13二端口网络参数和方程
- 格式:ppt
- 大小:3.04 MB
- 文档页数:70
三、 二端口网络的T 方程和T 参数在上述内容中我们已经介绍了Y 参数和Z 参数的求法,Y 参数和Z 参数都可用来描述一个二端口网络的端口外特性。
但在许多工程实际问题中,往往还要求知道一个端口的电流、电压与另一个端口的电流、电压之间的直接关系。
若把Y 参数方程:22212122121111U Y U Y I U Y U Y I +=+=的第二式化为2212212211I Y U Y Y U +-= 代入Y 参数方程第一式中,整理可得:221112212211121)(I Y Y U Y Y Y Y I +-= 把以上两式写成下列形式⎪⎩⎪⎨⎧-=-=221221I D U C I I B U A U式中 ⎪⎪⎩⎪⎪⎨⎧-=-=-=-=2111212211212121221Y Y D Y Y Y Y C Y B Y Y AA 、B 、C 、D 称为二端口网络的一般参数、传输参数、T 参数或A 参数。
它们的具体含义可用下式说明:0221==I U U A A 是输出端开路时,输入电压与输出电压的比值;0221=-=I I U B B 是输出端短路时,输入端对输出端的转移阻抗;0221==I U I C C 是输出端开路时,输入端对输出端的转移导纳;0221==U I I D D 是输出端短路时,输入电流与输出电流的比值。
可见,A 是一个量纲为一的量纲;B 的量纲为Ω;C 的量纲为s ;D 也是量纲为一的量。
对于无源线性二端口网络A 、B 、C 、D 只有3个是独立的,因为Y 11=Y 22,故A =D 。
所以T 参数方程为:其中 ⎥⎦⎤⎢⎣⎡=D C B A T ,称为T 参数矩阵。
AD BC 可逆时,-=1AD BC A D =对称时满足:-=1,【例】 求例1中电路的T 参数【解】:方法一:根据定义求解(略)方法二:根据KCL 直接列方程求解(略)方法三:根据T 参数与Y 参数或Z 参数的转换公式(可在表6-1中查到)求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-∆---=2111212121221Y Y Y Y Y Y Y T ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆=1222212121111Z Z Z Z Z Z Z T 其中 2112221122211211Y Y Y Y Y Y Y Y Y -==∆2112221122211211Z Z Z Z Z Z Z Z Z -==∆因为已知例1的 s Y ⎥⎦⎤⎢⎣⎡--=4.02.02.04.0 12.004.016.0=-=∆Y所以 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=26.0522.04.02.012.02.012.04.0T⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡2211D I U C B A I U【例 】:已知...1111122...2211222(1)(2)U Z I Z I U Z I Z I =+=+ ,求T 参数。
第七章二端口网络§7-2 二端口网络的参数方程及参数一、导纳参数方程、导纳参数如图7-4所示无源线性二端口电路中,电压、电流参考方向如图所示,电路已达稳定。
假设端口电压、为已知量,、为待求量,用、表示、时,1U 2U 1I 2I 1U 2U 1I 2I 根据叠加定理,二端口网络的方程为22212122121111U Y U Y I U Y U Y I +=+=式中系数具有导纳性质,称为二端口网络的导纳参数(参数),所以上式称为导纳方程或方程。
无源二端口网络的Y 参数,仅与网络的内部结构、元件参数、工作频率有关,而与输入信号的振幅、负载的情况无关。
因此,这些参数描述了二端口网络本身的电特性。
所以导纳方程可以用矩阵形式表示为⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡2221121121Y Y Y Y I I ⎥⎥⎦⎤⎢⎢⎣⎡21U U UY I =⎥⎥⎦⎤⎢⎢⎣⎡=21I I I ⎥⎥⎦⎤⎢⎢⎣⎡=21U U U 22122111⎥⎦⎤⎢⎣⎡=Y Y Y Y Y 为端口电流列向量;为端口电压列向量;为导纳矩阵或Y 矩阵011112==U U I Y 012212==U UIY 022221==U UIY 021121==U UIY 由于每个Y 参数都是在一个端口短路情况下分析得到的,因此参数也称为短路导纳参数。
对于无源线性二端口网络可以证明,输入和输出互换位置时,不会改变由同一激励所产生的响应。
由此得出2112Y Y =即在参数中,只有三个参数是独立的,这样的网络具有互易性,称为互易网络。
如果二端口网络是对称的(即对称二端口网络),则输出端口和输入端口互换位置后,电压和电流均不改变,有2211Y Y =对互易且对称二端口网络中,则参数中只有两个参数是独立的。
【例7-1】求图7-5所示二端口网络的导纳矩阵。
解将端口2短路sj U I Y U )42(011112-=== sj U I Y U 4012212=== sj U I Y U 4021121=== sj U I Y U 3022221-=== S将端口1短路。
二端口网络参数和方程
(一)二端口网络参数
1.信道容量:信道容量是指一个无线信道最多能够传输的数据量,在
二端口网络中,信道容量是由调制的方式,比特率或带宽等决定的。
2.频带广度:频带广度是指一个无线信道的带宽,它是每秒传输的信
息量的测量,以千赫兹(kHZ)或兆赫兹(MHz)为单位,在二端口网络中,频带广度决定着信号传输的稳定性和传输速率。
3.功率:功率是指一个无线信号发射时所消耗的能量,在二端口网络中,功率决定着信号的范围大小,通常以毫瓦(mW)为单位。
4.幅度:幅度是指一个信号的大小,它用来描述一个信号的有效值,
在二端口网络中,幅度表示了发射信号的强度,通常以分贝(dB)为单位。
5.噪声:噪声是指除信号外的其他所有的电磁波,噪声会影响信号的
传输效果,在二端口网络中,噪声是由环境因素造成的,例如电磁干扰和
不完全的编码,通常以分贝(dB)为单位。
(二)二端口网络方程
1.传输率:传输率是指一个信号在无线信道中传输的速率,它由发射
信号的功率和接收信号的功率决定,可以用下面的方程来计算:传输率= 10* log[(发射功率-接收功率)/接收功率]
2.信噪比:信噪比是指信号。
三、 二端口网络的T 方程和T 参数在上述内容中我们已经介绍了Y 参数和Z 参数的求法,Y 参数和Z 参数都可用来描述一个二端口网络的端口外特性。
但在许多工程实际问题中,往往还要求知道一个端口的电流、电压与另一个端口的电流、电压之间的直接关系。
若把Y 参数方程:22212122121111U Y U Y I U Y U Y I +=+=的第二式化为2212212211I Y U Y Y U +-= 代入Y 参数方程第一式中,整理可得:221112212211121)(I Y Y U Y Y Y Y I +-= 把以上两式写成下列形式⎪⎩⎪⎨⎧-=-=221221I D U C I I B U A U式中 ⎪⎪⎩⎪⎪⎨⎧-=-=-=-=2111212211212121221Y Y D Y YY Y C Y B Y Y A A 、B 、C 、D 称为二端口网络的一般参数、传输参数、T 参数或A 参数。
它们的具体含义可用下式说明:221==I U UA A 是输出端开路时,输入电压与输出电压的比值; 0221=-=I I UB B 是输出端短路时,输入端对输出端的转移阻抗; 0221==I U IC C 是输出端开路时,输入端对输出端的转移导纳; 0221==U I I D D 是输出端短路时,输入电流与输出电流的比值。
可见,A 是一个量纲为一的量纲;B 的量纲为Ω;C 的量纲为s ;D 也是量纲为一的量。
对于无源线性二端口网络A 、B 、C 、D 只有3个是独立的,因为Y 11=Y 22,故A =D 。
所以T 参数方程为:其中 ⎥⎦⎤⎢⎣⎡=D C B A T ,称为T 参数矩阵。
AD BC 可逆时,-=1AD BC A D =对称时满足:-=1,【例】 求例1中电路的T 参数【解】:方法一:根据定义求解(略)方法二:根据KCL 直接列方程求解(略)方法三:根据T 参数与Y 参数或Z 参数的转换公式(可在表6-1中查到)求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-∆---=2111212121221Y Y Y Y Y Y Y T ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆=1222212121111Z Z Z Z Z Z Z T 其中 2112221122211211Y Y Y Y Y Y Y Y Y -==∆2112221122211211Z Z Z Z Z Z Z Z Z -==∆因为已知例1的 s Y ⎥⎦⎤⎢⎣⎡--=4.02.02.04.0 12.004.016.0=-=∆Y所以 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=26.0522.04.02.012.02.012.04.0T⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡2211D I U C B A I U【例 】:已知...1111122...2211222(1)(2)U Z I Z I U Z I Z I =+=+ ,求T 参数。