二端口网络的研究实验报告
- 格式:docx
- 大小:64.34 KB
- 文档页数:3
《电路基础》无源二端口网络的研究实验一. 实验目的1. 学习测定无源线性二端口网络的Y 参数、Z 参数和A 参数 2. 计算A 11、A 22、A 12、A 21的值二. 原理说明i. 无源线性二端口网络可以用网络参数来表现它的特性,这些参数只取决于二端口网络内部元件的联结及元件值,而与加于端口的输入激励及负载无关二端口网络的参数有Y 、Z 、A 、B 、H 六种。
本实验研究Y 、Z 、A 参数的测定。
网络参数确定后,两个端口处的电压、电流关系,即网络的特性方程就唯一的确定了。
图18-1图18-1所示为一无源线性二端口网络,按图中所标示的电压电流参考极性与方向,二端口网络Y 参数方程为:1I =Y 111U +Y 122U (1) 2I =Y 211U +Y 222U (2) 于是:Y 11=11U I 2U =0 接线方法如图(A )所示:图(A )Y 12=21U I 1U=0 接线方法如图(B )所示:图(B )Y 21=12U I 2U =0 接线方法如图(C )所示:图(C )Y 22=22UI 1U =0 接线方法如图(D )所示:图(D )可见,Y 参数是在2U =0和1U =0时测出的,即需要做“短路实验”。
二端口网络Z 参数方程为:1U=Z 111I +Z 122I (3) 2U=Z 211I +Z 222I (4) 于是:Z 11=11I U 2I =0 接线方法如图(E )所示:图(E )Z 12=21I U 1I =0接线方法如图(F )所示:图(F )Z 21=12I U 2I =0 接线方法如图(G )所示:图(G )Z 22=22I U 1I =0接线方法如图(H )所示:图(H )可见,Z 参数是在2I =0和1I =0时测出,即需做“开路实验”。
二端口网络A 参数方程为:1U =A 112U +A 12(-2I ) (5) 1I =A 212U +A 22(-2I ) (6) 而且有: A 11A 22-A 12A 21=1 (7)显然:A 11=21U U 2I =0 A 12=21I U - 2U =0 A 21=21U I 2I =0 A 22=21I I - 2U =0 表面看来,A 参数是在2I =0和2U =0时测出的,即进行“开路实验”及“短路实验”。
二端口网络的研究实验报告This model paper was revised by LINDA on December 15, 2012.《电路原理》实 验 报 告实验时间:2012/5/22一、实验名称 二端口网络的研究二、实验目的1.学习测定无源线性二端口网络的参数。
2.了解二端口网络特性及等值电路。
三、实验原理1.对于无源线性二端口(图6-1)可以用网络参数来表征它的特征,这些参数只决定于二端口网络内部的元件和结构,而与输入(激励)无关。
网络参数确定后,两个端口处的电压、电流关系即网络的特征方程就唯一的确定了。
输入端输出端 1′ 2′图6-12. 若将二端口网络的输出电压2U 和电流-2I 作为自变量,输入端电压1U 和电流1I 作因变量,则有方程式中11A 、12A 、21A 、22A 称为传输参数,分别表示为是输出端开路时两个电压的比值,是一个无量纲的量。
是输出端开路时开路转移导纳。
是输出端短路时短路转移阻抗。
是输出端短路时两个电流的比值,是一个无量纲的量。
可见,A 参数可以用实验的方法求得。
当二端口网络为互易网络时,有因此,四个参数中只有三个是独立的。
如果是对称的二端口网络,则有3.无源二端口网络的外特性可以用三个阻抗(或导纳)元件组成的T 型或π型等效电路来代替,其T 型等效电路如图6-2所示。
若已知网络的A 参数,则阻抗1r 、2r 、 分别为:图6-2因此,求出二端口网络的A 参数之后,网络的T 型(或π)等效电路的参数也就可以求得。
4.由二端口网络的基本方程可以看出,如果在输出端1-1′接电源,而输出端2-2′处于开路和短路两种状态时,分别测出10U 、20U 、10I 、1S U 、1S I 、2S I ,则就可以得出上述四个参数。
但这种方法实验测试时需要在网络两端,即输入端和输出端同时进行测量电压和电流,这在某种实际情况下是不方便的。
在一般情况下,我们常用在二端口网络的输入端及输出端分别进行测量的方法来测定这四个参数,把二端口网络的1-1′端接电源,在2-2′端开路与短路的情况下,分别得到开路阻抗和短路阻抗。
双口网络实验报告双口网络实验报告引言:随着互联网的快速发展,网络通信已经成为了现代社会中不可或缺的一部分。
而双口网络作为网络通信的一种重要形式,具有着广泛的应用场景和重要的研究价值。
本实验旨在通过搭建双口网络实验平台,深入了解双口网络的原理、特点和应用,并通过实际操作来验证理论知识。
一、实验设备和方法1. 实验设备:本实验所需的设备包括计算机、交换机、路由器、双口网络适配器等。
2. 实验方法:首先,将计算机、交换机和路由器依次连接起来,形成一个局域网。
然后,通过双口网络适配器将局域网连接到互联网上,形成一个双口网络。
最后,通过对网络的配置和调试,实现双口网络的正常通信。
二、双口网络的原理和特点1. 双口网络的原理:双口网络是一种将两个网络连接起来的网络形式。
它通过两个网络接口实现数据的收发,并在两个网络之间进行转发。
双口网络可以连接不同的网络类型,如局域网和广域网,实现不同网络之间的通信。
2. 双口网络的特点:(1)灵活性:双口网络可以根据需要连接不同类型的网络,具有较高的灵活性和可扩展性。
(2)安全性:双口网络可以通过配置网络设备和安全策略来保护网络的安全,防止未经授权的访问和攻击。
(3)高效性:双口网络可以实现不同网络之间的快速数据传输,提高网络的传输效率和响应速度。
(4)可靠性:双口网络可以通过冗余配置和故障切换等技术来提高网络的可靠性和稳定性。
三、双口网络的应用1. 双口网络在企业中的应用:(1)连接分支机构:企业通常有多个分支机构,通过双口网络可以将这些分支机构连接起来,实现数据的共享和协同办公。
(2)远程办公:双口网络可以实现远程办公,员工可以通过互联网连接到企业的内部网络,进行远程办公和数据访问。
(3)数据中心互联:企业通常有多个数据中心,通过双口网络可以将这些数据中心连接起来,实现数据的备份和共享。
2. 双口网络在个人用户中的应用:(1)家庭网络:双口网络可以将家庭中的多个设备连接起来,实现家庭网络的组网和共享。
实验12 二端口网络参数的测定一、实验目的1.加深理解双口网络的基本理论。
2.学习双口网络Y 参数、Z 参数及传输参数的测试方法。
3.深入理解双口网络的三种不同连接方式:级联(链联),串联和并联,掌握部分双口网络的参数与其组成的复合双口网络的相应参数间的关系。
二、原理说明1.如图2-12-1所示的无源线性双口网络,其两端口的电压、电流四个变量之间关系,可用多种形式的参数方程来描述。
图2-12-1(1)若用Y 参数方程来描述,则为()()()(),即输入端口短路时令,即输入端口短路时令,即输出端口短路时令,即输出端口短路时令其中0I 0I 0I 0I 1222212112212212111122212122121111========+=+=UU Y U U Y U U Y U U Y U Y U Y I U Y U Y I由上可知,只要在双口网络的输入端口加上电压,令输出端口短路,根据上面的前两个公式即可求得输入端口处的输入导纳Y 11和输出端口与输入端口之间的转移导纳Y 21。
同理,只要在双口网络的输出端口加上电压,令输入端口短路,根据上面的后两个公式即可求得输出端口处的输入导纳Y 22和输入端口与输出端口之间的转移导纳Y 12。
(2)若用Z 参数方程来描述,则为()()()(),即输入端口开路时令,即输入端口开路时令,即输出端口开路时令,即输出端口开路时令其中0U Z 0U Z 0U Z 0U 1222212112212212111122212122121111========+=+=II II I I II Z I Z I Z U I Z I Z U由上可知,只要在双口网络的输入端口加上电流源,令输出端口开路,根据上面的前两个公式即可求得输出端口开路时输入端口处的输入阻抗Z 11和输出端口与输入端口之间的开路转移阻抗Z 21。
同理,只要在双口网络的输出端口加上电流源,令输入端口开路,根据上面的后两个公式即可求得输入端口开路时输出端口处的输入阻抗Z 22和输入端口与输出端口之间的开路转移阻抗Z 12。
二端口网络测试实验报告二端口网络测试实验报告一、实验目的二端口网络测试是计算机网络领域中的一项重要实验,旨在通过建立两台计算机之间的网络连接,测试网络的性能和稳定性。
本实验报告将详细介绍实验所涉及的步骤、方法和结果,以及对实验结果的分析和讨论。
二、实验步骤1. 实验环境搭建为了进行二端口网络测试,我们需要准备两台计算机,并确保它们能够相互通信。
在实验开始之前,我们先检查网络连接是否正常,确保两台计算机能够互相ping通。
2. 测试网络带宽为了测试网络的带宽,我们使用了一款专业的网络测试工具。
首先,在发送端计算机上运行该工具,并设置好发送数据包的大小和发送速率。
然后,在接收端计算机上同样运行该工具,并指定接收数据包的端口。
通过在两台计算机之间传输大量数据包,我们可以测量网络的带宽。
3. 测试网络延迟除了测试带宽外,我们还需要测试网络的延迟。
延迟是指从发送端发送数据包到接收端接收到数据包之间的时间间隔。
为了测量延迟,我们使用了另一款专业的网络测试工具。
在发送端计算机上运行该工具,并设置好发送数据包的大小和发送速率。
在接收端计算机上同样运行该工具,并指定接收数据包的端口。
通过测量数据包往返所需的时间,我们可以得出网络的延迟。
4. 分析和记录实验结果在进行网络测试的过程中,我们需要记录各项指标的数值,并进行分析。
通过对实验结果的分析,我们可以评估网络的性能和稳定性,并找出可能存在的问题。
三、实验结果在进行二端口网络测试的过程中,我们得到了以下结果:1. 带宽测试结果通过测试工具测量,我们得出了网络的带宽为X Mbps。
这个数值代表了网络在传输数据时的最大速率。
通过与预期的带宽进行比较,我们可以评估网络的性能。
2. 延迟测试结果通过测试工具测量,我们得出了网络的延迟为X 毫秒。
这个数值代表了数据包从发送端到接收端所需的时间间隔。
通过与预期的延迟进行比较,我们可以评估网络的稳定性。
四、结果分析和讨论根据实验结果,我们可以对网络的性能和稳定性进行分析和讨论。
《电路原理》实 验 报 告实验时间:2012/5/22一、实验名称 二端口网络的研究 二、实验目的1.学习测定无源线性二端口网络的参数。
2.了解二端口网络特性及等值电路。
三、实验原理1.对于无源线性二端口(图6-1)可以用网络参数来表征它的特征,这些参数只决定于二端口网络内部的元件和结构,而与输入(激励)无关。
网络参数确定后,两个端口处的电压、电流关系即网络的特征方程就唯一的确定了。
输入端输出端 1′图6-12. 若将二端口网络的输出电压2U 和电流-2I 作为自变量,输入端电压1U 和电流1I 作因变量,则有方程式中11A 、12A 、21A 、22A 称为传输参数,分别表示为是输出端开路时两个电压的比值,是一个无量纲 的量。
是输出端开路时开路转移导纳。
是输出端短路时短路转移阻抗。
是输出端短路时两个电流的比值,是一个无量纲的量。
可见,A 参数可以用实验的方法求得。
当二端口网络为互易网络时,有因此,四个参数中只有三个是独立的。
如果是对称的二端口网络,则有 3.无源二端口网络的外特性可以用三个阻抗(或导纳)元件组成的T 型或π型等效电路来代替,其T 型等效电路如图6-2所示。
若已知网络的A 参数,则阻抗1r 、2r 、 分别为:02=I 11A 02=I 21A 02=U 02=U 22A 3r图6-2因此,求出二端口网络的A 参数之后,网络的T 型(或π)等效电路的参数也就可以求得。
4.由二端口网络的基本方程可以看出,如果在输出端1-1′接电源,而输出端2-2′处于开路和短路两种状态时,分别测出10U 、20U 、10I 、1S U 、1S I 、2S I ,则就可以得出上述四个参数。
但这种方法实验测试时需要在网络两端,即输入端和输出端同时进行测量电压和电流,这在某种实际情况下是不方便的。
在一般情况下,我们常用在二端口网络的输入端及输出端分别进行测量的方法来测定这四个参数,把二端口网络的1-1′端接电源,在2-2′端开路与短路的情况下,分别得到开路阻抗和短路阻抗。
姓名 班级: 学号:成绩: 教师签字:自主设计实验 线性无源二端口网络的研究一、实验目的(1)学习测试二端口网络参数的方法(2)通过实验来研究二端口网络的特性及其等值电路 二、实验原理(1)二端口网络是电路技术中广泛使用的一种电路形式。
就二端口网络的外部性能来说,重要的问题是要找出它的两个端口(通常也就是称为输入端和输出端)处的电压和电流之间的相互关系,这种相互关系可以由网络本身结构所决定的一些参数来表示。
不管网络如何复杂,总可以通过实验的方法来得到这些参数,从而可以很方便的来比较不同的二端口网络在传递电能和信号方面的性能,以便评价它们的质量。
(2)由图1分析可知二端口网络的基本方程是: U 1=AU 2-BI 2I 1=CU 2-DI 2式中A 、B 、C 、D 称为二端口网络的T 参数。
其数值的大小决定于网络本身的元件及结构。
这些参数可以表征网络的全部特性。
它们的物理概念可分别用以下的式子来说明:输出端开路:A= C=输出端短路:B=D=可见A 是两个电压比值,是一个无量纲的量,B 是短路转移阻抗;C 是开路转移导纳,D 是两个电流的比值,也是无量纲的。
A 、B 、C 、D 四个参数中也只有三个是独立的,因为这个参数间具有如下关系:A ·D-B ·C=102'20'10'=IU U 02'20'10'=I U I 02'2'1'=-U I U S S02'2'1'=-U I I S S2’2图1如果是对称的二端口网络,则有A=D(3)由上述二端口网络的基本方程组可以看出,如果在输入端1-1'接以电源,而输出端2-2'处于开路和短路两种状态时,分别测出、、、、及则就可得出上述四个参数。
但这种方法实验测试时需要在网络两端,即输入端和输出端同时进行测量电压和电流,这在某些实际情况下是不方便的。
二端口网络实验报告二端口网络实验报告引言:网络技术的不断发展和普及,使得人们的生活和工作方式发生了翻天覆地的变化。
作为网络的基础,二端口网络在各个领域中起着至关重要的作用。
本报告旨在通过对二端口网络的实验研究,深入了解其原理和应用。
一、实验目的本次实验的主要目的是通过搭建二端口网络,探究其工作原理和性能表现。
具体目标如下:1.了解二端口网络的基本概念和特点;2.掌握二端口网络的搭建和配置方法;3.研究二端口网络的传输性能和稳定性。
二、实验原理1.二端口网络的定义二端口网络是指具有两个输入端口和两个输出端口的网络系统。
它可以用来连接不同的设备和主机,实现数据的传输和通信。
2.二端口网络的结构二端口网络由两个端口和中间的网络设备组成。
其中,端口可以是计算机、路由器、交换机等,而网络设备则负责将数据从一个端口传输到另一个端口。
3.二端口网络的工作原理当数据从一个端口输入到网络中时,网络设备会根据设定的规则和路由表,将数据传输到目标端口。
这个过程中,网络设备会根据网络拓扑和传输协议,进行数据的分组、转发和路由选择。
三、实验步骤1.准备工作在进行实验之前,需要准备好所需的硬件设备和软件工具。
硬件设备包括计算机、路由器、交换机等,而软件工具则包括网络配置软件和数据传输工具。
2.搭建二端口网络首先,将计算机、路由器和交换机等设备连接起来,形成一个网络拓扑结构。
然后,通过网络配置软件对设备进行配置,设置IP地址、子网掩码和默认网关等参数。
3.测试网络传输性能使用数据传输工具,对二端口网络进行性能测试。
可以通过发送大文件、测量传输速度和延迟等指标,评估网络的传输性能和稳定性。
四、实验结果与分析通过实验,我们得到了以下结果:1.二端口网络可以实现不同设备之间的数据传输和通信,具有较高的灵活性和可扩展性;2.网络的传输性能和稳定性受到多种因素的影响,包括网络拓扑、设备配置和传输协议等;3.合理配置和管理二端口网络,可以提高网络的传输效率和安全性。
实验报告三 二端口网络各参数的测算及验证1、电路课程设计目的(1)测量二端口网络的开路阻抗参数、短路导纳参数、传输参数等;(2)验证等效二端口网络的传输参数与级联的两个二端口网络传输参数之间的关系。
2、设计电路原理与说明 具有两对引出端钮的网络,如果每一对端钮都满足从一端流入的电流与另一端流出的电流为同一电流的条件时,则将这样的一对端钮称为端口,上述条件称为端口条件。
只有满足端口条件的四端网络才可称为二端口网络或双口网络,否则只能称为四端网络。
用二端口概念分析电路时,仅对二端口处的电流、电压之间的关系感兴趣,这种相互关系可以通过一些参数表示,而这些参数只取决于构成二端口本身的元件及它们的连接方式。
一旦确定表征这个二端口的参数后,当一个端口的电流、电压发生变化,再求另外一个端口的电流、电压就比较容易了。
设计二端口网络电路图如下()1000rad s ω=图一开路阻抗参数(Z 参数)理论计算:当I 2 =0时,受控源与电容并联再与电阻串联()1111112I j I I U ⨯-⨯+= ()11212j I I U -⨯+=21110113I U Z j I ===-2221013I U Z j I ===-当I 1=0时,受控源电阻均不作用,电路中只有电容作用12U U = 1112021I U Z j I ===-1222021I U Z j I ===-131 3.16213131j j Z j j --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭短路导纳参数(Y 参数)理论计算: 当U 2=0时,电容短路不作用111U I =⨯ 11220I I I ++= 2111011U I Y U ===2221013U I Y U ===-当U 1=0时,电阻、电容、受控源并联()221U I =⨯-112221I I I j U ++=⨯ 1112021U I Y U ===-1222023U I Y j U ===+1111333 3.162Y j -⎛⎫⎛⎫== ⎪ ⎪-+⎝⎭⎝⎭传输参数(T 参数)理论计算:()210213I U j A U -===+()21023I I j C U -===()210213U U B I ===- ()210213U I D I ===- 11 1.0540.3333310.3330.33333j T j ⎛⎫+ ⎪⎛⎫==⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭两个上述二端口网络级联的T 参数理论值为:874 1.1810.4589999'1410.4580.1579999j j T T T j j ⎛⎫++⎪⎛⎫=⋅==⎪ ⎪ ⎪⎝⎭-++⎪⎝⎭3电路课程设计仿真内容与步骤及结果 (1)将图一中的电气元件接好;(2)1-1’端口接入电源,2-2’端口开路,测量U 2 I 1 ;图二1111220 3.16269.571U Z I =≈= 2211208.713.00069.571U Z I =≈= (3)1-1’端口开路,2-2’端口接入电源,测量U 1I 2 ;图三1122220 1.000220.002U Z I =≈= 22222201.000220.002U Z I =≈= (4)1-1’端口接入电源,2-2’端口短路,测量I 1 I 2 ;图四11112201220I Y U === 22116603220I Y U === (5)1-1’端口短路,2-2’端口接入电源,测量I 1 I 2 ;图五11222201220I Y U === 2222695.702 3.162220I Y U =≈= (6)由图二有122201.054208.710U A U =≈= 1269.5710.333208.710I C U =≈= 由图四有122200.333660U B I =≈= 122200.333660I D I =≈= (7)将两个上述二端口网络级联,组成新的二端口网络(8)将新的二端口网络的1-1’端口接入电源,2-2’端口开路,测量U 2 I 1 ;图六12220 1.181'186.262U A U =≈=1 285.3320.458' 186.262IC U=≈=(9)将新二端口网络的1-1’端口接入电源,2-2’端口短路,测量I1 I2;图七1 22200.458' 480.220UB I=≈=1 275.4600.157' 480.220IDI=≈=4、仿真结果与理论分析对比及仿真中的注意事项仿真结果与理论计算完全符合,不仅验证了Z、Y、T等参数的计算结果,而且也验证了等效二端口网络的传输参数与级联的两个二端口网络传输参数之间的关系。
实验六二端口网络一、实验目的1、学习测量无源二端口网络参数(A参数和h参数)的方法。
2、通过实验研究二端口网络的特性及其等值电路。
二、实验原理线性无源二端网络的外部特性是通过两对端纽处的电流间的关系式来说明的,这种关系称为二端口网络方程,关系式的系数称为网络参数。
无源二端口网络的方程有多种,本实验以A参数和h参数为研究对象。
图6—1 无源双端口网络1、如图7—1所示二端口网络,其A方程(也称基本方程)组是(6—1)式中A11、A12、A21、A22为无源二端口网络A参数,其数值仅取决于网络本身的元件及结构。
网络参数可以用来表示二端口网络的特性,并且四个参数之间有如下关系:(6—2)可见A参数中只有三个是独立的。
2、无源二端口网络的A参数可以用实验的办法进行测定。
如果在输入端1——1`接电源,输出端2——2`开路,则由二端网络A方程,可得(6—3)A11是副边开路时,原副边的电压比。
A21是副边开路时,正向转移导纳。
如果在输入端接电源,输出端2——2`短路,则由二段网络的A方程,可得A12=A22= (6—4)A11是副边短路时,正向转移阻抗。
A21是副边短路时,原副边的电流比。
由上述实验方法可以测出四个A参数,但测量时,需要输入端和输出端同时进行测量才行。
3、无源二端口网络A参数也可以在输入端和输出端分别测量的办法获得。
将二端口网络1——1`接电源,在2——2`开路和短路的情况下分别得到Z10=Z1S= (6—5)将2——2`端接电源,在1——1`开路和短路情况下分别得到Z20=Z2S= (6—6)Z10、Z1S、Z20、Z2S之间关系有(6—7)利用(6—2)式及参数也可以求出A11、A12、A21、A22这四个参数。
本实验采用在无源二端口网络加直流电源的办法来研究它,这样,电路中的电压、电流均为直流值,阻抗值则为电阻值。
由电路理论可知,直流二端口网络可用T型等值电路等效,如图6—2所示,等效电路中的电阻可由A参数求得,即图6—2 二端口网络T型等值电路(6—8)5、双口网络的混合矩阵(mixed array)与混合参数(1)、第一类混合参数(h参数)如图6—3所示为一个线性无源双口网络的相量模型,电压和电流采用关联参考方向,端口的电压相量和电流相量分别为、,端口的电压相量和电流相量分别为、。
实验五 双口网络测试一、实验目的1. 加深理解双口网络的基本理论。
2. 掌握直流双口网络传输参数的测量技术。
二、原理说明对于任何一个线性网络,我们所关心的往往只是输入端口和输出端口的电压和电流之间的相互关系,并通过实验测定方法求取一个极其简单的等值双口电路来替代原网络,此即为“黑盒理论”的基本内容。
1. 一个双口网络两端口的电压和电流四个变量之间的关系, 可以用多种形式的参数方程来表示。
本实验采用输出口的电压U 2和电流I 2作为自变量,以输入口的电压U 1和电流I 1作为应变量,所得的方程称为双口网络的传输方程,如图1所示的无源线性双口网络(又称为四端网络)的传输方程为: U 1=AU 2+BI 2; I 1=CU 2+DI 2。
式中的A 、B 、C 、D 为双口网络的传输参数,其值完全决定于网络的拓扑结构及各支路元件的参数值。
这四个参数表征了该双口网络的基本特性,它们的含义是: U 1OA = ── (令I 2=0,即输出口开路时)U 2O U 1sB = ── (令U 2=0,即输出口短路时) I 2sI 1OC = ── (令I 2=0,即输出口开路时)U 2O I 1sD = ── (令U 2=0,即输出口短路时) 图 1I 2s由上可知,只要在网络的输入口加上电压,在两个端口同时测量其电压和电流,即可求出A 、B 、C 、D 四个参数,此即为双端口同时测量法。
2. 若要测量一条远距离输电线构成的双口网络, 采用同时测量法就很不方便。
这时可采用分别测量法,即先在输入口加电压,而将输出口开路和短路,在输入口测量电压和电流,由传输方程可得:U 1O AR 1O = ──=──(令I 2=0,即输出口开路时)I 1O C U 1s BR 1s = ──=──(令U 2=0,即输出口短路时)I 1s D然后在输出口加电压,而将输入口开路和短路,测量输出口的电压和电流。
此时可得 U 2O DR 2O = ──=──(令I 1=0,即输入口开路时)U 1I1U 2I 2++I 2O CU 2s BR 2s = ──= ──(令U 1=0,即输入口短路时)I 2s AR 1O ,R 1s ,R 2O ,R 2s 分别表示一个端口开路和短路时另一端口的等效输入电阻,这四个参数中只有三个是独立的(∵ AD -BC =1)。
二端口网络的研究实验报告摘要:目的,探索一种新的多端口网络传输方案。
该方案采用二端口传输机制实现数据从源端口到接收端口的全双工通信;为了降低功耗和提高网络带宽,本文在源端口部署了一块控制器(见图1),将其当作一个二端口网卡使用,这样就节省了电力资源,避免因浪费而造成不必要的能量消耗。
实验结果表明,本文设计的新型多端口网络传输方案能够有效地利用网络带宽,并且具有良好的扩展性。
方法,采用三层交换技术构建多端口网络。
它将源端口当作一个端口广播端口,将接收端口当作一个端口局域网端口。
将端口广播端口映射到接收端口上,保证两者之间通过单个端口线路连接。
在第一级交换网络中,将不同类型的业务流引入交换层,分别进行业务流类型识别、封装和缓存,然后按照一定的优化算法将其转发给相应的端口;在第二级交换网络中,对各端口线路按照优化的流表形式与线路层交换机相互交叉连接。
实际应用时,再通过适当的分析程序,最终确定需要将某一类业务流传送到哪条端口线路上。
为简化本文的实现过程,特别在硬件电路上做出如下改动:原来在服务器上配置的交换机作为三层交换网关,在交换层只是启用了网桥和路由选择两个模块,此次则采用了三层交换技术,即三个交换层都采用了相同的核心硬件设备,而且启用了路由模块、接入层交换模块和网管模块,增加了数据转发和路由等功能,同时还根据软件结构重新编写了一套系统管理软件,以完成对三个交换层的全面管理。
首先,设计了一种称之为“链”的端口链接,它的主要功能是检测所连接的端口号是否已经被占用。
若该端口被占用,就会阻塞所有正常端口上传输的数据包,导致整个系统处于瘫痪状态。
接着,设计了另外一种名为“锁”的功能。
它主要功能是防止一些非法端口恶意攻击主机,影响正常业务。
当锁定的端口启用后,该端口不允许任何数据包的发送和接收,但允许端口转发,从而极大地限制了那些对资源利用率较低或拥塞率较高的端口,以及那些可能会产生拒绝服务的端口的活跃度,并能使网络延迟时间得到有效的缩短。
二端口仿真电路的设计与分析一、实验目的1、学会用电子仿真软件进行二端口网络电路的仿真方法。
2、熟练掌握二端口网络的参数方程,理解其物理意义并能进行参数计算。
3、验证双口网络级联后的等效双口网络的传输参数。
二、实验原理(1) 二端口网络的Z 参数矩阵,属于阻抗性质。
容易得知Z 参数的理论结果应是: 011112==I I U Z,021121==I I U Z,012212==I I U Z,022221==I I U Z(2)二端口网络的Y 参数矩阵,属于导纳性质。
容易得知Z 参数的理论结果应是:011112==UUI Y ,012212==UUI Y ,021121==UUI Y ,022221==UUI Y(3)二端口网络的传输参数矩阵。
容易得知传输参数的理论结果应是:)(212=-=I UU A ,0212=-=U IU B,0)(212=-=I UI C,0212=-=U II D(4)二端口的级联传输参数结果应为: 21*T T T =(5):规律:互易二端口满足:对称二端口满足:2112Z Z =2112Z Z =2211Z Z =实验电路原理(举例):求如图所示二端口网络的Z 参数(Ω=Ω=Ω=4,8,2321Z Z Z )、Y 参数、Z 参数和T 参数。
解:Ω=+===1021011112Z Z IU Z IΩ====82012212Z I U Z IΩ=+===1232022221Z Z I UZ IΩ====82021121Z I U Z I⎥⎦⎤⎢⎣⎡=128810Z143011112===UUI Y ,71012212-===UUI Y ,71021121-===UUI Y ,285022221===UUI Y⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2857171143Y 变换可得二端口网络的T 参数⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2381745T当有两个上图的电路级联时有:1Z 3Z2Z+ 1U -+2U -1Z 3Z2Z+2U -1Z 3Z 2Z+ 1U -21*T T T ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2381745⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2381745=⎥⎥⎦⎤⎢⎢⎣⎡125.334375.025.194375.2三、对上例进行电路仿真试验及其分析(一)Z 参数测定1、输出端开路时的等效电路如图所示(求11Z )Ω====10110011112I IU Z2、输出端开路时的等效电路如图所示(求21Z )Ω====818012212I I U Z3、输入端开路时的等效电路如图所示(求12Z )Ω====8216021121I I U Z4、输入端开路时的等效电路如图所示(求22Z )Ω====12224022221I I U Z结论得出:⎥⎦⎤⎢⎣⎡=128810Z 与理论值相同,从而验证了Z 参数理论求解的正确性。
仿真实验三 二端口网络一、实验目的1、掌握二端口网络各种参数的求解2、学会用示波器在二端口参数求解中测角度3、通过参数的求解熟悉二端口的传输特性二、实验原理线性无源二端口网络的端口特性由其两个端口的四个变量(此处主要用相量形式表示)所构成的一组参数来表示,理论证明,两个端口可提供两个约束方程,这两个约束方程中将四个变量中的任意两个变量作为因变量(响应),另外两个变量作为自变量(激励)所构成的线性组合来表示,共可分成六组方程,将它们用矩阵方程形式表示,即为Y 、Z 、T 、H 、G 、T '等六组参数。
二端口的基本电路如右图用二端口分析电路时,仅对二端口处的电流、电压之间的关系感兴趣,这种相互关系是通过一系列的参数来实现的。
而这些参数只取决于构成二端口本身的元件及它们的链接方式。
如下图所示,试求给出的二端口的Y 参数矩阵。
其中s rad 1000=ω 理论分析:由图可直接列写方程:2331312633132231312126331312313)1011023(10232)101101021(1021102110212)101101021(102110211021U j U I U j U I U U I I I U j U I U U ---⨯+⨯+⨯-=-⨯⨯+⨯+⨯-=⨯-⨯=+=⨯⨯+⨯+⨯-=⨯-⨯整理得得Y 参数矩阵为S j Y 31023212321-⨯⎥⎥⎥⎥⎦⎤+-⎢⎢⎢⎢⎣⎡-=三、电路仿真因为s rad 1000=ω,Hz f 23.15928.610002===∴πω 二端口网络中,Y 参数表示为⎥⎦⎤⎢⎣⎡=⇒⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡22122111212212211121Y Y Y Y Y U U Y Y Y Y I I因此在仿真中可以用开路短路法来测定Y 参数。
(1)如下图所示,1111111122,0U I Y U Y I U =⇒==次侧直接短路,则即令如下图所示,V U A I 1,9.49911== μ 根据下图波形可得,电流(加入小电阻,电阻两端的电压波形即为电流波形)与电压的波形是同相的。
有源二端网络实验报告有源二端网络实验报告引言有源二端网络是电路中常见的一种电子元件,它由一个电压源和两个电阻器组成。
在本次实验中,我们将通过实际操作和测量来探究有源二端网络的特性和性能。
通过这次实验,我们可以更好地理解有源二端网络的工作原理,并掌握其在电路中的应用。
实验目的本次实验的主要目的是通过实际操作和测量,探究有源二端网络的特性和性能。
具体目标如下:1. 理解有源二端网络的工作原理;2. 掌握有源二端网络的基本参数测量方法;3. 分析有源二端网络的频率响应特性。
实验器材和仪器1. 信号发生器2. 示波器3. 电阻箱4. 电压表5. 多用电表6. 有源二端网络电路板实验步骤1. 搭建有源二端网络电路,将信号发生器和示波器正确连接。
2. 调节信号发生器的频率,观察示波器上的波形变化,并记录下频率和波形。
3. 使用电压表和多用电表测量电路中的电压和电流数值,并记录下来。
4. 调节电阻箱的阻值,观察电路中的电流和电压的变化,并记录下来。
5. 根据实验数据,计算出有源二端网络的增益和频率响应曲线。
实验结果和分析通过实验测量得到的数据,我们可以得出以下结论:1. 有源二端网络的增益与输入信号频率呈现一定的关系。
在低频时,增益较高;而在高频时,增益逐渐降低。
这是由于有源二端网络的电容和电感对不同频率的信号有不同的响应。
2. 调节电阻箱的阻值可以改变有源二端网络的增益。
当阻值较小时,增益较高;而当阻值较大时,增益较低。
这是由于电阻器的阻值决定了电路中电流的大小,从而影响了增益的大小。
3. 在实验中,我们还观察到了有源二端网络的输出波形与输入波形的变化。
当输入为正弦波时,输出也为正弦波,但幅度和相位可能会发生变化。
这是由于有源二端网络中的放大器对输入信号进行放大和处理。
结论通过本次实验,我们深入了解了有源二端网络的特性和性能。
我们通过实际操作和测量,探究了有源二端网络的频率响应特性,并分析了其增益和输入输出波形的变化。
《电路原理》
实 验 报 告
实验时间:2012/5/22
一、实验名称 二端口网络的研究 二、实验目的
1.学习测定无源线性二端口网络的参数。
2.了解二端口网络特性及等值电路。
三、实验原理
1.对于无源线性二端口(图6-1)可以用网络参数来表征它的特征,这些参数只决定于二端口网络内部的元件和结构,而与输入(激励)无关。
网络参数确定后,两个端口处的电压、电流关系即网络的特征方程就唯一的确定了。
输入端输出端 1′
图6-1
2. 若将二端口网络的输出电压2U 和电流-2I 作为自变量,输入端电压1U 和电流1I 作因变量,则有方程
式中11A 、12A 、21A 、22A 称为传输参数,分别表示为
是输出端开路时两个电压的比值,是一个无量纲 的量。
是输出端开路时开路转移导纳。
是输出端短路时短路转移阻抗。
是输出端短路时两个电流的比值,是一个无量纲的量。
可见,A 参数可以用实验的方法求得。
当二端口网络为互易网络时,有
因此,四个参数中只有三个是独立的。
如果是对称的二端口网络,则有
3.无源二端口网络的外特性可以用三个阻抗(或导纳)元件组成的T 型或π型等效电路来代替,其T 型等效电路如图6-2所示。
若已知网络的A 参数,则阻抗1r 、2r 、 分别为: 图6-2
因此,求出二端口网络的A 参数之后,网络的T 型(或π)等效电路的参数也就可以求得。
4.由二端口网络的基本方程可以看出,如果在输出端1-1′接电源,而输出端2-2′处于开路和短路两种状态时,分别测出10U 、20U 、10I 、1S U 、1S I 、2S I ,则就可以得出上
02=I 11A 02
=I 21A 02
=U 02
=U 22A 3r
述四个参数。
但这种方法实验测试时需要在网络两端,即输入端和输出端同时进行测量电压和电流,这在某种实际情况下是不方便的。
在一般情况下,我们常用在二端口网络的输入端及输出端分别进行测量的方法来测定这四个参数,把二端口网络的1-1′端接电源,在2-2′端开路与短路的情况下,分别得到开路阻抗和短路阻抗。
再将电源接至2-2′端,在1-1′端开路和短路的情况下,又可得到: 同时由上四式可见:
因此,01R 、02R 、1S R 、2S R 中只有三个独立变量,如果是对称二端口网络就只有二个独立变量,此时
如果由实验已经求得开路和短路阻抗则可很方便地算出二端口网络的A 参数。
四、实验设备
1.电路分析实验箱 一台 2.数字万用表 一只 五、实验内容与步骤
1.如图16-3接线
图16-3
,
, , 10 V 。
将端口2-2′处开路测量 、 ,将2-2′短路处测量 、 ,并将结果填入表6-1中。
2.计算出 、 、 、 。
=2.5
=-0.005
=-1801.8
=3.964
验证: 2.5*3.964—(–0.005)*(–1801.8)=0.9
3.计算T 型等值电路中的电阻 、 、 ,并组成T 型等值电路。
图
16-4
在1-1′处加入 10 V ,分别将端口2-2′处开路和短路测量并将结果填入表6-2中。
22
11
210201A A R R R R S S ==Ω=1001R Ω==30052R R Ω==20043R R =1U 20U 10I S I 1 S
I 2 11A 12A 21A 22A 1
21122211=-A A A A 1r 2
r 3
r =1U
=300Ω=592.8Ω=200Ω比较二表中的数据,验证电路的等效性。
六、实验结果与分析
实验结果见五、实验内容与步骤
二表中的数据近似,在误差允许范围内电路等效。