固体物理第三章总结
- 格式:ppt
- 大小:1.44 MB
- 文档页数:32
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
第三章晶体的结合、弹性模量•3.1 晶体中的结合力和结合能;•3.2 元素和化合物晶体结合的规律性;•3.3 弹性应变和晶体中的弹性波;3.1 晶体的结合力和结合能一. 晶体结合的一般概念:自然界的矿物中绝大多数物质都以晶态存在,说明晶体的能量比构成晶体的粒子处在自由状态时的能量总和要低的多,因此可以给出U0是晶体在0K 时的总能量,E N是N个自由粒子能量之和,因此Eb 是0K时把晶体分解为相距无限远、静止的中性自由原子所需要的能量,称作内聚能(Cohesive energy)或结合能(binding energy)。
取EN=0,做能量基点,则有:近似把原子对间相互作用能量之和当作晶体的总相互作用能。
物质以晶态存在是由于构成固体的原子之间存在着相当大的相互作用力,尽管不同晶体这种结合力的类型和大小不同,但两个粒子之间相互作用力(势)与它们间距离的关系在定性上是相同的。
晶体中粒子的相互作用可以分为2大类:斥力和引力。
晶态是粒子间斥力、引力处于平衡时的状态。
其中a 、b 、m 、n 均为大于零的常数,由实验确定若两粒子要稳定结合在一起,则必须满足n > m一对粒子之间的相互作用势一般可以表示为引力势和斥力势之和:处于稳定态的条件是:给出平衡位置:平衡时的能量:★从上式可以看出晶体有平衡态的条件是:n > m★更符合实际斥力势变化规律的表达式为指数形式:N个原子组成晶体后的总相互作用能,忽略边界的差异,可以近似表示为:二. 晶体的弹性性质:以晶体相互作用能来解释晶体弹性性质是对理论表达式正确与否的最好验证。
1. 压缩系数η与体弹性模量K :由热力学知道:考虑到:两式相比较,有:展开式中的第一项在平衡点为零。
注解:体积弹性模量:按胡克定律,在弹性限度内,物体形变产生的内应力与相对形变成正比,比例系数称弹性模量。
由热力学第一定律dU=TdS–pdV,若不考虑热效应,即TdS= 0 (实际上只有当T=0K时才严格成立),有2. 抗张强度:晶体所能负荷的最大张力叫抗张强度,负荷超过抗张强度时,晶体就会断裂。
1、概念(声子)的描述,理论模型(爱因斯坦和德拜模型)的结果与实验不符合的原因。
2、计算晶体格波波矢和频率的数目。
3、从正格子出发,找到倒格子,画出第一、第二布里渊区。
4、一维单原子链色散关系的推导。
5、已知格波的色散关系,根据模式密度的定义式求格波的模式密度。
重点:晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果?答:在爱因斯坦模型中,假设晶体中所有的原子都以相同的频率振动,而在德拜模型中,则以连续介质的弹性波来代表格波而求出的表达式。
爱因斯坦模型取得的最大成就在于给出了当温度趋近于零时,比热容Cv 亦趋近于零的结果,这是经典理论所不能得到的结果。
其局限性在于模型给出的是比热容Cv 以指数形式趋近于零,快于实验给出的以3T 趋近于零的结果。
德拜模型取得的最大成就在于它给出了在极低温度下,比热和温度T3成比例,与实验结果相吻合。
其局限性在于模型给出的德拜温度应视为恒定值,适用于全部温度区间,但实际上在不同温度下,德拜温度是不同的。
在极低温度下,并不是所有的格波都能被激发,而只有长声学波被激发,对热容产生影响。
而对于长声学波,晶格可以视为连续介质,长声学波具有弹性波的性质,因而德拜的模型的假设基本符合事实,所以能得出精确结果。
爱因斯坦模型假设晶体中所有的原子都以相同的频率振动,高温符合实验规律,低温下不符合 德拜模型 高温符合实验规律,低温下符合较好,但是有偏差。
(1)晶体视为连续介质,格波视为弹性波;(2)有一支纵波两支横波;(3)晶格振动频率在D 0ω~之间(D ω为德拜频率)。
爱因斯坦模型与德拜模型(掌握)德拜模型在低温下理论结果与实验数据符合相对较好但是仍存在偏差,其产生偏差的根源是什么?答:(1)忽略了晶体的各向异性;(2)忽略了光学波和高频声学波对热容的贡献,光学波和高频声学波是色散波,它们的关系式比弹性波的要复杂的多。