固体物理学第三章资料
- 格式:ppt
- 大小:4.39 MB
- 文档页数:97
1 第三章 晶体的结合主要内容:● 大量原子聚合在一起形成晶体的原因● 晶体结合的类型内聚能和原子间的相互作用力内聚能是指在绝对零度下将晶体分解为相距无限远、静止的自由原子所需要的能量 原子间相互作用力:● 吸引力:不同的结合方式有不同的机理● 排斥力:库仑排斥+量子效应● 原子核之间的库仑排斥力● 电子壳层交叠时,由泡利不相容原理而产生的排斥力内聚能的计算设晶体中任意两个粒子的相互作用能可表示为:其中a 、b 、m 、n 均为大于零的常数,由实验确定,r 为两粒子之间的距离。
晶体内聚能视为粒子对间的互作用,设晶体中有N 个粒子,则晶体内聚能:这里,相互作用能视为粒子对间的互作用。
先计算两个粒子之间的互作用势,然后再把考虑晶体结构的因素,总和起来可以得到晶体的总结合能。
只有离子晶体和分子晶体可以这样处理。
此思想称为双粒子模型。
晶体结合的类型⏹ 根据化学键的性质,晶体可以分为离子晶体、原子晶体(共价晶体)、金属晶体、分子晶体。
⏹ 对于大多数晶体,结合力的性质是属于综合性的。
固体结合的性质取决于组成固体的原子结构。
离子晶体和离子键● 离子晶体:由正离子和负离子组成。
● 离子键:正、负离子间的静电相互作用产生● 晶体结构:氯化钠结构、氯化铯结构● 离子-离子相互作用能有两项:① 库仑相互作用能,正比于: ② 相临离子间排斥能,正比于: 离子晶体的内聚能 由N 对离子组成的离子晶体的内聚能:相邻离子间的最短距离 马德隆常数 最邻近离子数 n m r b r a r u +-=)((2)(2)(11∑∑--+-==N j n j m j N j j r b r a N r u N r U r1-nr 1)(N )4()4()(02'102'1n n jj n j j r B r A r Nz r a q N r r q N r U j +-=+±=+±=∑∑λπελπεr )1('∑±=j j a μz r a r j j =1λπεμz B q A ==0242分子晶体:● 基元:分子● 结合力:范德瓦尔斯力● 晶体结构:密积结构,惰性气体:面心立方● 结合能:相距为R 的一对分子间的总的相互作用势能为(称为Lennard-Jones 势)共价晶体和共价键:● 原子靠共价键结合。
Chapter 3晶 体 衍 射§3.1 倒格子 Reciprocal lattice倒格子的概念及其应用在固体物理学中是十分重要的。
在前面,我们在坐标空间里讨论晶体结构的周期性,由此引入了坐标空间的布拉菲格子概念。
实际上,晶体结构的周期性,也可以在波矢空间里进行描述。
如果前者称为正格子,后者就称为这个正格子的倒格子。
这样以来,描述一种晶体结构的周期性可以利用两种类型的格子:一种是正格子,它是晶体结构在坐标空间的数学表现形式;一种是倒格子,它是晶体结构在波矢空间的数学表现形式。
由坐标空间变换到波矢空间,对处理周期性结构中的波动过程、X 射线衍射等问题是非常方便的。
3.1.1波矢空间前面我们研究晶体结构的周期性,无论是采用直角坐标系还是晶胞坐标系,都是在坐标空间里进行的。
格点的位置或某点的位置都是用位矢→l R 或→r 来表示,其量值单位是“米”。
晶体结构的周期性在坐标空间里的数学形式用布拉菲格子来表示,如果把坐标空间称为“实空间”或“正空间”,那么坐标空间里的布拉菲格子就可以称为正格子。
在固体物理学的研究中,还需要另外一种空间形式。
例如,在晶体的X 射线衍射过程中,晶体作为衍射光栅,X 射线通过晶体在照相底片形成一些斑点。
这些斑点和晶体中的晶面族有着一一对应的关系。
对这些斑点的分布情况进行分析,就可以了解作为衍射光栅的那个晶体的结构情况。
从衍射斑点并不能直接看出晶体的结构,需要进行傅里叶变换,这里就需要引入波矢空间的概念。
另外,计算固体的能带结构和电子状态也要用到波矢空间。
(李商隐:庄生晓梦迷蝴蝶。
《庄子·齐物论》说,庄子曾梦化为蝴蝶,醒后弄不清楚是自己变成蝴蝶了,还是蝴蝶变成庄周了。
庄周先生在两个空间--真实空间和梦幻空间--里转化。
蝴蝶成为庄周先生在梦幻空间里的化身。
) 波矢空间又称状态空间,在波矢空间中同样可以建立直角坐标系,三个方向的单位矢量分别记为→x k 、→y k 、→z k 。