高等代数整理版
- 格式:doc
- 大小:8.83 MB
- 文档页数:54
高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。
(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。
(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。
2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。
运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。
运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。
《高等代数》知识点梳理高等代数是一门重要的数学学科,它是线性代数的延伸和深化,主要研究向量空间和线性变换的性质和应用。
以下是《高等代数》常见的知识点梳理:1.矩阵和线性方程组:-矩阵:矩阵的定义和运算、矩阵的行列式、逆矩阵等。
-线性方程组:线性方程组的定义和解的分类、线性方程组的矩阵表示、线性方程组的消元法、高斯-约当法等。
2.向量空间:-向量空间的定义:向量空间的基本性质和运算规则。
-子空间和张成空间:子空间和子空间的运算、线性组合和线性相关、张成空间的定义和性质。
-基和维数:线性无关和极大线性无关组、基和维数的相关定义和性质。
3.线性变换:-线性变换的定义和性质:线性变换的基本性质和运算。
-线性变换的矩阵表示:矩阵的表示和判断、线性变换的示例和应用。
-矩阵相似和对角化:矩阵相似的定义和性质、对角化的定义和条件、对角化的意义和应用。
4.特征值和特征向量:-特征值和特征向量的定义:特征值和特征向量的基本概念和性质。
-特征多项式和特征方程:特征多项式和特征方程的定义和性质、求解特征多项式和特征方程的方法。
-对角化和相似对角化:对角化和相似对角化的概念和条件、对角化和相似对角化的关系和应用。
5.矩阵的特征值和特征向量的应用:-线性微分方程组:线性微分方程组的特征方程和特解、线性微分方程组的解的表示和求解方法。
-线性差分方程组:线性差分方程组的特征方程和特解、线性差分方程组的解的表示和求解方法。
- Markov过程:Markov过程的概念和性质、Markov过程的平稳分布和转移概率矩阵。
6.内积空间和正交变换:-内积和内积空间的定义:内积的基本性质和运算规则、内积空间的定义和性质。
-正交向量和正交子空间:正交向量和正交子空间的定义和性质。
-正交变换和正交矩阵:正交变换和正交矩阵的概念、正交变换的性质和应用。
7.对偶空间和广义逆:-对偶空间的定义和性质:对偶空间的定义和对偶基的求解方法、对偶空间的性质和应用。
高等代数知识点总结笔记一、集合论基础1. 集合的定义和表示2. 集合的运算:交集、并集、补集、差集3. 集合的基本性质:幂集、空集、自然数集、整数集等4. 集合的关系:子集、相等集、包含关系5. 集合的基本运算律:结合律、交换律、分配律二、映射和函数1. 映射的定义和表示2. 映射的类型:单射、满射、双射3. 函数的定义和性质4. 函数的运算:复合函数、反函数5. 函数的极限、连续性6. 函数的导数、几何意义三、向量空间1. 向量和向量空间的定义2. 向量的线性运算:加法、数乘、点积、叉积3. 向量空间的性质:线性相关、线性无关、维数、基和坐标4. 线性变换和矩阵运算5. 特征值和特征向量四、矩阵与行列式1. 矩阵的定义和基本性质:零矩阵、单位矩阵、方阵2. 矩阵的运算:加法、数乘、矩阵乘法、转置、逆矩阵3. 行列式的定义和性质:行列式的展开法则、克拉默法则4. 线性方程组的解法:克拉默法则、矩阵消元法、逆矩阵法五、线性方程组1. 线性方程组的定义和分类2. 线性方程组的解法:高斯消元法、矩阵法、逆矩阵法3. 线性方程组的特解和通解:齐次线性方程组、非齐次线性方程组4. 线性方程组的解的性质:解的唯一性、解空间六、特征值和特征向量1. 特征值和特征向量的定义和性质2. 矩阵的对角化和相似矩阵3. 特征值和特征向量的应用:矩阵的对角化、变换矩阵4. 矩阵的谱定理和矩阵的相似对角化5. 实对称矩阵和正定矩阵的性质七、多项式与代数方程1. 多项式的定义和性质:零次多项式、一次多项式、多项式的加减乘除2. 代数方程的解法:一元一次方程、一元二次方程、高次方程3. 代数方程的根与系数的关系:韦达定理、牛顿定理、斯图姆定理4. 代数方程的不可约性和可解性八、群、环、域1. 代数结构的定义和性质2. 群的定义和性质:群的封闭性、结合律、单位元、逆元3. 环的定义和性质:交换环、整环、域4. 域的定义和性质:有限域、无限域、极大理想以上就是高等代数的一些基本知识点总结,希望对大家有所帮助。
1122,,0,.i j i j in jn A i j a A a A a A i j ⎧=⎪++=⎨≠⎪⎩L==()mn A O A A O A BO BO BBO A AA B B O B O*==**=-1(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-K N N 1范德蒙德行列式:()1222212111112n i j nj i nn n n nx x x x x x x x x x x ≤<≤---=-∏L L L M M M L111代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()1121112222*12n Tn ijn n nn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭LL M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 11A A --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭111A B BA---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭ 1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭矩阵的秩的性质:① ()A O r A ≠⇔≥1; ()0A O r A =⇔=;0≤()m n r A ⨯≤min(,)m n④ ()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤ ()r AB ≤{}min (),()r A r B⑥ 若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===; 即:可逆矩阵不影响矩阵的秩.⑦ 若()()()m n Ax r AB r B r A n AB O B O A AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩ 在矩阵乘法中有右消去律.⑧ ()rr E O E O r A r A A OO OO ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨ ()r A B ±≤()()r A r B +, {}max (),()r A r B ≤(,)r A B ≤()()r A r B +⑩ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭, ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭①n 个n 维线性无关的向量,两两正交,每个向量长度为1. ③(,)0αβ=. 记为:αβ⊥④21ni i a α====∑⑤1α==. 即长度为1的向量.内积的性质:① 正定性② 对称性③ 线性性12n A λλλ=L 1ni A λ=∑tr ,A tr 称为矩阵A 特征值与特征向量的求法(1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ. (2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量.设()0i A E x λ-=的基础解系为 12,,,i n r ξξξ-L 其中()i i r r A E λ=-. 则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++L 其中12,,,in r k k k -L 为任意不全为零的数.3. ①1P AP B -= (P 为可逆矩阵)②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. 设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪⎪= ⎪ ⎪⎝⎭O .② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化. 正交矩阵 T AA E =③ 正交阵的行列式等于1或-1; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.施密特正交规范化 123,,ααα线性无关,112122111313233121122(,)(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ= 333βηβ=1. ① 二次型 11121121222212121112(,,,)(,,,)n n n n Tn ij i j n i j n n nn n a a a x a a a x f x x x a x x x x x x Ax a a a x ==⎛⎫⎛⎫ ⎪⎪⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑L L L L L L L L L L其中A 为对称矩阵,12(,,,)T n x x x x =L② A 与B 合同 TC AC B =. (,,A B C 为实对称矩阵为可逆矩阵)求C (A I)→(B C^T) 这个变换先进行行变换 再进行一致的列变换 最后 求得C 和C^T③ 正惯性指数 二次型的规范形中正项项数p 负惯性指数二次型的规范形中负项项数r p - ④ 两个矩阵合同⇔它们有相同的正负惯性指数⇔他们的秩与正惯性指数分别相等. ⑤ 两个矩阵合同的充分条件是:A 与B 等价 ⑥ 两个矩阵合同的必要条件是:()()r A r B =2. 12(,,,)Tn f x x x x Ax =L 经过合同变换可逆线性变换x Cy = 化为21ni i f d y =∑标准形.① 正交变换法② 配方法(1)若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量同样进行, 直到都配成平方项为止,经过非退化线性变换,就得到标准形;(2) 若二次型中不含有平方项,但是0ij a ≠ (i j ≠), 则先作可逆线性变换()1,2,,,i i j j i jkk x y y x y y k n k i j x y=-⎧⎪=+=≠⎨⎪=⎩L 且,3.12,,,n x x x L 不全为零,12(,,,)n f x x x >L 0.正定二次型对应的矩阵.4. ()Tf x x Ax =为正定二次型⇔(之一成立): (1) x ο∀≠ ,Tx Ax >0; (2)A 的特征值全大于0; (3)f 的正惯性指数为n ; (4)A 的所有顺序主子式全大于0;(5)A 与E 合同,即存在可逆矩阵C 使得TC AC E =; (6)存在可逆矩阵P ,使得TA P P =;(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量。
高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a aa a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。
(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ijb a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。
(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。
2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。
运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。
运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B =③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。
考研数学高等代数重点整理高等代数是考研数学中的一门重要学科,它涉及到矩阵、向量、行列式等内容。
在考研中,高等代数的重要性不言而喻。
为了帮助考生更好地掌握高等代数的重点知识,本文将对高等代数的相关知识进行整理和总结。
一、矩阵矩阵是高等代数中的基础概念之一。
矩阵可以表示为一个矩形数组,其中每个元素都是一个数。
在考研中,我们需要了解矩阵的基本运算,包括加法、减法和乘法。
此外,还需要掌握矩阵的转置、逆矩阵以及特殊矩阵(如对角矩阵、零矩阵等)的性质。
二、向量向量是高等代数中的另一个重要概念。
向量可以表示为一个有方向和大小的量。
在考研中,我们需要了解向量的基本运算,包括加法、减法、数量乘法以及点积和叉积。
此外,还需要了解向量的模、方向角以及向量与矩阵的乘法等相关知识。
三、行列式行列式是高等代数中的重点内容之一。
行列式可以看作是一个数学对象,它可以用来描述一个矩阵的性质。
在考研中,我们需要了解行列式的定义和性质,包括行列式的计算方法、展开定理以及特殊矩阵的行列式。
此外,还需要掌握行列式的变换和性质,比如行列式的性质、克莱姆法则等。
四、特征值与特征向量特征值与特征向量是高等代数中的重要概念。
特征值与特征向量可以用来描述一个矩阵的性质。
在考研中,我们需要了解特征值与特征向量的定义和性质,包括特征方程的求解方法、实对称矩阵的对角化以及相似矩阵的性质等。
五、线性方程组线性方程组是高等代数中的常见问题之一。
在考研中,我们需要学会解线性方程组的方法,包括高斯消元法、克莱姆法则以及矩阵表示法等。
此外,还需要掌握线性方程组的解的性质,比如解的存在唯一性、解的个数等。
六、二次型二次型是高等代数中的重要概念之一。
二次型可以看作是一个二次齐次多项式,它与矩阵有密切的联系。
在考研中,我们需要了解二次型的定义和性质,包括矩阵的标准型、规范型以及二次型的正定性和负定性等。
以上是考研数学高等代数的重点整理。
通过对这些内容的学习和掌握,相信考生能够在考试中取得好成绩。
数分高代定理大全《高等代数》第一章带余除法 对于[]P x 中任意两个多项式()f x 与()g x ,其中()0g x ≠,一定有[]P x 中的多项式(),()q x r x 存在,使()()()()f x q x g x r x =+成立,其中(())(())r x g x ∂<∂或者()0r x =,并且这样的(),()q x r x 是唯一决定的.定理 1 对于数域P 上的任意两个多项式(),()f x g x ,其中()0,()|()g x g x f x ≠的充分必要条件是()g x 除()f x 的余式为零.定理 2 对于[]P x 中任意两个多项式()f x ,()g x ,在[]P x 中存在一个最大公因式()d x ,且()d x 可以表示成()f x ,()g x 的一个组合,即有[]P x 中多项式(),()u x v x 使()()()()()d x u x f x v x g x =+.定理 3 []P x 中两个多项式()f x ,()g x 互素的充分必要条件是有[]P x 中的多项式(),()u x v x 使()()()()1u x f x v x g x +=.定理 4 如果((),())1f x g x =,且()|()()f x g x h x ,那么()|()f x h x .定理 5 如果()p x 是不可约多项式,那么对于任意的两个多项式(),()f x g x ,由()|()()p x f x g x 一定推出()|()p x f x 或者()|()p x g x .因式分解及唯一性定理 数域P 上每一个次数1≥的多项式()f x 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式1212()()()()()()(),s t f x p x p x p x q x q x q x ==L L 那么必有s t =,并且适当排列因式的次序后有()(),1,2,,,i i i p x c q x i s ==L 其中(1,2,,)i c i s =L 是一些非零常数.定理 6 如果不可约多项式()p x 是()f x 的k 重因式(1)k ≥,那么它是微商()f x '的1k -重因式.定理 7(余数定理) 用一次多项式x α-去除多项式()f x ,所得的余式是一个常数,这个常数等于函数值()f α.定理 8 []P x 中n 次多项式(0)n ≥在数域P 中的根不可能多于n 个,重根按重数计算.定理 9 如果多项式()f x ,()g x 的次数都不超过n ,而它们对1n +个不同的数121,,n ααα+L 有相同的值,即()(),1,2,1,i i f g i n αα==+L 那么()()f x g x =. 代数基本定理 每个次数1≥的复系数多项式在复数域中有一根.复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.实系数多项式因式分解定理 每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积.定理 10(高斯(Gauss )引理) 两个本原多项式的乘积还是本原多项式. 定理 11 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.定理 12 设110()n n n n f x a x a x a --=+++L 是一个整系数多项式,而rs 是它的有理根,其中,r s 互素,那么必有0|,|n s a r a .特别地,如果()f x 的首项系数1n a =,那么()f x 的有理根是整根,而且是0a 的因子.定理 13 (艾森斯坦(Eisenstein )判别法) 设110()n n n n f x a x a x a --=+++L 是一个整系数多项式,如果有一个素数p ,使得1.|n p a /; 2.120|,,,n n p a a a --L ; 3.20|p a /那么()f x 在有理数域上是不可约的.第二章 定理 1 对换改变排列的奇偶性.定理 2 任意一个n 级排列与排列12n L 都可以经过一系列对换互变,并且所作对换的个数与这个排列有相同的奇偶性.定理 3 设111212122212n nn n nna a a a a a d a a a =L LM M M L ,ij A 表示元素ij a 的代数余子式,则下列公式成立:1122,,0,.k i k i kn in d k i a A a A a A k i =⎧+++=⎨≠⎩L 当当 1122,,0,.l j l j nl nj d j a A a A a A j =⎧+++=⎨≠⎩L 当l 当l 定理 4 (克拉默法则) 如果线性方程组11112211211222221122,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L 的系数矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦LLM M M L 的行列式0d A =≠,那么该线性方程组有解,并且解是唯一的,解可以通过系数表为1212,,,,n n d d dx x x d d d===L 其中j d 是把矩阵A 中第j 列换成方程组的常数项12,,,n b b b L 所成的行列式,即1,11,111112,12,12122,1,11,1,2,,.j j n j j nj n j n j n n nn a a a b a a a a b a d j n a a a b a -+-+-+==L L L L L M M M M M L L定理 5 如果齐次线性方程组1111221211222211220,0,0n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L的系数矩阵的行列式0A ≠,那么它只有零解.换句话说,如果该方程组有非零解,那么必有0A =.定理 6 (拉普拉斯定理) 设在行列式D 中任意取定了(11)k k n ≤≤-个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D .定理 7 两个n 级行列式1112121222112n n n n nna a a a a a D a a a =L LM M M L和1112121222212n n n n nnb b b b b b D b b b =L L M M M L的乘积等于一个n 级行列式111212122212n nn n nnc c c c c c C c c c =L LM M M L ,其中ij c 是1D 的第i 行元素分别与2D 的第j 列的对应元素乘积之和:1122ij i j i j in nj c a b a b a b =+++L .第三章定理 1 在齐次线性方程组1111221211222211220,0,0n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L 中,如果sn <,那么它必有非零解.定理 2 设12,,r a a a L 与1,,,r b b b L 2是两个向量组,如果1)向量组12,,r a a a L 可以经1,,,r b b b L 2线性表出,2)rs >,那么向量组12,,r a a a L 必线性相关.定理 3 一向量组的极大线性无关组都含有相同个数的向量 定理 4 矩阵的行秩与列秩相等. 定理 5 n n ´矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L LM M M L 的行列式为零的充分必要条件是A 的秩小于n .定理 6 一矩阵的秩是r的充分必要条件为矩阵中有一个r 级子式不为零,同时所有1r+级子式全为零.定理 7 (线性方程组有解判别定理) 线性方程组11112211211222221122,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L 有解的充分必要条件为它的系数矩阵111212122212LL M M M Ln n s s sn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦与增广矩阵11121121222212LL M M M M Ln n s s sn s a a a b a a a b A a a a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦有相同的秩。
考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质 1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。
2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。
重点:二、三阶行列式的计算公式3. n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值): (1)行列式行列互换,其值不变。
(转置行列式T D D =) (2)行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
(提公因式) 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
(4)行列式具有分行(列)可加性。
行列式中如果某一行(列)的元素都是 两组数之和,那么这个行列式就等于两个行列式之和。
(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。
余子式ij M 、代数余子式ij ji ij M A +-=)1(。
(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。
定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值; ②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:① 非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;② 齐次线性方程组:当系数行列式0D ≠时,则只有零解。
逆否:若方程组存在非零解,则D 等于零。
③ 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。
④ 若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解; 如果方程组有非零解,那么必有0D =。
中南大学2010年硕士研究生入学考试试题A 42183
一. (12分) 设()f x ,()g x 是整系数多项式,且()g x 是本原的 (即()g x 的所有系数没有1±的公因子). 如果()()()f x g x h x =,其中()h x 是有理系数多项式,证明:()h x 一定是整系数的.
二. (12分) 设 12,,,,,,.
n a b p p p R a b ∈≠
求行列式 12
n
p a a
b p a D b
b
p =
的值.
三. (14分) 设 n n A R ⨯∈ ,E 为单位矩阵. 记()max p A λ=.(λ为A 的特征值) 证明: 若 ()1
p A ,则E-A 可逆.
四. (14分) 设可逆实n n ⨯矩阵
()
ij
A a =
满足:
,0,
ij i j a ∀≠≤ 且1
A -的所有元素
非负.证明: A 的主对角线元素多为正,即
,0.
ii
i a ∀
五. (18分) 设,,,A B C D 均为n 阶方阵,且AC=CA. 证明: A B
AD CB
C D =- .
六. (20分) 已知,s n n m
A R
B R ⨯⨯∀∈∈有:()()()rank A rank B n rank AB +-≤, 证明:对任何使乘积PQR 有意义的实矩阵P ,Q ,R 有
()()()()rank PQ rank QR rank Q rank PQR +-≤ . 七. (20分) 设m n
A R ⨯∈.证明:
1
max n T T T
x R x x A Ax x x λ∈≠=,其中1λ
为T A A 的最大特征值.
八. (20分) 设V 为数域P 上的线性空间,为V 的线性变换,()()[],,
f x
g x P x ∈ ()()().
h x f x g x =证明:若()()(),1f x g x =,则 ()()()ker ker ker h f g σσσ=⊕
九.(20分) 设 1234,,,εεεε是欧式空间V 的一个标准正交基,σ是V 的线性变换,
且
()()()()1124212332344134,,
,,
σεεεεσεεεεσεεεεσεεεε=+-=+-=-++=-++
1. 证明σ是一个对称变换.
2. 求V 的一个标准正交基,使σ在改基下的矩阵为对角阵
2011年中南大学
答案:1
2
3
4
5
6
浙江大学2012年
2011年
2010年
2009年
2008年
2007年
2006年
武汉大学2012年
2011年
2010年
2009年
2008年
2007年
中山大学2009年
2010年
2011年
2012年
2008年
2010年南开大学
2009年南开大学。