固体物理第三章
- 格式:ppt
- 大小:788.50 KB
- 文档页数:68
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
第三章晶体的结合、弹性模量•3.1 晶体中的结合力和结合能;•3.2 元素和化合物晶体结合的规律性;•3.3 弹性应变和晶体中的弹性波;3.1 晶体的结合力和结合能一. 晶体结合的一般概念:自然界的矿物中绝大多数物质都以晶态存在,说明晶体的能量比构成晶体的粒子处在自由状态时的能量总和要低的多,因此可以给出U0是晶体在0K 时的总能量,E N是N个自由粒子能量之和,因此Eb 是0K时把晶体分解为相距无限远、静止的中性自由原子所需要的能量,称作内聚能(Cohesive energy)或结合能(binding energy)。
取EN=0,做能量基点,则有:近似把原子对间相互作用能量之和当作晶体的总相互作用能。
物质以晶态存在是由于构成固体的原子之间存在着相当大的相互作用力,尽管不同晶体这种结合力的类型和大小不同,但两个粒子之间相互作用力(势)与它们间距离的关系在定性上是相同的。
晶体中粒子的相互作用可以分为2大类:斥力和引力。
晶态是粒子间斥力、引力处于平衡时的状态。
其中a 、b 、m 、n 均为大于零的常数,由实验确定若两粒子要稳定结合在一起,则必须满足n > m一对粒子之间的相互作用势一般可以表示为引力势和斥力势之和:处于稳定态的条件是:给出平衡位置:平衡时的能量:★从上式可以看出晶体有平衡态的条件是:n > m★更符合实际斥力势变化规律的表达式为指数形式:N个原子组成晶体后的总相互作用能,忽略边界的差异,可以近似表示为:二. 晶体的弹性性质:以晶体相互作用能来解释晶体弹性性质是对理论表达式正确与否的最好验证。
1. 压缩系数η与体弹性模量K :由热力学知道:考虑到:两式相比较,有:展开式中的第一项在平衡点为零。
注解:体积弹性模量:按胡克定律,在弹性限度内,物体形变产生的内应力与相对形变成正比,比例系数称弹性模量。
由热力学第一定律dU=TdS–pdV,若不考虑热效应,即TdS= 0 (实际上只有当T=0K时才严格成立),有2. 抗张强度:晶体所能负荷的最大张力叫抗张强度,负荷超过抗张强度时,晶体就会断裂。
1 第三章 晶体的结合主要内容:● 大量原子聚合在一起形成晶体的原因● 晶体结合的类型内聚能和原子间的相互作用力内聚能是指在绝对零度下将晶体分解为相距无限远、静止的自由原子所需要的能量 原子间相互作用力:● 吸引力:不同的结合方式有不同的机理● 排斥力:库仑排斥+量子效应● 原子核之间的库仑排斥力● 电子壳层交叠时,由泡利不相容原理而产生的排斥力内聚能的计算设晶体中任意两个粒子的相互作用能可表示为:其中a 、b 、m 、n 均为大于零的常数,由实验确定,r 为两粒子之间的距离。
晶体内聚能视为粒子对间的互作用,设晶体中有N 个粒子,则晶体内聚能:这里,相互作用能视为粒子对间的互作用。
先计算两个粒子之间的互作用势,然后再把考虑晶体结构的因素,总和起来可以得到晶体的总结合能。
只有离子晶体和分子晶体可以这样处理。
此思想称为双粒子模型。
晶体结合的类型⏹ 根据化学键的性质,晶体可以分为离子晶体、原子晶体(共价晶体)、金属晶体、分子晶体。
⏹ 对于大多数晶体,结合力的性质是属于综合性的。
固体结合的性质取决于组成固体的原子结构。
离子晶体和离子键● 离子晶体:由正离子和负离子组成。
● 离子键:正、负离子间的静电相互作用产生● 晶体结构:氯化钠结构、氯化铯结构● 离子-离子相互作用能有两项:① 库仑相互作用能,正比于: ② 相临离子间排斥能,正比于: 离子晶体的内聚能 由N 对离子组成的离子晶体的内聚能:相邻离子间的最短距离 马德隆常数 最邻近离子数 n m r b r a r u +-=)((2)(2)(11∑∑--+-==N j n j m j N j j r b r a N r u N r U r1-nr 1)(N )4()4()(02'102'1n n jj n j j r B r A r Nz r a q N r r q N r U j +-=+±=+±=∑∑λπελπεr )1('∑±=j j a μz r a r j j =1λπεμz B q A ==0242分子晶体:● 基元:分子● 结合力:范德瓦尔斯力● 晶体结构:密积结构,惰性气体:面心立方● 结合能:相距为R 的一对分子间的总的相互作用势能为(称为Lennard-Jones 势)共价晶体和共价键:● 原子靠共价键结合。
Chapter 3晶 体 衍 射§3.1 倒格子 Reciprocal lattice倒格子的概念及其应用在固体物理学中是十分重要的。
在前面,我们在坐标空间里讨论晶体结构的周期性,由此引入了坐标空间的布拉菲格子概念。
实际上,晶体结构的周期性,也可以在波矢空间里进行描述。
如果前者称为正格子,后者就称为这个正格子的倒格子。
这样以来,描述一种晶体结构的周期性可以利用两种类型的格子:一种是正格子,它是晶体结构在坐标空间的数学表现形式;一种是倒格子,它是晶体结构在波矢空间的数学表现形式。
由坐标空间变换到波矢空间,对处理周期性结构中的波动过程、X 射线衍射等问题是非常方便的。
3.1.1波矢空间前面我们研究晶体结构的周期性,无论是采用直角坐标系还是晶胞坐标系,都是在坐标空间里进行的。
格点的位置或某点的位置都是用位矢→l R 或→r 来表示,其量值单位是“米”。
晶体结构的周期性在坐标空间里的数学形式用布拉菲格子来表示,如果把坐标空间称为“实空间”或“正空间”,那么坐标空间里的布拉菲格子就可以称为正格子。
在固体物理学的研究中,还需要另外一种空间形式。
例如,在晶体的X 射线衍射过程中,晶体作为衍射光栅,X 射线通过晶体在照相底片形成一些斑点。
这些斑点和晶体中的晶面族有着一一对应的关系。
对这些斑点的分布情况进行分析,就可以了解作为衍射光栅的那个晶体的结构情况。
从衍射斑点并不能直接看出晶体的结构,需要进行傅里叶变换,这里就需要引入波矢空间的概念。
另外,计算固体的能带结构和电子状态也要用到波矢空间。
(李商隐:庄生晓梦迷蝴蝶。
《庄子·齐物论》说,庄子曾梦化为蝴蝶,醒后弄不清楚是自己变成蝴蝶了,还是蝴蝶变成庄周了。
庄周先生在两个空间--真实空间和梦幻空间--里转化。
蝴蝶成为庄周先生在梦幻空间里的化身。
) 波矢空间又称状态空间,在波矢空间中同样可以建立直角坐标系,三个方向的单位矢量分别记为→x k 、→y k 、→z k 。