上机实验八SPSS线性回归方程
- 格式:doc
- 大小:74.00 KB
- 文档页数:3
SPSS如何进行线性回归分析操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析用SPSS进行回归分析,实例操作如下:1.单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:2.请单击Statistics…按钮,可以选择需要输出的一些统计量。
如RegressionCoefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit 项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。
3.用户在进行回归分析时,还可以选择是否输出方程常数。
实验八线性回归分析一、实验目的通过本次实验,掌握用spss软件进行一元线性回归和多元线性回归分析。
二、实验性质必修,基础层次三、主要仪器及试材计算机及SPSS软件四、实验内容1.一元线性回归分析2.多元线性回归分析五、实验学时2学时六、实验方法与步骤1.开机;2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS;3.打开一个已经存在的数据文件;4.按要求完成上机作业;5. 关闭SPSS,关机。
七、实验注意事项1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
八、上机作业8.1 一元线性回归分析1. 为了检验消费支出和可支配收入之间的线性关系,由于条件限制,只搜集到下列十组数据,试进行一元线性回归分析。
2. 下表是1985-2005年是我国人均GDP与城市化率的观测值,请进行一元线性回归分析。
8.2 多元线性回归分析1、模型考虑某种水泥在凝固时放出的热量(卡/克)Y与水泥中的下列四种化学成分所占的百分比有关:x1:3CaO•Al2O3 x2:3CaO•SiO2x3:4CaO•Al2O3 •Fe2O3 x4:2CaO• SiO2测得数据如下,试进行多元线性回归分析。
2、某种商品的需求量Y、价格X1 和消费者收入X2 的统计资料如下表所示,试估计Y对X1 和X2 的线性回归方程。
SPSS分析技术:线性回归分析相关分析可以揭示事物之间共同变化的一致性程度,但它仅仅只是反映出了一种相关关系,并没有揭示出变量之间准确的可以运算的控制关系,也就是函数关系,不能解决针对未来的分析与预测问题。
回归分析就是分析变量之间隐藏的内在规律,并建立变量之间函数变化关系的一种分析方法,回归分析的目标就是建立由一个因变量和若干自变量构成的回归方程式,使变量之间的相互控制关系通过这个方程式描述出来。
回归方程式不仅能够解释现在个案内部隐藏的规律,明确每个自变量对因变量的作用程度。
而且,基于有效的回归方程,还能形成更有意义的数学方面的预测关系。
因此,回归分析是一种分析因素变量对因变量作用强度的归因分析,它还是预测分析的重要基础。
回归分析类型回归分析根据自变量个数,自变量幂次以及变量类型可以分为很多类型,常用的类型有:线性回归;曲线回归;二元Logistic回归技术;线性回归原理回归分析就是建立变量的数学模型,建立起衡量数据联系强度的指标,并通过指标检验其符合的程度。
线性回归分析中,如果仅有一个自变量,可以建立一元线性模型。
如果存在多个自变量,则需要建立多元线性回归模型。
线性回归的过程就是把各个自变量和因变量的个案值带入到回归方程式当中,通过逐步迭代与拟合,最终找出回归方程式中的各个系数,构造出一个能够尽可能体现自变量与因变量关系的函数式。
在一元线性回归中,回归方程的确立就是逐步确定唯一自变量的系数和常数,并使方程能够符合绝大多数个案的取值特点。
在多元线性回归中,除了要确定各个自变量的系数和常数外,还要分析方程内的每个自变量是否是真正必须的,把回归方程中的非必需自变量剔除。
名词解释线性回归方程:一次函数式,用于描述因变量与自变量之间的内在关系。
根据自变量的个数,可以分为一元线性回归方程和多元线性回归方程。
观测值:参与回归分析的因变量的实际取值。
对参与线性回归分析的多个个案来讲,它们在因变量上的取值,就是观测值。
SPSS多元线性回归分析教程.doc
1. 软件安装和数据导入
安装完SPSS软件,打开软件,在主界面中选择“Open an existing data source”选项,找到导入的数据文件,点击“Open”按钮将数据导入SPSS。
2. 变量检查和描述性统计分析
在“Variable View”选项卡中,查看每个变量的数据类型和属性是否正确。
在“Data View”选项卡中,选中变量列表,点击“Analyze”菜单中的“Descriptive Statistics”选项,进行数据描述性统计分析。
3. 模型构建和回归分析
在“Regression”菜单中,选择“Linear”选项,进入线性回归分析设置页面。
将自
变量和因变量移动到变量框中,点击“OK”按钮进行回归分析。
在分析结果界面中,查看
回归分析的显著性和方程式,判断回归模型的拟合程度和自变量对因变量的解释度。
4. 结果解释和模型优化
根据分析结果,解释各个变量对因变量的影响程度和统计显著性。
如果存在模型缺陷,可以考虑添加、删除或转换自变量,优化回归模型并重新进行分析。
同时,需要注意验证
模型的可靠性和稳定性,避免过度拟合或欠拟合的情况。
5. 结果呈现和报告撰写
将回归分析结果进行图表制作和文字描述,清晰、简洁地呈现分析结果。
在报告撰写
过程中,需要注意逻辑性和一致性,避免遗漏关键内容和出现明显错误。
总之,SPSS多元线性回归分析需要掌握数据导入、变量检查、描述性统计分析、模型构建、回归分析、结果解释、模型优化、结果呈现和报告撰写等技能,才能有效地进行数
据分析研究。
上机实验八SPSS线性回归方程题目:以数据文件employee data.sav建立里一个以初始工资、工作经验、工作时间、工作种类、受教育年限等为自变量,当前工资为因变量的回归模型数据来源:SPSS课程资料employee data.sav基本结果:上表显示将教育水平、雇佣时间、经验、雇佣类别、起始薪金作为自变量,建立模型a. Predictors: (Constant), 教育水平(年)雇佣时间(以月计)经验(以月计)雇佣类别起始薪金对模型拟合度的检验显示,对于这个多元线性回归模型,其决定系数(R Square )为0.840,说明其拟合程度较高。
a. Predictors: (Constant), 教育水平(年),雇佣时间(以月计),经验(以月计),雇佣类别,起始薪金b. Dependent Variable: 当前薪金模型检验结果一一方差分析表显示,该回归模型的SIG为0,说明该模型有显著的统计意义a通过对回归结果的分析,可以得出,本回归方程的拟合结果为Y=5859.585X 1+1.365X 2+154.698X 3-19.553X 4+539.642X 5从sig值可知,所有自变量都是有统计学意义的。
对于该多元回归模型,还需检测自变量之间是否存在共线性问题,从分析的结果看,tolera nee 值均大于0.1,eigenvalue值不等于,condition index 指均小于30,结合下表可以知道,本回归方程中的自变量均不存在共线性问题。
结论:通过建立回归方程,可以得出以下回归方程:当前工资=5859.585 雇佣类别+1.365起始薪金+154.698雇佣时间(以月计)-19.553经验(以月计)+539.642教育水平(年)通过该方程可以看出,当前工资的多少主要是取决于雇佣类别以及教育水平,雇佣时间也有一定的影响,但是影响不大,应该注意的是,工作经验越多,反而会影响当前工资的水平,建议与对策:想要获得较高的薪金,应该选择好职业的种类,加强在教育方面的投入,以增强竞争力。
精彩文档
上机实验八 SPSS 线性回归方程
题目:以数据文件
employee data.sav 建立里一个以初始工资、工作经验、工作时间、工作
种类、受教育年限等为自变量,当前工资为因变量的回归模型。
数据来源:SPSS 课程资料 employee data.sav
基本结果:
上表显示将教育水平、雇佣时间、经验、雇佣类别、起始薪金作为自变量,建立模型。
对模型拟合度的检验显示,对于这个多元线性回归模型,其决定系数(
R Square )为0.840,说
明其拟合程度较高。
Residual 2.200E10 468 4.702E7
Total 1.379E11 473
a. Predictors: (Constant), 教育水平(年), 雇佣时间(以月计), 经验(以月计), 雇佣类别, 起始薪金
b. Dependent Variable: 当前薪金
模型检验结果——方差分析表显示,该回归模型的SIG为0,说明该模型有显著的统计意义。
通过对回归结果的分析,可以得出,本回归方程的拟合结果为
Y=5859.585X1+1.365X2+154.698X3-19.553X4+539.642X5
从sig值可知,所有自变量都是有统计学意义的。
对于该多元回归模型,还需检测自变量之间是否存在共线性问题,从分析的结果看,tolerance 值均大于0.1,eigenvalue值不等于,condition index指均小于30,结合下表可以知道,本回归方程中的自变量均不存在共线性问题。
结论:
通过建立回归方程,可以得出以下回归方程:
当前工资=5859.585雇佣类别+1.365起始薪金+154.698雇佣时间(以月计)-19.553经验(以月计)+539.642教育水平(年)
通过该方程可以看出,当前工资的多少主要是取决于雇佣类别以及教育水平,雇佣时间也有一定的影响,但是影响不大,应该注意的是,工作经验越多,反而会影响当前工资的水平,
建议与对策:
想要获得较高的薪金,应该选择好职业的种类,加强在教育方面的投入,以增强竞争力。
精彩文档。