固体物理第三章总结
- 格式:ppt
- 大小:1.75 MB
- 文档页数:63
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
1 第三章 晶体的结合主要内容:● 大量原子聚合在一起形成晶体的原因● 晶体结合的类型内聚能和原子间的相互作用力内聚能是指在绝对零度下将晶体分解为相距无限远、静止的自由原子所需要的能量 原子间相互作用力:● 吸引力:不同的结合方式有不同的机理● 排斥力:库仑排斥+量子效应● 原子核之间的库仑排斥力● 电子壳层交叠时,由泡利不相容原理而产生的排斥力内聚能的计算设晶体中任意两个粒子的相互作用能可表示为:其中a 、b 、m 、n 均为大于零的常数,由实验确定,r 为两粒子之间的距离。
晶体内聚能视为粒子对间的互作用,设晶体中有N 个粒子,则晶体内聚能:这里,相互作用能视为粒子对间的互作用。
先计算两个粒子之间的互作用势,然后再把考虑晶体结构的因素,总和起来可以得到晶体的总结合能。
只有离子晶体和分子晶体可以这样处理。
此思想称为双粒子模型。
晶体结合的类型⏹ 根据化学键的性质,晶体可以分为离子晶体、原子晶体(共价晶体)、金属晶体、分子晶体。
⏹ 对于大多数晶体,结合力的性质是属于综合性的。
固体结合的性质取决于组成固体的原子结构。
离子晶体和离子键● 离子晶体:由正离子和负离子组成。
● 离子键:正、负离子间的静电相互作用产生● 晶体结构:氯化钠结构、氯化铯结构● 离子-离子相互作用能有两项:① 库仑相互作用能,正比于: ② 相临离子间排斥能,正比于: 离子晶体的内聚能 由N 对离子组成的离子晶体的内聚能:相邻离子间的最短距离 马德隆常数 最邻近离子数 n m r b r a r u +-=)((2)(2)(11∑∑--+-==N j n j m j N j j r b r a N r u N r U r1-nr 1)(N )4()4()(02'102'1n n jj n j j r B r A r Nz r a q N r r q N r U j +-=+±=+±=∑∑λπελπεr )1('∑±=j j a μz r a r j j =1λπεμz B q A ==0242分子晶体:● 基元:分子● 结合力:范德瓦尔斯力● 晶体结构:密积结构,惰性气体:面心立方● 结合能:相距为R 的一对分子间的总的相互作用势能为(称为Lennard-Jones 势)共价晶体和共价键:● 原子靠共价键结合。
1、概念(声子)的描述,理论模型(爱因斯坦和德拜模型)的结果与实验不符合的原因。
2、计算晶体格波波矢和频率的数目。
3、从正格子出发,找到倒格子,画出第一、第二布里渊区。
4、一维单原子链色散关系的推导。
5、已知格波的色散关系,根据模式密度的定义式求格波的模式密度。
重点:晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果?答:在爱因斯坦模型中,假设晶体中所有的原子都以相同的频率振动,而在德拜模型中,则以连续介质的弹性波来代表格波而求出的表达式。
爱因斯坦模型取得的最大成就在于给出了当温度趋近于零时,比热容Cv 亦趋近于零的结果,这是经典理论所不能得到的结果。
其局限性在于模型给出的是比热容Cv 以指数形式趋近于零,快于实验给出的以3T 趋近于零的结果。
德拜模型取得的最大成就在于它给出了在极低温度下,比热和温度T3成比例,与实验结果相吻合。
其局限性在于模型给出的德拜温度应视为恒定值,适用于全部温度区间,但实际上在不同温度下,德拜温度是不同的。
在极低温度下,并不是所有的格波都能被激发,而只有长声学波被激发,对热容产生影响。
而对于长声学波,晶格可以视为连续介质,长声学波具有弹性波的性质,因而德拜的模型的假设基本符合事实,所以能得出精确结果。
爱因斯坦模型假设晶体中所有的原子都以相同的频率振动,高温符合实验规律,低温下不符合 德拜模型 高温符合实验规律,低温下符合较好,但是有偏差。
(1)晶体视为连续介质,格波视为弹性波;(2)有一支纵波两支横波;(3)晶格振动频率在D 0ω~之间(D ω为德拜频率)。
爱因斯坦模型与德拜模型(掌握)德拜模型在低温下理论结果与实验数据符合相对较好但是仍存在偏差,其产生偏差的根源是什么?答:(1)忽略了晶体的各向异性;(2)忽略了光学波和高频声学波对热容的贡献,光学波和高频声学波是色散波,它们的关系式比弹性波的要复杂的多。