控制系统根轨迹的绘制
- 格式:ppt
- 大小:343.00 KB
- 文档页数:22
根轨迹绘制习题及答案根轨迹绘制习题及答案根轨迹是控制系统理论中的重要概念,它可以帮助我们分析和评估系统的稳定性和动态响应。
在学习根轨迹绘制的过程中,练习习题是必不可少的。
本文将为大家提供一些根轨迹绘制的习题及答案,希望对大家的学习有所帮助。
1. 习题一:考虑一个开环传递函数为G(s) = K/(s^2 + 2s + 1)的系统,请绘制其根轨迹,并分析系统的稳定性。
解答一:首先,我们需要确定系统的极点和零点。
对于给定的传递函数G(s),我们可以将其分解为G(s) = K/(s+1)^2的形式,其中极点为-1,零点为无穷远处。
接下来,我们可以根据根轨迹的特性来绘制图形。
根轨迹是极点随着增加K的值而移动的轨迹。
当K趋近于无穷大时,根轨迹会趋近于极点的位置。
根据根轨迹的性质,我们可以得出以下结论:- 当K为正实数时,根轨迹从零点开始,逐渐向极点移动。
- 当K为负实数时,根轨迹从极点开始,逐渐向零点移动。
- 当K为纯虚数时,根轨迹会绕过零点和极点,形成一个闭合的曲线。
因此,在本例中,当K为正实数时,根轨迹从零点开始,逐渐向极点-1移动。
系统的稳定性取决于根轨迹是否穿过虚轴。
根据根轨迹的绘制,我们可以发现根轨迹没有穿过虚轴,因此系统是稳定的。
2. 习题二:考虑一个开环传递函数为G(s) = K/(s^2 + 3s + 2)的系统,请绘制其根轨迹,并分析系统的稳定性。
解答二:首先,我们需要确定系统的极点和零点。
对于给定的传递函数G(s),我们可以将其分解为G(s) = K/(s+1)(s+2)的形式,其中极点为-1和-2,零点为无穷远处。
接下来,我们可以根据根轨迹的特性来绘制图形。
根轨迹是极点随着增加K的值而移动的轨迹。
当K趋近于无穷大时,根轨迹会趋近于极点的位置。
根据根轨迹的性质,我们可以得出以下结论:- 当K为正实数时,根轨迹从零点开始,逐渐向极点移动。
- 当K为负实数时,根轨迹从极点开始,逐渐向零点移动。
实验四 控制系统的根轨迹分析一. 实验目的:1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。
2. 学习利用根轨迹分析系统的稳定性及动态特性。
二. 实验内容:1. 应用MATLAB 语句画出控制系统的根轨迹。
2. 求出系统稳定时,增益K 的范围。
3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。
4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。
观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。
(实验方法参考实验二)5. 分析系统开环零点和极点对系统稳定性的影响。
三. 实验原理:根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。
假定某闭环系统的开环传递函数为)164)(1()1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。
b=[1 1]; %确定开环传递函数的分子系数向量a1=[l 0]; %确定开环传递函数的分母第一项的系数a2=[l -1]; %确定开环传递函数的分母第二项的系数a3=[l 4 16]; %确定开环传递函数的分母第三项的系数a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。
p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。
[k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应的增益K 和其它三个根。
K=22.5031, poles= -1.5229+2.7454i -1.5229-2.7454i0.0229+1.5108i 0.0229-1.5108i再令p=1.5108i ,可得到下面结果:k=22.6464, poles=-1.5189+2.7382i -1.5189-2.7382i0.0189+1.5197i 0.0189-1.5197i再以此根的虚部为新的根,重复上述步骤,几步后可得到下面的结果: k=23.316, poles=-1.5000+2.7040i -1.5000-2.7040i0.0000+1.5616i 0.0000-1.5616i这就是根轨迹由右半平面穿过虚轴时的增益及四个根。
自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2. 利用MATLAB 语句绘制系统的根轨迹。
3. 掌握用根轨迹分析系统性能的图解方法。
4. 掌握系统参数变化对特征根位置的影响。
二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。
2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。
用直接求解闭环特征根绘制根轨迹的方法根轨迹是控制系统分析和设计中常用的一种图形工具,通过绘制系统的根轨迹可以直观地了解系统的稳定性和动态性能。
在控制系统的闭环传递函数中,根轨迹是由系统的特征根或极点的轨迹形成的。
那么,如何使用直接求解闭环特征根的方法来绘制根轨迹呢?我们需要了解控制系统的闭环传递函数。
控制系统的闭环传递函数是指系统输出与输入之间的关系,它包含了系统的控制器、传感器和执行器等组成部分。
闭环传递函数常用的表示形式是分子多项式与分母多项式的比值,即G(s) = N(s)/D(s),其中N(s)和D(s)分别是闭环传递函数的分子和分母多项式,s是复变量。
接下来,我们可以通过直接求解闭环传递函数的特征根来绘制根轨迹。
特征根是闭环传递函数的分母多项式的根,它决定了系统的稳定性和动态性能。
我们将闭环传递函数的分母多项式D(s)表示为(s+z1)(s+z2)...(s+zn)的形式,其中z1、z2、...、zn是特征根。
然后,我们可以通过将特征根代入根轨迹的极点条件来求解根轨迹的方程。
对于给定的特征根z,根轨迹的方程为|G(s)| = 1,其中G(s)是控制系统的开环传递函数。
根轨迹的方程可以进一步化简为|N(s)| = |D(s)|,即分子多项式N(s)与分母多项式D(s)的模相等。
通过求解根轨迹的方程,我们可以得到根轨迹的形状和位置。
根轨迹的形状取决于特征根的实部和虚部,而根轨迹的位置取决于特征根在复平面上的分布。
在绘制根轨迹时,我们可以通过改变特征根的值来观察系统的动态响应。
当特征根的实部或虚部发生变化时,根轨迹的形状和位置也会相应改变。
通过绘制根轨迹,我们可以判断系统的稳定性和动态性能。
如果根轨迹的所有点都位于左半平面,则系统是稳定的;如果根轨迹与虚轴相交,则系统是振荡的;如果根轨迹与实轴相交,则系统是不稳定的。
通过根轨迹还可以估计系统的动态性能。
根轨迹的形状越接近虚轴,系统的动态响应越快;根轨迹的形状越远离虚轴,系统的动态响应越慢。
参数根轨迹的matlab绘制原理参数根轨迹是控制系统分析和设计中非常重要的概念,可以帮助我们分析控制系统的稳定性和动态响应特性。
在Matlab中,可以通过一些简单的指令实现参数根轨迹的绘制,从而更好地理解控制系统的行为。
本文将简要介绍参数根轨迹的概念和Matlab中绘制参数根轨迹的原理,以及具体的绘制方法。
一、什么是参数根轨迹?我们知道,在控制系统中,控制器的传递函数通常是由若干个参数构成的,例如比例控制器的传递函数为$K_p$,积分控制器的传递函数为$\frac{K_i}{s}$等。
参数根轨迹是指控制器参数变化时,系统极点和极点轨迹的变化关系。
在某些情况下,通过控制器参数的设计和调节,我们可以使得系统的极点轨迹穿过我们所期望的点(通常是一条直线),从而使系统的性能和稳定性得到改善。
参数根轨迹的绘制是一种基于控制理论的分析方法,它可以用来分析控制系统的动态响应特性,包括稳态误差、阻尼比、过渡过程时间等。
参数根轨迹的概念适用于各种类型的控制系统,包括比例控制、积分控制、微分控制、比例积分控制、比例微分控制等。
二、参数根轨迹的Matlab绘制原理Matlab提供了许多用于控制系统分析和设计的工具箱,包括控制系统工具箱、优化工具箱等。
在控制系统工具箱中,可以使用“rlocus”指令绘制参数根轨迹。
rlocus指令的使用形式为:```rlocus(num,den,k)```num和den是控制器的分子和分母系数向量,k是控制器参数的范围,通常选择在0到一个较大的数之间。
对于一个比例控制器,可以使用以下代码绘制参数根轨迹:```num=[1];den=[1 10];k=0:0.1:10;rlocus(num,den,k)```这个代码将绘制一个比例控制器$G(s)=k$的参数根轨迹,其中控制器的分母为$s+10$。
在绘制出来的图像中,可以看到参数$k$的变化对系统极点轨迹的影响。
通常我们会选择一个合适的$k$值,使得系统极点轨迹经过我们期望的稳定位置。
一、实验目的1. 熟悉控制系统根轨迹的基本概念和绘制方法。
2. 掌握利用MATLAB软件绘制和分析控制系统根轨迹的方法。
3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。
4. 培养实验操作能力和数据处理能力。
二、实验原理根轨迹是指当系统的某一参数(如开环增益K)从0变化到无穷大时,闭环系统的特征根在s平面上的变化轨迹。
通过分析根轨迹,可以了解系统在参数变化时的稳定性、瞬态响应和稳态误差等性能。
三、实验设备1. 计算机2. MATLAB软件3. 控制系统实验箱四、实验内容1. 绘制控制系统根轨迹(1)首先,根据实验要求,搭建控制系统的数学模型。
(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。
(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。
2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。
(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。
(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。
3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。
(2)重新绘制根轨迹,观察根轨迹的变化规律。
(3)分析系统参数变化对系统性能的影响。
五、实验结果与分析1. 绘制控制系统根轨迹(1)根据实验要求,搭建控制系统的数学模型,得到开环传递函数。
(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。
(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。
2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。
(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。
(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。
3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。
(2)重新绘制根轨迹,观察根轨迹的变化规律。
(3)分析系统参数变化对系统性能的影响。
绘制根轨迹的基本原则绘制根轨迹是控制工程中常用的一种方法,它可以帮助我们分析系统的稳定性,相当于一个工程师的眼睛。
根轨迹是由根的轨迹组成的,而系统的根是指其特征方程的根。
特征方程是由系统的传递函数确定的,因此我们可以通过绘制特征方程的根轨迹来分析系统的动态性态。
绘制根轨迹的基本原则有以下几点。
1. 系统根轨迹的数量等于系统特征方程的根的数量。
这是因为每个根对应着系统中一个极点。
2. 根轨迹的起点和终点都在实轴上。
这是因为特征方程的根只有实数或成对的共轭复数根。
3. 根轨迹要从左侧的极点开始。
如果存在多个极点,则从最左侧的极点开始。
如果没有极点,则从传递函数的实轴交点开始。
4. 根轨迹要向右边的极点或者方向稳定,如果两个虚根前后交叉,则会出现不稳定性。
在解决此问题是,需要重新绘制,或者调整参数,使出现前后交叉的根跑到不相交的区域。
5. 当相邻两根的虚部相等时,其插值点在实轴上。
这个时候,由于两个根的插值点处于实轴上,因此根轨迹向这个点的方向发生了变化。
6. 根轨迹需要跨越系统的实轴部分。
无论极点的数量、位置以及根轨迹的线路,都必须穿过右半平面。
7. 根轨迹的末端,必须落到无限远点。
<1>{1}</1>因此,通过这几个基本原则,我们可以绘制出系统的根轨迹。
然而,在实际的工程中,我们会遇到许多不同的情况,例如系统传递函数变化、加入控制器等。
这时候,我们需要灵活应对,对基本原则进行微调,以便更好地分析系统的动态特性。
总结来说,根轨迹能够帮助工程师更好地了解控制系统的动态特性,这有助于他们进行有效的控制和优化。
在绘制根轨迹的过程中,需要严格遵循基本原则,同时对特殊情况进行灵活调整。
第4章 根 轨 迹 法根轨迹的基本概念所谓根轨迹是指控制系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上移动的轨迹。
一般取开环增益为可变参数,但也可以用系统中的其他参数,如某个环节的时间常数等。
根轨迹的绘制法则gnj jmi iK ps z s s D s N 1)()()()(11-=++=∏∏== 在绘制根轨迹时,通常首先求出g K =0和g K =∞时的特征根,再根据绘制法则画出0<g K <∞时的根轨迹草图;一. 根轨迹的起点(K g =0)上式说明,当g K = 0时,系统的开环极点就是闭环极点。
绘制根轨迹时,我们通常是从g K = 0时的闭环极点画起,即开环极点是闭环根轨迹曲线的起点。
起点数n 就是根轨迹曲线的条数。
二. 根轨迹的终点(K g =∞)当g K =∞时,闭环特征方程式为∏==+=mi i z s s N 1)()(这就是说,系统的开环零点就是g K =∞时的闭环极点,即根轨迹曲线的终点。
其个数为m ,另外的n -m 个根轨迹终点在无穷远。
三. 根轨迹的分支数和对称性根轨迹在s 平面上的分支数(条数)等于开环特征方程的阶数n ,即与开环极点个数相同。
此外,在一般控制系统的特征方程中,各项系数都是实数。
因此,特征根或是实数,或是共扼复数,则根轨迹一定是对称于实轴。
四. 实轴上的根轨迹当开环传递函数有实数极点、零点时,这意味着实轴上有根轨迹的起点和终点。
这时,必须确定实轴上哪一区间有根轨迹,哪一区间没有根轨迹。
五. 根轨迹的分离点和会和点在有根轨迹的实轴上,存在着两个开环极点时,必然有一个分离点a 。
同样,在有根轨迹的实轴上,存在两个开环零点(包括无穷远零点)时,必然有一个会合点b 。
当g K 为g K a (a 点的g K 值)或g K b (b 点的g K 值)时,特征方程都将出现重根。
这是两者的共性。
此外,分离点a 的g K 值,是其实轴根轨迹上的最大g K 值;会合点b 的g K 值,是其实轴根轨迹上的最小g K 值。
绘制零度根轨迹的8条法则绘制零度根轨迹的8条法则是控制系统理论中的重要概念,用于预测系统的根轨迹。
根轨迹是描述系统极点在复平面上运动的轨迹,对于开环稳定的连续时间系统,绘制根轨迹可以帮助设计者了解系统的稳定性、动态性能和调节器的参数调整等信息。
下面将详细介绍绘制零度根轨迹的八条法则。
1.根轨迹的起始点:零度根轨迹的起始点是系统零极点的交点,也就是系统传递函数的分子多项式与分母多项式的公共根。
起始点数目等于系统的零极点差异的绝对值。
如果起始点是虚数根,则起始点垂直于虚轴;如果起始点是实数根,则起始点沿着实轴移动。
2.根轨迹的末端点:根轨迹的末端点是极点的交点,也就是系统传递函数的分母多项式的根。
末端点数目等于系统的极点数目。
3.根轨迹的关于虚轴和实轴的对称性:零度根轨迹关于虚轴和实轴是对称的。
如果零度根轨迹中有一个点在复平面上,则它的共轭点也在轨迹上。
4.根轨迹的角度特征:根轨迹趋近虚轴的角度特征取决于系统的零和极点之间的差异。
如果零点在极点的左侧,则根轨迹的角度在趋近虚轴时是奇数个180度。
如果零点在极点的右侧,则根轨迹的角度在趋近虚轴时是偶数个180度。
5.根轨迹的交点:当根轨迹与实轴或虚轴相交时,可以通过零点数目和交点的位置来确定系统的稳定性。
如果实轴上的交点数目为奇数,则系统不稳定。
如果虚轴上的交点数目为奇数,则系统是无法稳定的。
6.根轨迹的穿越特征:根轨迹可以穿越实轴或虚轴。
如果根轨迹穿越实轴,则必须有一个零点或极点位于实轴上。
如果根轨迹穿越虚轴,则必须有一个零点或极点位于虚轴上。
7.根轨迹的极点规律:根轨迹的极点位置取决于系统的极点位置。
当系统的极点靠近时,根轨迹的极点会趋向于其中一个极点。
当系统的极点远离时,根轨迹的极点会趋向于无穷远。
8.根轨迹的环绕特征:当根轨迹环绕其中一极点的次数等于该极点的倍数时,被环绕的极点是系统的稳定极点。
根轨迹环绕的次数与稳定电路发生变号的次数相同。