学校,则不同的安排方法种数为( ) A. 18B. 24C. 30D. 368. 直线l 过抛物线2:4C x y =的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ) A.43B. 2C.83D.16239. 若函数2()(0)x f x a x a =>+在[1,)+∞上的最大值为33,则a =( )A.31-B.34C.43D.31+10. 若数列{}n a 是等差数列,12...nn a a a b n+++=,则数列{}n b 也为等差数列,类比这一性质可知,若{}n c 是正项等比数列,且{}n d 也是等比数列,则n d 的表达式应为( ) A. 12...nn c c c d n+++=B. 12....nn c c c d n= C. 12...n n nnn c c c d n+++=D. 12....n n d c c c =11.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数中第2014个数是( ) A. 3965B. 3966C. 3968D. 398912.若函数211()ln ()2f x x x m x m=+-+在区间(0,2)内有且仅有一个极值点,则m 的取值范围( ) A. 1(0,][4,)4+∞ B. 1(0,][2,)2+∞ C. 1(0,)(2,)2+∞D. 1(0,)(4,)4+∞二、填空题(本大题共4小题,每小题5分,共20分)13. 复数(12)(3)z i i =+-,其中i 为虚数单位,则z 的实部为 .14. 从8名女生和4名男生中抽取3名学生参加某娱乐节目,若按性别进行分层抽样,则不同的抽取方法数为 .15. 设点P 、Q 分别是曲线xy xe -=和直线3y x =+上的动点,则P 、Q 两点间距离的最小值为 .16. 有*(2,)n n n N ≥∈粒球,任意将它们分成两堆,求出两堆球的乘积,再将其中一堆任意分成两堆,求出这两堆球的乘积,如此下去,每次任意将其中一堆分成两堆,求出这两堆球的乘积,直到每堆球都不能再分为止,记所有乘积之和为n S .例如对4粒有如下两种分解:(4)→(1,3) →(1,1,2) →(1,1,1,1),此时4S =1×3+1×2+1×1=6; (4)→(2,2) →(1,1,2) →(1,1,1,1),此时4S =2×2+1×1+1×1=6.于是发现4S 为定值,请你研究n S 的规律,归纳n S = .nn三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设z 1是虚数,z 2=z 1+1z 1是实数,且-1≤z 2≤1.(1)求|z 1|的值以及z 1的实部的取值范围. (2)若ω=1-z 11+z 1,求证:ω为纯虚数.18.(本小题满分12分)已知曲线C :,点,求过P 的切线与C 围成的图形的面积.19.(本小题满分12分)已知330,0,2a b a b >>+=.证明:(1)()()554a b a b ++≥;(2)2a b +≤.123223+--=x x x y )0,21(P l已知函数22()ln ,()f x x m x h x x x a =-=-+,(1)当0a =时,()()f x h x ≥在(1,+∞)上恒成立,求实数m 的取值范围; (2)当m =2时,若函数k(x)=f(x)-h(x)在区间[1,3]上恰有两个不同零点,求实数a 的取值范围.21.(本小题满分12分)是否存在常数,,a b c ,使得等式对一切正整数都成立?若存在,求出的值;若不存在,说明理由.222222421(1)2(2)()n n n n n an bn c -+-++-=++n a b c ,,已知函数())(,R x xe x f x∈=-(1)求函数()f x 的单调区间和极值;(2)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称,证明当1x >时,()()f x g x >;(3)如果12x x ≠,且12()()f x f x =,证明:122x x +>.参考答案1-12、BBCDA DCCAD AB 13、5 14、112 15、223 16、2)1(-n n17.解:(1)设z 1=a +b i(a ,b ∈R 且b ≠0),则z 2=z 1+1z 1=a +b i +1a +b i =⎝⎛⎭⎫a +a a 2+b 2+⎝⎛⎭⎫b -b a 2+b 2i.因为z 2是实数,b ≠0,于是有a 2+b 2=1,即|z 1|=1,................4分还可得z 2=2a .由-1≤z 2≤1,得-1≤2a ≤1,解得-12≤a ≤12,即z 1的实部的取值范围是⎣⎡⎦⎤-12,12. ...................7分(2)ω=1-z 11+z 1=1-a -b i 1+a +b i =1-a 2-b 2-2b i +a 2+b 2=-b a +1i.因为a ∈⎣⎡⎦⎤-12,12,b ≠0,所以ω为纯虚数. ...........10分 18.解:设切点,则切线:过P ()∴即∴ 即 A (0,1)故即∴ B ()∴),(000y x P 266020--='x x y l ))(266(]1232[00200203x x x x x x x y ---=+---0,21]21[]266[]1232[002002030x x x x x x -⋅--=+---0)364(0200=+-x x x 1,000==y x )0(21:--=-x y l 切012=-+y x ⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+--=22321123223y x x y x x x y 2,23-3227)23(3223=-⎰=dx x x S19.证明.++=+++556556(1)()()a b a b a ab a b b=+-++3323344()2()a b a b ab a b=+-2224()ab a b≥ 4. .......6分 (2)因为+=+++33223()33a b a a b ab b=++23()ab a b+≤++23()2(a b)4a b ...........12分20.解 (1)由f (x )≥h (x )在(1,+∞)上恒成立,得m ≤xln x 在(1,+∞)上恒成立,令g (x )=xln x ,则g ′(x )=ln x -1(ln x )2,故g ′(e)=0, 当x ∈(1,e)时,g ′(x )<0; x ∈(e ,+∞)时,g ′(x )>0.故g (x )在(1,e)上单调递减,在(e ,+∞)上单调递增, 故当x =e 时,g (x )的最小值为g (e)=e.所以m ≤e. .......6分(2)由已知可知k (x )=x -2ln x -a ,函数k (x )在[1,3]上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点,φ′(x )=1-2x =x -2x ,故φ′(2)=0,所以当x ∈[1,2)时,φ′(x )<0,所以φ(x )单调递减, 当x ∈(2,3]时,φ′(x )>0,所以φ(x )单调递增. 所以φ(1)=1,φ(3)=3-2ln 3,φ(2)=2-2ln 2, 且φ(1)>φ(3)>φ(2)>0, 所以2-2ln 2<a ≤3-2ln 3.所以实数a 的取值范围为(2-2ln 2,3-2ln 3]. .......12分21.解:假设存在,使得所给等式成立. 令代入等式得解得以下用数学归纳法证明等式对一切正整数都成立.(1)当时,由以上可知等式成立;(2)假设当时,等式成立,即,则当时,. 由(1)(2)知,等式对于一切正整数都成立. 22.(Ⅰ)解:/f ()(1)x x x e -=- 令/f (x)=0,解得x=1当x 变化时,/f (x),f(x)的变化情况如下表a b c ,,123n =,,0164381918a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,,,14140a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,,22222242111(1)2(2)()44n n n n n n n -+-++-=+n 1n =n k =22222242111(1)2(2)()44k k k k k k k -+-++-=-1n k =+222222221[(1)1]2[(1)2][(1)](1)[(1)(1)]k k k k k k k k +-++-+++-+++-+2222221(1)2(2)()(21)2(21)(21)k k k k k k k k k =-+-++-+++++++424211(1)11(21)(1)(1)44244k k k k k k k +=-++=+-+·nX(,1-∞) 1 (1,+∞) /f (x)+ 0 - f(x)极大值所以f(x)在(,1-∞)内是增函数,在(1,+∞)内是减函数。
山西省临汾一中、忻州一中、康杰中学2016-2017年度高二下学期三月月考名校联考数学试卷(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,集合,则等于()A. B. C. D.【答案】B【解析】集合,集合,所以.故选B.2.若复数满足:(为虚数单位),则等于()A. B. C. 5 D.【答案】A【解析】,,,故选A.3.已知曲线在点处切线的倾斜角为,则等于()A. 2B. -2C. 3D. -1【答案】A【解析】因为,所以,由已知得,解得,故选A.4.已知等差数列的前项和为,,且,则公差等于()A. 1B.C. 2D. 3【答案】C【解析】由,得,,因为,所以,解得,故选C.5.从高一某班学号为1-50的50名学生中随机选取5名同学参加数列测试,采用系统抽样的方法,则所选5名学生的学号可能是()A. 2,11,23,34,45B. 4,13,22,31,40C. 3,13,25,37,47D. 5,16,27,38,49【答案】D【解析】从学号为1∼50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样,间隔相同,只有D 间隔相同,故选D.6.已知非零向量满足,,则与的夹角的余弦值为()A. B. C. D.【答案】D【解析】由平方可得2,所以,因为,所以,故选D. 点睛:平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.7.执行如图的程序框图,若输入的值为3,则输出的值为()A. 10B. 15C. 18D. 21【答案】B【解析】由题意可得,程序结束,故选B.8.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.【答案】B【解析】由三视图得该几何体是由半个球和半个圆柱组合而成,根据图中所给数据得该几何体的体积为,故选B.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.9.函数的图象如图1所示,则函数的图象大致是()A. B. C. D.【答案】B【解析】由函数的图象,得函数的图象关于对称,在区间(0,1)和(1,2)的单调性与函数的单调性相反,且,故选B.10.“”是“直线:()与双曲线:的右支无交点”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】因为直线过双曲线的左顶点且双曲线的右支无交点,所以直线的斜率不小于双曲线的渐近线的斜率,即,又,所以,故选A.11.将函数的图象向左平移单位后得到函数的图象,则函数在上的图象与直线的交点的横坐标之和为()A. B. C. D.【答案】C【解析】由题意得函数,因为,所以,由,得,解得,或,所以所求横坐标之和为,故选C.点睛:三角函数图像的平移是常考题型,平移的口诀为“左加右减,上加下减”,即当函数向左平移个单位时,函数自变量,当函数向右平移个单位时,函数自变量,注意当自变量有系数时要把系数提出来再加减平移量.12.已知椭圆()的左右焦点分别为,,过点且斜率为的直线交直线于,若在以线段为直径的圆上,则椭圆的离心率为()A. B. C. D.【答案】C【解析】试题分析:设过点且斜率为的直线的方程为,与联立,可得交点,∵在以线段为直径的圆上,∴,即,∴,∴。
山西省临汾一中、忻州一中、康杰中学2016-2017年度高二下学期三月月考名校联考数学试卷(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,集合,则等于()A. B. C. D.【答案】B【解析】集合,集合,所以.故选B.2.若复数满足:(为虚数单位),则等于()A. B. C. 5 D.【答案】A【解析】,,,故选A.3.已知曲线在点处切线的倾斜角为,则等于()A. 2B. -2C. 3D. -1【答案】A【解析】因为,所以,由已知得,解得,故选A.4.已知等差数列的前项和为,,且,则公差等于()A. 1B.C. 2D. 3【答案】C【解析】由,得,,因为,所以,解得,故选C.5.从高一某班学号为1-50的50名学生中随机选取5名同学参加数列测试,采用系统抽样的方法,则所选5名学生的学号可能是()A. 2,11,23,34,45B. 4,13,22,31,40C. 3,13,25,37,47D. 5,16,27,38,49【答案】D【解析】从学号为1∼50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样,间隔相同,只有D间隔相同,故选D.6.已知非零向量满足,,则与的夹角的余弦值为()A. B. C. D.【答案】D【解析】由平方可得2,所以,因为,所以,故选D.点睛:平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.7.执行如图的程序框图,若输入的值为3,则输出的值为()A. 10B. 15C. 18D. 21【答案】B【解析】由题意可得,程序结束,故选B.8.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.【答案】B【解析】由三视图得该几何体是由半个球和半个圆柱组合而成,根据图中所给数据得该几何体的体积为,故选B.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.9.函数的图象如图1所示,则函数的图象大致是()A. B. C. D.【答案】B【解析】由函数的图象,得函数的图象关于对称,在区间(0,1)和(1,2)的单调性与函数的单调性相反,且,故选B.10.“”是“直线:()与双曲线:的右支无交点”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】因为直线过双曲线的左顶点且双曲线的右支无交点,所以直线的斜率不小于双曲线的渐近线的斜率,即,又,所以,故选A.11.将函数的图象向左平移单位后得到函数的图象,则函数在上的图象与直线的交点的横坐标之和为()A. B. C. D.【答案】C【解析】由题意得函数,因为,所以,由,得,解得,或,所以所求横坐标之和为,故选C.点睛:三角函数图像的平移是常考题型,平移的口诀为“左加右减,上加下减”,即当函数向左平移个单位时,函数自变量,当函数向右平移个单位时,函数自变量,注意当自变量有系数时要把系数提出来再加减平移量.12.已知椭圆()的左右焦点分别为,,过点且斜率为的直线交直线于,若在以线段为直径的圆上,则椭圆的离心率为()A. B. C. D.【答案】C【解析】试题分析:设过点且斜率为的直线的方程为,与联立,可得交点,∵在以线段为直径的圆上,∴,即,∴,∴。
2017-2018学年山西省忻州一中、临汾一中、长治二中、康杰中学高三(下)第四次联考数学试卷(理科)(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(∁R B)=()A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|0<x≤2或x≥4}2.已知a为实数,若复数z=(a2﹣9)+(a+3)i为纯虚数,则的值为()A.﹣1﹣2i B.﹣1+2i C.1+2i D.1﹣2i3.下列函数中既是奇函数,又是在(0,+∞)上为增函数的是()A.B.C.y=﹣x3D.y=lg2x4.下列的说法错误的是()A.对于p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,x02+x0+1≤0B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假,则p,q都是假D.“若x2﹣3x+2=0,则x=1”的逆否为:“若x≠1,则x2﹣3x+2≠0”由表中数据,求得线性回归方程为,若某儿童的记忆能力为12时,则他的识图能力为()A.9.2 B.9.5 C.9.8 D.106.从6个盒子中选出3个来装东西,且甲、乙两个盒子至少有一个被选中的情况有()A.16种B.18种C.22种D.37种7.如果(3x﹣)n的展开式中各项系数之和为128,则展开式中的系数是()A.7 B.﹣7 C.21 D.﹣218.某几何体的三视图如图所示,图中的四边形都是边长为6的正方形,两条虚线互相垂直,则该几何体的体积是()A.96 B.108 C.180 D.1989.如图所示程序框图中,输出S=()A.45 B.﹣55 C.﹣66 D.6610.已知函数f(x)=sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为的等差数列,把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥”发生的概率为()A.B.C.D.11.已知抛物线y2=8x的焦点F到双曲线C:=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为()A.B.C.D.12.已知函数f(x)=(x2+x)(x2+ax+b),若对∀x∈R,均有f(x)=f(2﹣x),则f(x)的最小值为()A.﹣B.﹣C.﹣2 D.0二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.设x,y满足约束条件,则z=2x﹣y的最大值为.14.已知点O是边长为1的等边三角形ABC的中心,则(+)•(+)=.15.已知函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点相切,且x轴与函数图象所围成的区域(如图阴影部分)的面积为,则a=.16.在△ABC中,a,b,c分别为角A,B,C所对的边,且满足b=7asinB,则sinA=,若B=60°,则sinC=.三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.已知数列{a n}的前n项和为S n,且S n=2n﹣1(n∈N*)(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求证:T n<1.18.根据国家《环境空气质量标准》规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的()写出该样本的众数和中位数(不必写出计算过程);(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列及数学期望E(X)和方差D(X).19.在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD.(Ⅰ)求证:AB⊥平面PBC;(Ⅱ)求平面ADP与平面BCP所成的锐二面角的大小.20.已知椭圆C: +=1(a>b>0)的左、右焦点分别为F1,F2,离心率为.以原点为圆心,椭圆的短轴长为直径的圆与直线x﹣y+=0相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于点A,M,N(A点在椭圆右顶点的右侧),且∠NF2F1=∠MF2A.(ⅰ)求证:直线l过定点(2,0);(ⅱ)求斜率k的取值范围.21.设函数f(x)=e x﹣ax﹣2(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,f'(x)<1恒成立,其中f'(x)为f(x)的导函数,求k的最大值.[选修4-1:几何证明选讲]22.如图,△ABC的两条中线AD和BE相交于点G,且D,C,E,G四点共圆.(Ⅰ)求证:∠BAD=∠ACG;(Ⅱ)若GC=1,求AB.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.[选修4-5:不等式选讲]24.已知f(x)=|x﹣1|+|x﹣a|(a∈R),g(x)=x++4(x<0)(1)若a=3,求不等式f(x)≥4的解集;(2)对∀x1∈R,∀x2∈(﹣∞,0)有f(x1)≥g(x2)恒成立,求实数a的取值范围.2015-2016学年山西省忻州一中、临汾一中、长治二中、康杰中学高三(下)第四次联考数学试卷(理科)(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(∁R B)=()A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|0<x≤2或x≥4}【考点】其他不等式的解法;交、并、补集的混合运算.【分析】利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.【解答】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.2.已知a为实数,若复数z=(a2﹣9)+(a+3)i为纯虚数,则的值为()A.﹣1﹣2i B.﹣1+2i C.1+2i D.1﹣2i【考点】复数的基本概念.【分析】利用复数是纯虚数,求出a,然后利用复数的除法的运算法则化简求解即可.【解答】解:a为实数,若复数z=(a2﹣9)+(a+3)i为纯虚数,可得a=3,则====1﹣2i.故选:D.3.下列函数中既是奇函数,又是在(0,+∞)上为增函数的是()A.B.C.y=﹣x3D.y=lg2x【考点】奇偶性与单调性的综合.【分析】利用基本函数的奇偶性、单调性逐项判断可得答案.【解答】解:y=x+是奇函数,在(0,1)上单调递减,在(1,+∞)上单调递增,∴在(0,+∞)上不单调,故排除A;y=的定义域为[0,+∞),不关于原点对称,故y=不具备奇偶性,故排除B;y=﹣x3是奇函数,但在(0,+∞)上单调递减,故排除C;y=lg2x的定义域为R,且lg2﹣x==﹣lg2x,∴函数为奇函数,又t=2x递增,y=lgt递增,∴y=lg2x在(0,+∞)上递增,故选D.4.下列的说法错误的是()A.对于p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,x02+x0+1≤0B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假,则p,q都是假D.“若x2﹣3x+2=0,则x=1”的逆否为:“若x≠1,则x2﹣3x+2≠0”【考点】的真假判断与应用.【分析】利用的否定判断A的正误;充要条件判断B的正误;复合的真假判断C的正误;四种的逆否关系判断D的正误;【解答】解:对于A,p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,x02+x0+1≤0,满足的否定关系,正确;对于B,“x=1”是“x2﹣3x+2=0”的充分不必要条件,满足“x=1”⇒“x2﹣3x+2=0”,反之,不成立,所以B正确;对于C,若p∧q为假,则p,q至少一个是假,所以C不正确;对于D,“若x2﹣3x+2=0,则x=1”的逆否为:“若x≠1,则x2﹣3x+2≠0”,满足逆否的形式,正确.故选:C.由表中数据,求得线性回归方程为,若某儿童的记忆能力为12时,则他的识图能力为()A.9.2 B.9.5 C.9.8 D.10【考点】回归分析的初步应用.【分析】利用样本点的中心在线性归回方程对应的直线上,即可得出结论.【解答】解:由表中数据得,,由在直线,得,即线性回归方程为.所以当x=12时,,即他的识图能力为9.5.故选:B.6.从6个盒子中选出3个来装东西,且甲、乙两个盒子至少有一个被选中的情况有()A.16种B.18种C.22种D.37种【考点】排列、组合的实际应用.【分析】从6个盒子中选出3个来装东西,有C63=20种方法,甲乙未被选中的情况有C43=4种方法,利用间接法可得结论.【解答】解:从6个盒子中选出3个来装东西,有C63=20种方法,甲乙未被选中的情况有C43=4种方法,∴甲、乙两个盒子至少有一个被选中的情况有20﹣4=16种方法,故选A.7.如果(3x﹣)n的展开式中各项系数之和为128,则展开式中的系数是()A.7 B.﹣7 C.21 D.﹣21【考点】二项式系数的性质.【分析】给二项式中的x赋值﹣1,求出展开式的各项系数和,列出方程,求出n;将n的值代入二项式,利用二项展开式的通项公式求出通项,令x的指数为﹣3,求出r的值,将r的值代入通项,求出展开式中的系数.【解答】解:令x=1得展开式的各项系数之和2n,∴2n=128,解得n=7.∴展开式的通项为,令,解得r=6.所以展开式中的系数是3C76=21.故选C8.某几何体的三视图如图所示,图中的四边形都是边长为6的正方形,两条虚线互相垂直,则该几何体的体积是()A.96 B.108 C.180 D.198【考点】由三视图求面积、体积.【分析】用正方体的体积减去四棱锥的体积即可.【解答】解:几何体为正方体减去一个正四棱锥,正方体的棱长为6,正四棱锥的底面边长为6,高为3.∴几何体的体积V=63﹣=180.故选C.9.如图所示程序框图中,输出S=()A.45 B.﹣55 C.﹣66 D.66【考点】循环结构.【分析】根据程序框图的流程,可判断程序的功能是求S=12﹣22+32﹣42+…+(﹣1)n+1•n2,判断程序运行终止时的n值,计算可得答案.【解答】解:由程序框图知,第一次运行T=(﹣1)2•12=1,S=0+1=1,n=1+1=2;第二次运行T=(﹣1)3•22=﹣4,S=1﹣4=﹣3,n=2+1=3;第三次运行T=(﹣1)4•32=9,S=1﹣4+9=6,n=3+1=4;…直到n=9+1=10时,满足条件n>9,运行终止,此时T=(﹣1)10•92,S=1﹣4+9﹣16+…+92﹣102=1+(2+3)+(4+5)+(6+7)+(8+9)﹣100=×9﹣100=﹣55.故选:B.10.已知函数f (x )=sin ωx +cos ωx (ω>0)的图象与x 轴交点的横坐标构成一个公差为的等差数列,把函数f (x )的图象沿x 轴向左平移个单位,得到函数g (x )的图象.若在区间[0,π]上随机取一个数x ,则事件“g (x )≥”发生的概率为( )A .B .C .D .【考点】几何概型;函数y=Asin (ωx +φ)的图象变换.【分析】由两角和的正弦把三角函数化简,结合已知求出周期,进一步得到ω,则三角函数的解析式可求,再由图象平移得到g (x )的解析式,确定满足g (x )≥1的范围,根据几何概型利用长度之比可得结论【解答】解:∵f (x )=sin ωx +cos ωx=2sin (ωx +),由题意知=,则T=π,∴ω=2,∴f (x )=2sin (2x +),把函数f (x )的图象沿x 轴向左平移个单位,得g (x )=f (x +)=2sin [2(x +)+]=2sin(2x +)=2cos2x .∵2cos2x ≥,x ∈[0,π],可得:cos2x ,解得:2x ∈[0,],所以x ∈[0,],∴事件“g (x )≥”发生的概率为=;故选:C .11.已知抛物线y 2=8x 的焦点F 到双曲线C :=1(a >0,b >0)渐近线的距离为,点P 是抛物线y 2=8x 上的一动点,P 到双曲线C 的上焦点F 1(0,c )的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为( )A .B .C .D .【考点】双曲线的标准方程.【分析】确定抛物线的焦点坐标,双曲线的渐近线方程,进而可得b=2a ,再利用抛物线的定义,结合P 到双曲线C 的上焦点F 1(0,c )的距离与到直线x=﹣2的距离之和的最小值为3,可得FF 1=3,从而可求双曲线的几何量,从而可得结论.【解答】解:抛物线y2=8x的焦点F(2,0),双曲线C:=1(a>0,b>0)的一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:=1(a>0,b>0)渐近线的距离为,∴∴a=2b,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3∴c2+4=9∴∵c2=a2+b2,a=2b,∴a=2,b=1∴双曲线的方程为﹣x2=1.故选C.12.已知函数f(x)=(x2+x)(x2+ax+b),若对∀x∈R,均有f(x)=f(2﹣x),则f(x)的最小值为()A.﹣B.﹣C.﹣2 D.0【考点】函数的最值及其几何意义.【分析】由f(0)=f(2),f(﹣1)=f(3)可求得a,b,从而确定函数f(x),从而求导确定函数的极值,从而求最小值.【解答】解:∵f(x)=f(2﹣x),∴f(0)=f(2),f(﹣1)=f(3),即0=6(4+2a+b),0=12(9+3a+b),解得,a=﹣5,b=6;故f(x)=(x2+x)(x2﹣5x+6),令f′(x)=(2x+1)(x2﹣5x+6)+(x2+x)(2x﹣5)=(x﹣1)(2x2﹣4x﹣3)=0,解得,x=1或x=1+或x=1﹣;由函数的对称性知,当x=1+或x=1﹣时,函数f(x)都可以取到最小值f(1+)=﹣,故选A.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.设x,y满足约束条件,则z=2x﹣y的最大值为3.【考点】简单线性规划.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x﹣y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:不等式组表示的平面区域如图所示,由得A(3,3),z=2x﹣y可转换成y=2x﹣z,z最大时,y值最小,即:当直线z=2x﹣y过点A(3,3)时,在y轴上截距最小,此时z取得最大值3.故答案为:3.14.已知点O是边长为1的等边三角形ABC的中心,则(+)•(+)=﹣.【考点】平面向量数量积的运算.【分析】取边长为1的等边三角形ABC的边AB的中点为D,边AC的中点为E,则由题意可得=2, +=2.求得∠AOD=∠AOE=,再根据OD=OE=,利用两个向量的数量积的定义求得(+)•(+)的值.【解答】解:取边长为1的等边三角形ABC的边AB的中点为D,边AC的中点为E,则由题意可得=2, +=2.而由等边三角形的性质可得,OA=2OD,OD⊥AB,∴∠AOD=,同理可得,∠AOE=.再根据OD=OE=•=,可得(+)•(+)=2••2=4=4×××cos=﹣,故答案为:﹣.15.已知函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点相切,且x轴与函数图象所围成的区域(如图阴影部分)的面积为,则a=﹣1.【考点】定积分在求面积中的应用.【分析】由图可知f(x)=0得到x的解确定出b的值,确定出f(x)的解析式,由于阴影部分面积为,利用定积分求面积的方法列出关于a的方程求出a并判断a的取舍即可.【解答】解:由图知方程f(x)=0有两个相等的实根x1=x2=0,于是b=0,∴f(x)=﹣x2(x﹣a),有∫a0(x3﹣ax2)dx=()|a0=0﹣+==,∴a=±1.函数f(x)与x轴的交点横坐标一个为0,另一个a,根据图形可知a<0,得a=﹣1.故答案为:﹣1.16.在△ABC中,a,b,c分别为角A,B,C所对的边,且满足b=7asinB,则sinA=,若B=60°,则sinC=.【考点】正弦定理.【分析】根据正弦定理,得b=,与已知等式比较可得sinA=,而B=60°得sinB>sinA,所以角A是锐角,由同角三角函数的平方关系算出cosA=,最后根据sinC=sin(A+B),结合两角和的正弦公式即可算出sinC的值.【解答】解:∵由正弦定理,得∴b==7asinB,解之得sinA=∵B=60°,sinA=<sinB=,得A为锐角可得cosA==(舍负)∴sinC=sin(A+B)=sin(A+60°)=×+×=故答案为:,三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.已知数列{a n}的前n项和为S n,且S n=2n﹣1(n∈N*)(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求证:T n<1.【考点】数列的求和;数列递推式.【分析】(1)分类讨论,再检验写出通项公式即可;(2)化简b n===﹣,从而利用裂项求和法求解.【解答】解:(1)当n=1时,a1=S1=2﹣1=1,当n≥2时,a n=S n﹣S n﹣1=(2n﹣1)﹣(2n﹣1﹣1)=2n﹣1,a1=1也满足a n=2n﹣1,故a n=2n﹣1;(2)证明:∵b n===﹣,∴T n=(1﹣)+(﹣)+…+(﹣)=1﹣<1.18.根据国家《环境空气质量标准》规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的;(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列及数学期望E(X)和方差D(X).【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(1)利用频率分配表,直接求解众数和中位数.(2)利用中位数与频率求出该居民区PM2.5年平均浓度,判断即可.(3)随机变量ξ的可能取值为0,1,2.求出概率,得到分布列,然后求解期望与方差即可.【解答】解:(1)众数为22.5微克/立方米,中位数为37.5微克/立方米.…(2)去年该居民区PM2.5年平均浓度为7.5×0.1+22.5×0.3+37.5×0.2+52.5×0.2+67.5×0.1+82.5×0.1=40.5(微克/立方米).因为40.5>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.…(3)记事件A表示“一天PM2.5的24小时平均浓度符合环境空气质量标准”,则.随机变量ξ的可能取值为0,1,2.且ξ~B所以,所以变量ξ的分布列为0 1 2(天),或(天)…Dξ=0.1819.在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD.(Ⅰ)求证:AB⊥平面PBC;(Ⅱ)求平面ADP与平面BCP所成的锐二面角的大小.【考点】用空间向量求平面间的夹角;直线与平面垂直的判定.【分析】(Ⅰ)证明AB⊥平面PBC,利用面面垂直的性质,根据AB⊥BC,平面PBC⊥平面ABCD,即可得证;(Ⅱ)取BC的中点O,连接PO,以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在直线为z轴建立空间直角坐标系O﹣xyz,求出平面ADP 与平面BCP的法向量,利用向量的夹角公式,即可求平面ADP与平面BCP所成的锐二面角的大小.【解答】(Ⅰ)证明:因为∠ABC=90°,所以AB⊥BC,因为平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AB⊂平面ABCD,所以AB⊥平面PBC.(Ⅱ)解:如图,取BC的中点O,连接PO,因为PB=PC,所以PO⊥BC.因为PB=PC,所以PO⊥BC,因为平面PBC⊥平面ABCD,所以PO⊥平面ABCD.以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在直线为z轴建立空间直角坐标系O﹣xyz.不妨设BC=2.由AB=PB=PC=BC=2CD得,,所以,设平面PAD的法向量为=(x,y,z).所以.令x=﹣1,则,所以=(﹣1,2,).取平面BCP的一个法向量,所以cos<,>=,所以平面ADP与平面BCP所成的锐二面角的大小为.20.已知椭圆C: +=1(a>b>0)的左、右焦点分别为F1,F2,离心率为.以原点为圆心,椭圆的短轴长为直径的圆与直线x﹣y+=0相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于点A,M,N(A点在椭圆右顶点的右侧),且∠NF2F1=∠MF2A.(ⅰ)求证:直线l过定点(2,0);(ⅱ)求斜率k的取值范围.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(I)由题意知及c2=a2﹣b2可得a,b之间的关系,由圆与直线相切的性质可求b,进而可求a,从而可求椭圆的方程(II)由题意可设直线l的方程为y=kx+m(k≠0),M(x1,y1),N(x2,y2).,联立直线与椭圆方程,根据方程有根的条件可得△>0,从而可得关于m,k的不等式,然后根据方程的根与系数关系可求则x1+x2,x1x2,由∠NF2F1=∠MF2A.可得,根据直线的斜率公式代入可求m,k的关系,然后代入已知不等式即可求解k的范围【解答】解:(I)由题意知=,所以==.即a2=2b2.又因为b==1,所以a2=2,b2=1.故椭圆C的方程为(II)由题意,设直线l的方程为y=kx+m(k≠0),M(x1,y1),N(x2,y2)..由△=16k2m2﹣4(2k2+1)(2m2﹣2)>0,得m2<2k2+1.则有,.因为∠NF2F1=∠MF2A,且∠MF2A≠90°,所以,即.化简得:2kx1x2+(m﹣k)(x1+x2)﹣2m=0.将,代入上式得m=﹣2k(满足△>0).直线l的方程为y=kx﹣2k,即直线过定点(2,0)将m=﹣2k代入m2<2k2+1.得4k2<2k2+1.且k≠0直线l的斜率k的取值范围是.21.设函数f(x)=e x﹣ax﹣2(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,f'(x)<1恒成立,其中f'(x)为f(x)的导函数,求k的最大值.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(1)求出导数,讨论a≤0,a>0,求出函数的单调区间;(2)运用参数分离可得k<+x,令g(x)=+x(x>0),求出导数,求单调区间,运用零点存在定理,求得零点,即可得到k的最大值.【解答】解:(1)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增,若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(2)由于a=1,,∵x >0,∴e x ﹣1>0.∴,令,∴k <g (x )min ,令h (x )=e x ﹣x ﹣2,h ′(x )=e x ﹣1>0, ∴h (x )在(0,+∞)单调递增, 且h (1)<0,h (2)>0,∴h (x )在(0,+∞)上存在唯一零点,设此零点为x 0,则x 0∈(1,2) 当x 0∈(0,x 0)时,g ′(x )<0,当x 0∈(x 0,+∞)时,∴∴,由,∴g (x 0)=x 0+1∈(2,3), 又∵k <g (x 0), ∴k 的最大值为2.[选修4-1:几何证明选讲]22.如图,△ABC 的两条中线AD 和BE 相交于点G ,且D ,C ,E ,G 四点共圆. (Ⅰ)求证:∠BAD=∠ACG ; (Ⅱ)若GC=1,求AB .【考点】相似三角形的性质;圆的切线的性质定理的证明. 【分析】(Ⅰ)由题意可得,G 为△ABC 的重心,根据D 、C 、E 、G 四点共圆,可得∠ADE=∠ACG ,DE ∥AB ,故有∠BAD=∠ADE ,从而得到∠BAD=∠ACG .(Ⅱ)延长CG 交AB 于F ,则F 为AB 的中点,且CG=2GF .证得△AFG ∽△CFA ,可得=,即 FA 2=FG •FC ,根据条件化为即AB=GC ,从而得出结论. 【解答】证明:(Ⅰ)∵△ABC 的两条中线AD 和BE 相交于点G , ∴G 为△ABC 的重心.连结DE ,因为D 、C 、E 、G 四点共圆,则∠ADE=∠ACG .又因为AD、BE为△ABC的两条中线,所以点D、E分别是BC、AC的中点,故DE∥AB,∴∠BAD=∠ADE,从而∠BAD=∠ACG.解:(Ⅱ)∵G为△ABC的重心,延长CG交AB于F,则F为AB的中点,且CG=2GF.在△AFC与△GFA中,因为∠FAG=∠FCA,∠AFG=∠CFA,所以△AFG∽△CFA,∴=,即FA2=FG•FC.因为FA=AB,FG=GC,FC=GC,∴•AB2=CG2,即AB=GC,又∵GC=1,所以AB=.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.【考点】参数方程化成普通方程;直线与圆锥曲线的关系;简单曲线的极坐标方程.【分析】解法一:(Ⅰ)由参数方程消去参数α,得椭圆的普通方程,由极坐标方程,通过两角和与差的三角函数转化求解出普通方程即可求出直线l的倾斜角.(Ⅱ)设出直线l的参数方程,代入椭圆方程并化简,设A,B两点对应的参数分别为t1,t2,利用参数的几何意义求解即可.解法二:(Ⅰ)同解法一.(Ⅱ)利用直线l的普通方程与椭圆的方程联立,设A(x1,y1),B (x2,y2),利用韦达定理以及弦长公式求解即可.【解答】解法一:(Ⅰ)由消去参数α,得,即C的普通方程为.由,得ρsinθ﹣ρcosθ=2,…(*)将代入(*),化简得y=x+2,所以直线l的倾斜角为.(Ⅱ)由(Ⅰ)知,点P(0,2)在直线l上,可设直线l的参数方程为(t 为参数),即(t为参数),代入并化简,得..设A,B两点对应的参数分别为t1,t2,则,所以t1<0,t2<0,所以.解法二:(Ⅰ)同解法一.(Ⅱ)直线l的普通方程为y=x+2.由消去y得10x2+36x+27=0,于是△=362﹣4×10×27=216>0.设A(x1,y1),B(x2,y2),则,,所以x1<0,x2<0,故.[选修4-5:不等式选讲]24.已知f(x)=|x﹣1|+|x﹣a|(a∈R),g(x)=x++4(x<0)(1)若a=3,求不等式f(x)≥4的解集;(2)对∀x1∈R,∀x2∈(﹣∞,0)有f(x1)≥g(x2)恒成立,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)通过讨论x范围,求出不等式的解集即可;(2)问题转化为f(x)min≥g(x)max,根据绝对值不等式的性质求出a的范围即可.【解答】解(1)因为a=3,所以有|x﹣1|+|x﹣3|≥4,当x≤1时,有4﹣2x≥4,所以x≤0,当1<x<3时,有2≥4,当x≥3时,有2x﹣4≥4,所以x≥4,综上所述,原不等式的解集为{x|x≤0或x≥4}.(2)由题意可得f(x)min≥g(x)max,又f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,g(x)≤2,当且仅当x=﹣1时取等号,所以有|a﹣1|≥2即a的取值范围时a≥3或a≤﹣1.2016年11月2日。
1.C 【解析】解:由题意可知: {}{}{|06}1,2,3,4,5,4,5,6,7A x R x B =∈<<== , 由文氏图可知,阴影部分表示的集合为(){}1,2,3U A C B ⋂= .本题选择C 选项.2.D 【解析】因为()()()()()()()2141424==141112i i i i i i z i i i i ------==--++-,14z i =-+ ,所以复数()()141i i z i--=+的共轭复数的虚部为4 ,故选D.【点睛】本题主要考查程序框图的条件结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点: (1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型 循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.C 【解析】因为120PF PF ⋅=,所以12PF PF ⊥,所以P 在以线段12F F 为直径的圆上,圆方程为225x y += ,与2214x y -=联立可得{x y ==,根据双曲线的对称性可知四边形1234PP P P 为矩形,其面积为4x y =,故选C.7.A【解析】72x ⎫-⎪⎭的展开式中系数为有理数的项为761722,C x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,系数和为7228156--=- ,故选A.8.B 【解析】以抛物线最高点为原点,以抛物线拱的对称轴为y 轴建立直角坐标系,设此抛物线方程为2(0)y ax a =< ,则此抛物线过点3,2h h ⎛⎫- ⎪⎝⎭,带入2(0)y ax a =<,可解得49a h =- ,32220322h S h h ax dx h ⎛⎫⎪=⨯--= ⎪ ⎪⎝⎭⎰ ,故选B.10. A 【解析】由()11242n n n n S S n S nS +++-=移项分解因式可得()()11220n n n S S S n ++-+= ,因为{}n a为正项数列,所以120n S n ++>,可得12n n S S +=, 122113,32n n a S S S S -=-===⨯ ,2325252432a S S =-=⨯ ,故选A.11.C 【解析】若有1人参加“演讲团”,则从6 人选1人参加该社团,其余5 人去剩下4 个社团,人数安排有2 种情况: 1,1,1,2 和1,2,2 ,故1人参加“演讲团”的不同参加方法数为221111345354364423233600C C C C C C A A A A ⎛⎫+= ⎪⎝⎭ ,若无人参加“演讲团”,则6 人参加剩下4 个社团,人数安排 安排有2 种情况: 1,1,2,2 和2,2,2 ,故无人参加“演讲团”的不同参加方法数为221432264244642222+C 1440C C C A C C A A = ,故满足条件的方法数为360014405040+= ,故选C. 【点睛】本题主要考查分组分配问题及排列组合的综合应用,属于难题.有关排列组合的综合问题,往 往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才 能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加 法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.【点睛】本题主要考查函数零点、利用导数研究函数的单调性及数学的转化与划归思想.属于难题.转化 与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解 决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的 关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而 顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题解答的关键是将问题转化为方程有解问题, 进而利用导数解答.13【解析】32i z z i -==∴==- ,. 14.421【解析】由于甲已经排中间,所以乙与丙只能同时在甲的左侧或右侧,相邻位置共有6 种,由捆绑法可得所求概率42199662216=A A A C ,故答案为421. 15.当1213x <<时, ()max 9f x = 【解析】结论1 :当23x <<时, ()max 1=213f x =-⨯-.;结论2 :当45x <<时, ()max 1223f x ==⨯-.;结论3 :当67x <<时, ()max 3233f x ==⨯-…根据规律,可以归纳得出,结论6 :当1213x << 时, ()max 2639f x =⨯-= ,故答案为当1213x << 时, ()max 9f x =.【点睛】本题主要考察归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.17.【解析】试题分析:(1)直接利用二项展开式定理求解即可展开式中3x 的系数,令1x = 即可得结果;(2)分 选0 ,不选0 两种情况讨论,再利用分类计数加法原理可得结果.试题解析:(1)∵()51512rrr r T C x -+⎛⎫=- ⎪⎝⎭,∴展开式中3x 的系数为2351522C ⎛⎫-=- ⎪⎝⎭. 令1x =,得各项系数之和为511232⎛⎫-=- ⎪⎝⎭.(2)若不选0,则有45120A =个; 若选0,则有1335180C A =个.故能组成120180300+=个不同的四位数.【点晴】本题主要考查二项展开式定理的通项与系数及排列组合综合问题,属于中档题题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r r r n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2) 考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用. 18.【解析】(2)若a b =,则2c b =,∴a b c +=,与三角形两边之和大于第三边矛盾,故a b ≠. 同理可知, c b ≠.故只能是a c =,∵3a c b +=,∴23b a =, ∴2222222273cos 229a a a cb B ac a ⎛⎫- ⎪+-⎝⎭===,∴217cos22cos 181B B =-=. 【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如 果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一 次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. 19.【解析】试题分析:(1)根据点到直线的距离公式、勾股定理结合弦长为m 的值,从而可得圆心 坐标,先求得点A 到圆心的距离,进而根据圆的几何性质可得结果;(2)先求三点坐标,可得三角形 为直角三角形,根据直角三角形的性质可得结果.试题解析:(1)∵直线4310x y ++=被圆()()22:313(3)C x y m m ++-=<所截得的弦长为∴()3,C m -到直线4310x y ++=的距离为123115m -++==, 解得2m =或163m =,又3m <,∴2m =.∴AC =,∴min PA =, max PA =+.(2)由(1)知圆C 的方程为()()223213x y ++-=, 令0x =,得0y =或4y =;令0y =,得0x =,或6x =-. ∴这三个点的坐标为()0,4M , ()0,0O , ()6,0N -.易知,MON 为直角三角形,且斜边MN =,则MON 5=.20.【解析】试题分析:(1)当CD AB ⊥时,可证明CD ⊥平面11ABB A ,再根据平面几何知识求解即可;(2)以CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,求出平面1CDB 的一个法向量及平面1CBB 的一个法向量,利用空间向量夹角余弦公式可得结果.(2)以CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则()3,0,0A , ()10,4,2B , ()0,4,0B . 连接1BC 交1B C 于点O ,则O 为1BC 的中点.∵平面1ABC ⋂平面1B CD OD =,且1AC 平面1B CD ,∴1OD AC ,∴D 为AB 的中点.∴3,2,02CD ⎛⎫=⎪⎝⎭, ()10,4,2CB =,21.【解析】试题分析:(1)依据题设条件建立方程求解;(2)先建立直线的方程,再与椭圆方程联立,运用坐标 建立关于三角形面积公式的目标函数求解: 试题解析:(1)由题意可知, 22b =,则1b =,联立2221(1)x y a a +=>与26516y x =-,得: 422216581490816x x a ⨯⎛⎫+-+= ⎪⎝⎭根据椭圆C 与抛物线26515y x =-的对称性,可得2216581490864a⨯⎛⎫∆=--= ⎪⎝⎭∴21656388a -=±,又1a >, ∴2a =,∴椭圆C 的标准方程为2214x y +=.由题意可知线段MN 的中垂线方程为1y x k =-,由2214{1x y y xk +==-,得2222244{44k x k y k =+=+,∴OP == ∴()()()()()22222414118251445122PMNk k S MN OP kk k ∆++=⨯⨯=≥==++++即85PMN S ∆≥,当且仅当22144k k +=+,即1k =±时等号成立,此时PMN ∆的面积取得最小值85, ∵825>,∴PMN ∆的面积的最小值为85,此时直线l 的方程为y x =±.【点睛】椭圆是重要的圆锥曲线代表之一,也是高考重点考查的常考考点.解答本题的第一问时,充 分借助题设条件建立方程探求椭圆中的参数,进而使得问题获解;求解第二问时,先建立直线直线l 的 方程为y kx =,然后与椭圆方程联立,借助坐标之间的关系建立三角形面积的目标函数,运用基本不 等式求得其最小值使得问题获解. 22.【解析】试题分析:(1) 求出函数的导数,通过讨论a 的范围, ()'0f x >得增区间, ()'0f x <得减区间;(2)问题转化为()()11ln 10x g x ea x x -=+-+-≥,讨论a 的范围,根据函数的单调性求出()g x 的最小值即可求出a 的范围.(2)令1a =-,由(1)可知,函数()1x f x ex -=-的最小值为()10f =,所以10x e x --≥,即1x e x -≥.()ln 1f x x a +≥+恒成立与()ln 10f x x a +--≥恒成立等价,令()()ln 1g x f x x a =+--,即()()()11ln 11x g x e a x x x -=+-+-≥,则()11'x g x e a x-=++.①当2a ≥-时, ()111'20x g x e a x a a a x x -=++≥++≥=+≥.(或令()11x x e xϕ-=+, 则()121'x x e xϕ-=-在[)1,+∞上递增,∴()()''10x ϕϕ≥=,∴()x ϕ在[)1,+∞上递增,∴()()12x ϕϕ≥=. ∴()'0g x ≥).∴()g x 在区间[)1,+∞上单调递增, ∴()()10g x g ≥=, ∴()ln 1f x x a +≥+恒成立. ②当2a <-时,令()11x h x ea x-=++,则()2112211'x x x e h x e x x ---=-=, 当1x ≥时, ()'0h x ≥,函数()h x 单调递增.。
绝密★启用前2016-2017学年度山西临汾一中、忻州一中、长治二中、康杰中学高二下学期联考考卷(理)考试范围:高考全部内容;考试时间:120分钟;【名师解读】本卷注重“基础与能力并重,思想与方法并存”的命题理念,可有效检测考生对基础知识的掌握情况.本卷试题常规,无偏难、怪出现,但其中第8、15题相对比较新颖,考查数学创新问题,第10、12题突出考查逻辑思维能力与运算能力,同时也注重知识交汇性的考查,第6、16题考查转化与化归思想的应用,第4、16题考查数形结合思想的应用;解答题重视数学思想方法的考查,如第22题考查了分类讨论的思想、转化的思想、方程的思想,第21题考查了推理和计算能力.本卷适合第一轮复习使用. 一、选择题1.设全集U R =,集合2{|6},{|38}A x N x x B x N x =∈<=∈<<,则下图阴影部 分表示的集合是( )A. {}1,2,3,4,5B. {}3,4C. {}1,2,3D. {}4,5,6,7 2.复数()()141i i z i--=+的共轭复数的虚部为( )A. 4i -B. 4-C. 4iD. 43.现有这么一列数: 2,32, 54, 78,( ),1332, 1764,…,按照规律,( )中的数应为( )A. 916B. 1116C. 12D. 11184.已知球O 的半径为R ,体积为V“R >”是 “36V π>”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.执行如图所示的程序框图,则输出的x 等于( ) A. 2 B. 4 C. 8 D. 166.若双曲线22:14x C y -=的左、右焦点分别为1F 、2F , P 为双曲线C 上一点,满足120PF PF ⋅=的点P 依次记为1P 、2P 、3P 、4P ,则四边形1234PP P P 的面积为( )A.B.C.D. 7.72x ⎫-⎪⎭的展开式中系数为有理数的各项系数之和为( )A. 156-B. 128-C. 28-D. 1288.一桥拱的形状为抛物线,该抛物线拱的高为h ,宽为b ,此抛物线拱的面积为S , 若3b h =,则S 等于( ) A. 2h B. 22h C. 232h D. 274h 9.现有3个命题: 1p :函数()lg 2f x x x =--有2个零点.2p :面值为3分和5分的邮票可支付任何(7,)n n x N >∈分的邮资.3p :若2a b c d +=+=, 4ac bd +>,则a 、b 、c 、d 中至少有1个为负数.那么,这3个命题中,真命题的个数是( ) A. 0 B. 1 C. 2 D. 310.设n S 为正项数列{}n a 的前n 项和, 23a =, ()11242n n n n S S n S nS +++-=, 则25a 等于( )A. 2332⨯B. 2432⨯C. 232 D. 24211.某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会”、“演讲团”、“吉他协会”五个社团,若每名同学必须参加且只能参加1 个社团且每个社团至多两人参加,则这6个人中至多有1人参加“演讲团”的不同参 加方法数为( )A. 4680B. 4770C. 5040D. 520012.对任意的正数x ,都存在两个不同的正数y ,使()22ln ln 0x y x ay --=成立,则实数a 的取值范围为( ) A. 10,2e ⎛⎫⎪⎝⎭ B. 1,2e ⎛⎫-∞ ⎪⎝⎭ C.1,2e ⎛⎫+∞ ⎪⎝⎭D. 1,12e ⎛⎫ ⎪⎝⎭二、填空题 13.若复数32iz i-=-,则z =__________. 14.若9个人任意排成一排,则甲排中间,且乙与丙相邻的概率为__________.15.已知[]x 表示不大于x 的最大整数,设函数()221log 9x f x ⎡⎤+=⎢⎥⎣⎦,得到下列结论:结论1:当23x <<时, ()max 1f x =-. 结论2:当45x <<时, ()max 1f x =. 结论3:当67x <<时, ()max 3f x =. ……照此规律,结论6为__________.16.已知抛物线22(0)y px p =>的焦点为F ,过抛物线上点()02,P y 的切线为l ,过点P 作平行于x 轴的直线m ,过F 作平行于l 的直线交m 于M ,若5PM =, 则p 的值为__________.三、解答题17.(1)求512x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数及展开式中各项系数之和;(2)从0,2,3,4,5,6这6个数字中任取4个组成一个无重复数字的四位数,求满足条件的四位数的个数.18.在ABC 中, a 、b 、c 分别为内角A 、B 、C 的对边, ()sin 3sin b A b c B =-. (1)若2sin 3sin A B =,且ABC 的周长为8,求c ; (2)若ABC 为等腰三角形,求cos2B .19.已知()2,0A ,直线4310x y ++=被圆()()22:313(3)C x y m m ++-=<所截得的弦长为P 为圆C 上任意一点.(1)求PA 的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径.20.如图,在直三棱柱111ABC A B C -中, 13,4,2,,AC BC AA AC BC D ===⊥是 线段AB 上一点..(1)确定D 的位置,使得平面1B CD ⊥平面11ABB A ;(2)若1//AC 平面1B CD ,设二面角1D CB B --的大小为θ,求证: .3πθ<21.已知椭圆C : 22221(0)x y a b a b +=>>的短轴长为2,且函数26516y x =-的图象与椭圆C 仅有两个公共点,过原点的直线l 与椭圆C 交于,M N 两点.(1)求椭圆C 的标准方程;(2)点P 为线段MN 的中垂线与椭圆C 的一个公共点,求PMN ∆面积的最小值,并求此时直线l 的方程. 22.已知函数()1,x f x eax a R -=+∈.(1)讨论函数()f x 的单调区间;(2)若[)1,x ∀∈+∞, ()ln 1f x x a +≥+恒成立,求a 的取值范围.。
临汾一中2017-2018学年度第二学期高二年级期末考试数学(文科)第I卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,,,则集合()A. B. C. D.【答案】D【解析】试题分析:因为A∪B={x|x≤0或x≥1},所以,故选D.考点:集合的运算.2.复数的虚部为()A. B. C. D.【答案】B【解析】【分析】利用复数的除法运算,分子和分母同乘以分母的共轭复数,整理出复数的代数形式的标准形式即可.【详解】.的虚部是.故选:B.【点睛】复数四则运算的解答策略复数的加法、减法、乘法运算可以类比多项式的运算,除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.3.对具有线性相关关系的变量,测得一组数据如下表:根据上表,利用最小二乘法得它们的回归直线方程为,则()A. B. C. D.【答案】B【解析】分析:先求样本中心,代入方程求解即可。
详解:,,代入方程,解得点睛:回归直线方程必过样本中心。
4.若,则()A. B. C. D.【答案】A【解析】【分析】对式子分子分母同时除以得,从而利用两角和的正切公式即可得到答案. 【详解】,则..故选:A.【点睛】本题考查了二倍角的正切公式,以及同角三角函数间的基本关系,其中利用三角函数的恒等变形把已知式子化为关于的式子是解本题的关键.5.下列命题中正确的是()A. 若“”为真命题则“”为真命题;B. 已知,命题“若,则”为假命题.C. 为直线, 为两个不同的平面,若,则.D. 命题“”的否定是“”【答案】D【解析】【分析】对选项逐一分析即可.【详解】对A,若“”为真命题,则、至少有一个是真命题,但“”不一定是真命题,故A错误;对B,已知,命题“若,则”是真命题,故B错误;对C,为直线, 为两个不同的平面,若,则或,故C错误;对D,根据全称命题的否是是特称命题,则命题“”的否定是“”,故D正确.故选:D.【点睛】本题考查了命题的真假判断与应用,考查了复合命题的真假判断,以及全称命题的否定,考查了直线与平面的位置关系,属于基础题.6.已知,则的值为()A. B. C. D.【答案】D【解析】试题分析:根据题意,由于,两边平方可知1-sin2x=,因此可知=,故选D。
山西省临汾一中、忻州一中、康杰中学2016-2017年度高二下学期三月月考名校联考数学试卷(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,集合,则等于()A. B. C. D.【答案】B【解析】集合,集合,所以.故选B.2.若复数满足:(为虚数单位),则等于()A. B. C. 5 D.【答案】A【解析】,,,故选A.3.已知曲线在点处切线的倾斜角为,则等于()A. 2B. -2C. 3D. -1【答案】A【解析】因为,所以,由已知得,解得,故选A.4.已知等差数列的前项和为,,且,则公差等于()A. 1B.C. 2D. 3【答案】C【解析】由,得,,因为,所以,解得,故选C.5.从高一某班学号为1-50的50名学生中随机选取5名同学参加数列测试,采用系统抽样的方法,则所选5名学生的学号可能是()A. 2,11,23,34,45B. 4,13,22,31,40C. 3,13,25,37,47D. 5,16,27,38,49【答案】D【解析】从学号为1∼50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样,间隔相同,只有D间隔相同,故选D.6.已知非零向量满足,,则与的夹角的余弦值为()A. B. C. D.【答案】D【解析】由平方可得2,所以,因为,所以,故选D.点睛:平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.7.执行如图的程序框图,若输入的值为3,则输出的值为()A. 10B. 15C. 18D. 21【答案】B【解析】由题意可得,程序结束,故选B.8.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.【答案】B【解析】由三视图得该几何体是由半个球和半个圆柱组合而成,根据图中所给数据得该几何体的体积为,故选B. 点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.9.函数的图象如图1所示,则函数的图象大致是()A. B. C. D.【答案】B【解析】由函数的图象,得函数的图象关于对称,在区间(0,1)和(1,2)的单调性与函数的单调性相反,且,故选B.10.“”是“直线:()与双曲线:的右支无交点”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】因为直线过双曲线的左顶点且双曲线的右支无交点,所以直线的斜率不小于双曲线的渐近线的斜率,即,又,所以,故选A.11.将函数的图象向左平移单位后得到函数的图象,则函数在上的图象与直线的交点的横坐标之和为()A. B. C. D.【答案】C【解析】由题意得函数,因为,所以,由,得,解得,或,所以所求横坐标之和为,故选C.点睛:三角函数图像的平移是常考题型,平移的口诀为“左加右减,上加下减”,即当函数向左平移个单位时,函数自变量,当函数向右平移个单位时,函数自变量,注意当自变量有系数时要把系数提出来再加减平移量.12.已知椭圆()的左右焦点分别为,,过点且斜率为的直线交直线于,若在以线段为直径的圆上,则椭圆的离心率为()A. B. C. D.【答案】C【解析】试题分析:设过点且斜率为的直线的方程为,与联立,可得交点,∵在以线段为直径的圆上,∴,即,∴,∴。
临汾一中2017-2018学年度第二学期高二年级期末考试数学答案(理科)一.选择题:1-5 DCDDB 6-10 CCABB 11-12 AB二.填空题:13. . 14. 60 15. -2. 16. .三、解答题:17. 详解:(1)∵①当时,,∴当时,②由①-②得:∴∴是以为首项,公比为的等比数列∴(2)∵∴18. 详解:(Ⅰ)证明:底面,平面,面,∴,,又,∴.两两垂直.以为原点,为轴,为轴,为轴,建立空间直角坐标系.则由题意得,∴,∴,∴.面角的余弦值为.19.详解:(1)由得(2)(i)(ii)因为,∴,.所以的分布列为所以20. 试题解析:(Ⅰ)作分别垂直和,垂足为,抛物线的焦点为,由抛物线定义知,所以,显见的最小值即为点到直线的距离,故,所以抛物线的方程为.(Ⅱ)由(Ⅰ)知直线的方程为,当点在特殊位置时,显见两个切点关于轴对称,故要使得,点必须在轴上.故设,,,,抛物线的方程为,求导得,所以切线的斜率,直线的方程为,又点在直线上,所以,整理得,同理可得,故和是一元二次方程的根,由韦达定理得,,可见时,恒成立,所以存在定点,使得恒成立.21.详解:(1)解:,当时,,则在上单调递增.当时,,得,则的单调递增区间为.令,得,得的单调递减区间为.(2)证明:由得,设,则,由得;由,得.故.当时,;当时,.不妨设,则,.等价于,∵,且在上单调递增,∴要证,只需证,即,即证.设,,则,令,则,∵,∴,∴在上单调递减,即在上单调递减,∴,∴在上单调递增,∴,∴,从而得证.点睛:本题主要考查利用导数判断函数的单调性,以及函数零点个数的判断和函数性质的综合应用,考查了分类讨论思想,综合性较强、难度较大,第二问构造函数,不妨设,由已知将问题转化为只需证是关键。
22. 选修4-4:坐标系与参数方程(1)由,化为直角坐标方程为,即(2)将l的参数方程带入圆C的直角坐标方程,得因为,可设,又因为(2,1)为直线所过定点,所以23. 详解:(1)可化为或或;或或;不等式的解集为;(2)由题意:故方程在区间有解函数和函数图象在区间上有交点当时,.。