染色体的形态和结构
- 格式:pptx
- 大小:315.70 KB
- 文档页数:6
(一)染色体的形态结构体细胞的染色体是46个,23个,其中22对是常染色体,一对是性染色体。
男性一对XY,女性为XX。
染色体的形态随着细胞周期的不同而有所改变,在光学显微镜下所看到的染色体是细胞分裂中期染色体(metaphase chromsome)。
每个染色体含有两条染色单体,呈赤道状彼此分离,只有着丝粒处相连。
根据着丝粒的位置分为三种类型,中部着丝粒型,亚中部着丝粒和端着丝粒型(图21-1)。
图21-1正常人体细胞的三种染色体1.中部着丝点染色体;2.近中部着丝点染色体;3.近端部着丝点染色体1.非显带染色体特征分为七组A组(1~3):为最大的具中部着丝粒染色体,这组染色体相互间很易区别。
第1号和第2号染色体大小相似,唯第2号染色体为近中部着丝粒染色体。
第3号染色体较1、2号染色体小,为中部着丝粒染色体。
B组(4~5):为大的具中部着丝粒染色体。
2对染色体之间在形态和长度上较难区别。
C组(6~12号和X):为中等大小的具中部或近中部着丝粒染色体。
这组染色体较难区分,其中第6、7、11号和X染色体为中部着丝粒染色体,第8、9、10和12号染色体为近中部着丝粒染色体。
女性为2个X染色体。
男性只有1个X染色体。
D组(13~15号):为中等大小的具近端着丝粒染色体。
在其短臂上有随体。
与他组染色体有明显区别。
但3对染色体之间较难区别。
E组(16~18号):为小的具中部或近中部着丝粒染色体。
第16号染色体为中部着丝粒染色体,第17号和18号染色体为近中部着丝粒染色体。
不过,着丝粒位置第18号较第17号染色体更近端部。
F组(19~20号):为更小的中部着丝粒染色体。
2对染色体之间,形态上很难区别。
G组(21~22号和Y):为最小的近端着丝粒染色体。
第21号和22号染色体大小相似,且短臂上常连有随体。
Y染色体常比第21和22号染色体大、染色深。
且无随体。
Y染色体长臂2个染色单体比较靠拢,长臂末端也较模糊。
2.G带染色体的特征第1号染色体:识别并不困难,但初学者易把长短臂颠倒。
生物染色体的形态结构与调控机制生物染色体是整个细胞遗传信息的核心,担负着传递遗传信息的重要任务。
染色体分为有丝分裂染色体和减数分裂染色体两种形态。
有丝分裂染色体在细胞有丝分裂时出现,通过组装成为高度有序的结构来保证染色体转移的完整性。
而减数分裂染色体则在减数分裂时出现,它们的结构更加松散,因此看起来比较难以辨认。
本文主要就生物染色体的形态结构和调控机制展开论述。
染色体的形态结构题目中的“形态结构”指的是染色体的组织结构形态,这也是了解染色体的基础。
换句话说,可以说这部分是生物染色体研究的起点。
因此,首先我们来看一下染色体的基础构成单元是什么。
染色体是由DNA与蛋白质复合物构成的,其中蛋白质复合物称为染色质。
在有丝分裂或细胞周期的其他时期,染色质的组织形态不断地变化。
当细胞进入有丝分裂时,染色质便会呈现出较为明显的有序结构,这里所说的有序结构就是染色体。
通过染色体的显微镜观察,我们可以很清晰地看到,它们是由许多线条状物质缠绕而成的。
具体来说,染色体的结构由DNA、组蛋白、非组蛋白和组蛋白修饰等部分组成。
其中组蛋白是负责将DNA包裹起来的主要蛋白质。
由于DNA单体很长,组蛋白的作用就是将其包裹起来,使其呈现出较为紧凑的结构。
在组蛋白和DNA配合形成的结构上,还有其他的调控蛋白和RNA等非编码RNA。
这些其他部分与DNA之间的相互作用,构建出了整个染色质的三维空间结构,从而完成了染色体的形态结构。
染色体的调控机制染色体的形态结构是遗传信息传递过程中的重要一环,而这个过程的唯一目的就是将信息从一代传递到下一代。
然而,如何确保这个过程的正确性是一个复杂的过程。
为了完成这个任务,细胞需要合理调控染色体的形态结构和特异性功能表达。
让我们来看一下染色体的调控机制有哪些吧。
1. 基因表达调控基因表达调控是细胞功能有序性的一种关键调节机制。
它的作用是调节细胞中特定的基因在合适时机被表达。
基因表达调控机制对染色质组织结构影响很大。
染⾊体的形态和结构第⼆章染⾊体的形态和结构第⼀节原核细胞和真核细胞⼀.原核⽣物和真核⽣物的概念真核⽣物的遗传物质集中在有核膜包围的细胞核中,并与特定的蛋⽩质相结合,经过⼀定的等级结构形成染⾊体。
原核⽣物的遗传物质只以裸露的核酸分⼦⽅式存在,虽与少量的蛋⽩质结合,但是没有真核⽣物染⾊体那样的等级结构。
习惯上,原核⽣物的核酸分⼦也称为染⾊体。
⼆、原核细胞与真核细胞的区别在⽣物界中,从细胞结构来看,可分为两⼤类:1.为真核体。
真核体包括:⾼等动植物、原⽣动物、真菌,以及⼀些藻类。
2.为原核体。
原核体包括:细菌、病毒以及蓝藻等。
两细胞系的区别如下:①⼀个典型的真核细胞体积(10um)⽐⼀个原核细胞体积(1-10um)⼤约⼗⼏倍甚⾄上万倍,因此在化学组分的总量上不同,真核细胞总量远远⾼于原核细胞总量。
②在真核细胞中,有⼀个由核膜所包围的细胞核。
在核中含有由DNA、蛋⽩质、RNA组成的多条染⾊体③原核体的染⾊体具有单个的DNA或RNA分⼦并在不同的有机体中表现不同。
④原核体细胞DNA的总量⽐真核体细胞的DNA总量少得多。
但是就单个DNA分⼦长度与该细胞⼤⼩相⽐却长得多。
⑤在遗传物质的交换与重组⽅⾯,真核⽣物通过雌雄配⼦融合形成合⼦并通过细胞分裂来完成遗传物质的交换与重组,⽽原核⽣物只是通过质粒介导来实现单向的遗传物质的交换。
⑥原核细胞mRNA的合成在许多重要⽅⾯不同于真核细胞。
⑦原核细胞mRNA常常在它的翻译刚开始之后,就开始从5’---端开始降解,即使它的合成还没有完成。
⑧细胞分裂⽅式不同,在原核细胞周期中,DNA复制后,紧接着便是细胞分裂,⽽真核细胞的细胞周期可分为⼏个不同的时期。
⑨由于原核细胞⽆溶菌体,因此不能通过吞噬和胞饮作⽤来进⾏异物的消化作⽤,原核细胞的电⼦传递部位在细胞膜,⽽真核细胞的电⼦传递部位在线粒体膜。
上述差异只是原核细胞与真核细胞在细胞⽔平上的差异,在分⼦上⽔平,原核细胞与真核细胞还具有明显的不同,如基因的序列组织、遗传物质的复制以及基因结构、表达⽅式、产物修饰、调控等⽅⾯均各有特点。
第二章染色体的形态和结构第一节原核细胞和真核细胞一.原核生物和真核生物的概念真核生物的遗传物质集中在有核膜包围的细胞核中,并与特定的蛋白质相结合,经过一定的等级结构形成染色体。
原核生物的遗传物质只以裸露的核酸分子方式存在,虽与少量的蛋白质结合,但是没有真核生物染色体那样的等级结构。
习惯上,原核生物的核酸分子也称为染色体。
二、原核细胞与真核细胞的区别在生物界中,从细胞结构来看,可分为两大类:1.为真核体。
真核体包括:高等动植物、原生动物、真菌,以及一些藻类。
2.为原核体。
原核体包括:细菌、病毒以及蓝藻等。
两细胞系的区别如下:①一个典型的真核细胞体积(10um)比一个原核细胞体积(1-10um)大约十几倍甚至上万倍,因此在化学组分的总量上不同,真核细胞总量远远高于原核细胞总量。
②在真核细胞中,有一个由核膜所包围的细胞核。
在核中含有由DNA 、蛋白质、RNA 组成的多条染色体③原核体的染色体具有单个的DNA 或RNA 分子并在不同的有机体中表现不同。
④原核体细胞DNA 的总量比真核体细胞的DNA 总量少得多。
但是就单个DNA 分子长度与该细胞大小相比却长得多。
⑤在遗传物质的交换与重组方面,真核生物通过雌雄配子融合形成合子并通过细胞分裂来完成遗传物质的交换与重组,而原核生物只是通过质粒介导来实现单向的遗传物质的交换。
⑥原核细胞mRNA 的合成在许多重要方面不同于真核细胞。
⑦原核细胞mRNA 常常在它的翻译刚开始之后,就开始从5'---端开始降解,即使它的合成还没有完成。
⑧细胞分裂方式不同,在原核细胞周期中,DNA 复制后,紧接着便是细胞分裂,而真核细胞的细胞周期可分为几个不同的时期。
⑨由于原核细胞无溶菌体,因此不能通过吞噬和胞饮作用来进行异物的消化作用,原核细胞的电子传递部位在细胞膜,而真核细胞的电子传递部位在线粒体膜。
上述差异只是原核细胞与真核细胞在细胞水平上的差异,在分子上水平,原核细胞与真核细胞还具有明显的不同,如基因的序列组织、遗传物质的复制以及基因结构、表达方式、产物修饰、调控等方面均各有特点。
人类的染色体是一种细胞核内的线状结构,它携带着遗传信息,决定着个体的性状和特征。
人类细胞中有46条染色体,其中22对体染色体和一对性染色体。
一、体染色体的主要形态特征1. 体染色体的数量:人类体细胞中含有22对体染色体,即44条体染色体。
这些染色体分别由父母亲各传递来,共同决定个体的遗传特征。
2. 体染色体的形状:体染色体主要有两种形态,即长臂和短臂。
根据短臂和长臂的相对长度,可以将体染色体分为不同的类型,如A、B、C等。
3. 体染色体的结构:在电镜下观察,体染色体呈现出丝状的纺锤体结构,这是由DNA分子和蛋白质组成的。
4. 体染色体的着丝点:在细胞分裂的过程中,体染色体上的着丝点起着重要的作用,它是细胞分裂的重要结构之一。
5. 体染色体的功能:体染色体携带着大量的基因信息,决定了个体的生理和形态特征,以及遗传病的发生。
二、性染色体的主要形态特征1. 性染色体的数量:人类的性染色体有一对,即X染色体和Y染色体,分别由父亲和母亲传递给下一代。
2. 性染色体的形状:X染色体呈现为较大的染色体,而Y染色体呈现为较小的染色体。
3. 性染色体的结构:X染色体与体染色体类似,呈现出丝状的结构,而Y染色体较小且形态特殊。
4. 性染色体的功能:性染色体决定了个体的性莂,X染色体决定女性,而X、Y染色体共同决定了个体的男性。
人类各号染色体都具有各自独特的形态特征和功能,它们共同构成了个体的遗传基因组,决定了个体的所有特征和性状。
对染色体及其形态特征的研究,有助于了解个体的遗传本质和遗传疾病的发生机制,对人类遗传健康和遗传疾病的防治具有重要意义。
续写:随着科学技术的不断进步,人类对染色体的研究也日益深入。
除了染色体的形态特征,人们还对染色体的功能、变异及其与遗传病的关系等方面进行了广泛的探讨和研究。
下面我们将进一步探讨人类各号染色体的功能和变异特征,以及染色体与遗传疾病之间的关系。
一、体染色体的功能和变异特征1. 体染色体的功能:体染色体携带着成千上万的基因,这些基因编码了蛋白质合成所需的信息,决定了人体的发育和功能。