二端口网络参数求法
- 格式:doc
- 大小:1.07 MB
- 文档页数:3
二端口网络z参数求解技巧二端口网络是指由两个端口组成的网络,其中一个端口为输入端口,另一个端口为输出端口。
在分析和设计二端口网络时,我们常常使用参数化方法,其中最常见的是使用z参数。
z参数是指输入端口和输出端口之间的电压和电流之间的关系。
在二端口网络中,输入端口的电流I1和电压V1以及输出端口的电流I2和电压V2之间存在以下关系:```V1 = Z11 * I1 + Z12 * I2V2 = Z21 * I1 + Z22 * I2```其中,Z11、Z12、Z21和Z22是参数矩阵,代表了电路元件的特性。
我们可以利用这些参数来分析和计算二端口网络的性能。
接下来,我将介绍一些求解二端口网络z参数的技巧。
1. 网络简化:首先,我们要对二端口网络进行简化,即将网络中的电路元件替换为等效电路,以便更方便地分析。
我们可以使用电路分析方法,如电压分压法、电流分流法等,将网络简化为电阻、电容和电感等基本元件的串并联组合。
2. 确定输入和输出量:在分析二端口网络时,我们需要确定输入和输出量。
输入和输出量可以是电流和电压之间的关系,也可以是功率和电阻之间的关系。
通过确定输入和输出量,我们可以更准确地描述和计算二端口网络的特性。
3. 确定参数值:在求解z参数时,我们需要确定参数矩阵Z11、Z12、Z21和Z22的具体值。
参数值可以通过实验或仿真等方式获取。
如果我们已经知道了电路元件的数值,我们可以直接使用电路分析方法求解参数值。
如果我们只知道电路的结构和拓扑关系,我们可以使用矩阵分析方法求解参数值。
4. 参数矩阵运算:一旦确定了参数值,我们就可以进行参数矩阵的运算。
参数矩阵的运算包括矩阵加法、矩阵减法、矩阵乘法和矩阵逆运算等。
通过参数矩阵的运算,我们可以得到输入端口和输出端口之间的关系。
5. 分析和计算:最后,我们可以利用参数矩阵进行分析和计算。
例如,如果我们已知输入端口的电流和电压,我们可以使用参数矩阵得到输出端口的电流和电压。
三、 二端口网络的T 方程和T 参数在上述内容中我们已经介绍了Y 参数和Z 参数的求法,Y 参数和Z 参数都可用来描述一个二端口网络的端口外特性。
但在许多工程实际问题中,往往还要求知道一个端口的电流、电压与另一个端口的电流、电压之间的直接关系。
若把Y 参数方程:22212122121111U Y U Y I U Y U Y I +=+=的第二式化为2212212211I Y U Y Y U +-= 代入Y 参数方程第一式中,整理可得:221112212211121)(I Y Y U Y Y Y Y I +-= 把以上两式写成下列形式⎪⎩⎪⎨⎧-=-=221221I D U C I I B U A U式中 ⎪⎪⎩⎪⎪⎨⎧-=-=-=-=2111212211212121221Y Y D Y Y Y Y C Y B Y Y AA 、B 、C 、D 称为二端口网络的一般参数、传输参数、T 参数或A 参数。
它们的具体含义可用下式说明:0221==I U U A A 是输出端开路时,输入电压与输出电压的比值;0221=-=I I U B B 是输出端短路时,输入端对输出端的转移阻抗;0221==I U I C C 是输出端开路时,输入端对输出端的转移导纳;0221==U I I D D 是输出端短路时,输入电流与输出电流的比值。
可见,A 是一个量纲为一的量纲;B 的量纲为Ω;C 的量纲为s ;D 也是量纲为一的量。
对于无源线性二端口网络A 、B 、C 、D 只有3个是独立的,因为Y 11=Y 22,故A =D 。
所以T 参数方程为:其中 ⎥⎦⎤⎢⎣⎡=D C B A T ,称为T 参数矩阵。
AD BC 可逆时,-=1AD BC A D =对称时满足:-=1,【例】 求例1中电路的T 参数【解】:方法一:根据定义求解(略)方法二:根据KCL 直接列方程求解(略)方法三:根据T 参数与Y 参数或Z 参数的转换公式(可在表6-1中查到)求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-∆---=2111212121221Y Y Y Y Y Y Y T ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆=1222212121111Z Z Z Z Z Z Z T 其中 2112221122211211Y Y Y Y Y Y Y Y Y -==∆2112221122211211Z Z Z Z Z Z Z Z Z -==∆因为已知例1的 s Y ⎥⎦⎤⎢⎣⎡--=4.02.02.04.0 12.004.016.0=-=∆Y所以 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=26.0522.04.02.012.02.012.04.0T⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡2211D I U C B A I U【例 】:已知...1111122...2211222(1)(2)U Z I Z I U Z I Z I =+=+ ,求T 参数。
29二端口网络方程参数及等效电路
一、二端口网络方程
二端口网络的方程如下:
V1=Z11I1+Z12I2
V2=Z21I1+Z22I2
其中V1和V2代表两端口的电压,I1和I2代表两端口的电流,Z11、Z12、Z21和Z22代表四个参数,每个参数对应一条电阻等效的连续线。
二、网络方程参数
网络方程的参数:
(1)Z11:端口1的电阻或电抗,它代表端口1电流I1通过端口1
电阻时,端口1的电压。
(2)Z12:端口1和端口2的电阻或电抗,它代表端口1电流I1通
过端口1和端口2电阻时,端口2的电压。
(3)Z21:端口2的电阻或电抗,它代表端口2电流I2通过端口2
电阻时,端口1的电压。
(4)Z22:端口2和端口1的电阻或电抗,它代表端口2电流I2通
过端口2和端口1电阻时,端口2的电压。
三、网络方程等效电路
二端口网络方程可以用下图所示的等效电路来表达:
等效电路中的电压源的电压值与实际网络中可以使用的电压值相同,即V1和V2分别代表端口1和端口2的电压。
同时,Z11、Z12、Z21和
Z22分别代表端口1、端口1和端口2、端口2之间的电阻或电抗。
四、总结
二端口网络方程的形式为:V1=Z11I1+Z12I2;V2=Z21I1+Z22I2,其中V1和V2代表两端口的电压,I1和I2代表两端口的电流。
一、 二端口网络的Y 方程和Y 参数应用替代原理,将网口电压1U 和2U 用电压源代替,如图6-1-1(a )所示。
根据叠加原理,网口电流可由分量电流叠加而得。
在图6-1-1(b )、(c )分量电路中,由线性网络的比例性知,1U (或2U )单独作用产生的分量电流与1U (或2U )成正比,且其网络常数属导纳性质,即: ⎪⎩⎪⎨⎧='='12121111U Y I U Y I⎪⎩⎪⎨⎧=''=''22222121U Y I U Y I 式中的网络常数Y 11、Y 12、Y 21、及Y 22决定于二端口网络的内部结构和元件参数。
(a )(b )(c )图6-1-1由叠加原理得:⎪⎩⎪⎨⎧''+'=''+'=222111I I I I I I即22212122121111UY U Y I U Y U Y I +=+=其矩阵形式为..111112..212222Y Y U I Y Y U I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦此方程称为Y 参数方程。
〔Y 〕称为Y 参数,其元素定义为: .111.1.20|U I Y U ==.221.1.20|U I YU ==.112.2.10|U I Y U ==.222.2.10|U I YU ==式中:Y 11-为二端口短路时,一端口的入端导纳; Y 22-为一端口短路时,二端口的入端导纳;Y 12-为一端口短路时,一端口对二端口的转移导纳; Y 21-为二端口短路时,二端口对一端口的转移导纳。
【例】求图中所示 二端口网络的Y 参数,其中R 1=5Ω,R 2=5Ω,R 3=5Ω。
5Ω121'2'1I ∙∙方法一:根据定义求解 (1)Y 参数方程为:22212122121111UY U Y I U Y U Y I +=+=(2)根据Y 参数的定义:.111.1.20|U I Y U ==.221.1.20|U I YU ==根据替代定理,在端口1-1’上外施电压1U ,而把端口2-2’短路,即令02=U ,如图所示:1U ∙2U ∙1∙2∙=Y 11表示端口2-2’短路时,端口1-1’处的输入导纳或驱动导纳;Y 21表示端口2-2’短路时,端口2-2’与端口1-1’之间的转移导纳。
第七章二端口网络§7-2 二端口网络的参数方程及参数一、导纳参数方程、导纳参数如图7-4所示无源线性二端口电路中,电压、电流参考方向如图所示,电路已达稳定。
假设端口电压、为已知量,、为待求量,用、表示、时,1U 2U 1I 2I 1U 2U 1I 2I 根据叠加定理,二端口网络的方程为22212122121111U Y U Y I U Y U Y I +=+=式中系数具有导纳性质,称为二端口网络的导纳参数(参数),所以上式称为导纳方程或方程。
无源二端口网络的Y 参数,仅与网络的内部结构、元件参数、工作频率有关,而与输入信号的振幅、负载的情况无关。
因此,这些参数描述了二端口网络本身的电特性。
所以导纳方程可以用矩阵形式表示为⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡2221121121Y Y Y Y I I ⎥⎥⎦⎤⎢⎢⎣⎡21U U UY I =⎥⎥⎦⎤⎢⎢⎣⎡=21I I I ⎥⎥⎦⎤⎢⎢⎣⎡=21U U U 22122111⎥⎦⎤⎢⎣⎡=Y Y Y Y Y 为端口电流列向量;为端口电压列向量;为导纳矩阵或Y 矩阵011112==U U I Y 012212==U UIY 022221==U UIY 021121==U UIY 由于每个Y 参数都是在一个端口短路情况下分析得到的,因此参数也称为短路导纳参数。
对于无源线性二端口网络可以证明,输入和输出互换位置时,不会改变由同一激励所产生的响应。
由此得出2112Y Y =即在参数中,只有三个参数是独立的,这样的网络具有互易性,称为互易网络。
如果二端口网络是对称的(即对称二端口网络),则输出端口和输入端口互换位置后,电压和电流均不改变,有2211Y Y =对互易且对称二端口网络中,则参数中只有两个参数是独立的。
【例7-1】求图7-5所示二端口网络的导纳矩阵。
解将端口2短路sj U I Y U )42(011112-=== sj U I Y U 4012212=== sj U I Y U 4021121=== sj U I Y U 3022221-=== S将端口1短路。