伺服选型计算
- 格式:ppt
- 大小:466.00 KB
- 文档页数:25
伺服电机选型和编码器选型计算
摘要
本文介绍了如何进行伺服电机和编码器的选型计算。
通过以下步骤,您可以选择适合您应用需求的伺服电机和编码器组合。
1. 确定应用需求
首先,您需要确定您的应用的一些关键需求,例如输出动力、扭矩要求、速度要求等。
2. 计算负载参数
根据您的应用需求,计算系统的负载参数,例如惯性矩、负载扭矩等。
这些参数将帮助您选择合适的伺服电机。
3. 伺服电机选型计算
使用所得到的负载参数,结合电机性能曲线和应用需求,计算所需的伺服电机的额定功率和最大扭矩。
同时,考虑电机的尺寸和重量限制来选择合适的型号。
4. 编码器选型计算
对于伺服电机,选择适当的编码器也是重要的。
根据应用需求和所选电机的分辨率,计算编码器的分辨率、线数和精度等参数。
5. 选择合适的组合
最后,在满足应用需求的前提下,根据电机和编码器的参数进行选择,以确保系统性能达到预期。
6. 总结
选型计算是有效选择适合应用需求的伺服电机和编码器的重要步骤。
通过明确应用需求、计算负载参数、进行选型计算和选择合适的组合,您可以确保您的系统能够高效稳定地工作。
以上是关于伺服电机选型和编码器选型计算的简要指南。
希望对您有所帮助!。
电机的选择:(1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达:FL M =π2式中 M-----电动机轴转距;F------使机械部件沿直线方向移动所需的力; L------电动机转一圈(2πrad )时,机械移动的距离2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。
实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算:z z M h h F M B spSPao P K 211122⎪⎪⎭⎫ ⎝⎛++=ηππ M 1-----等速运动时的驱动力矩π2hF spaoK---双螺母滚珠丝杠的预紧力矩Fao------预紧力(N),通常预紧力取最大轴向工作载荷Fm ax的1/3,即F ao =31Fm ax当F m ax 难于计算时,可采用F ao =~)(N C a ;C a-----滚珠丝杠副的额定载荷,产品样本中可查: hsp-----丝杠导程(mm);K--------滚珠丝杠预紧力矩系数,取~;P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=;W1-----移动部件重力(N),包括最大承载重力;P 1-------有夹板夹持时(如主轴箱)的夹板夹持力;μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ;η1-------滚珠丝杠的效率,取~;M B----支撑轴承的摩擦力矩,即叫启动力矩,可以从滚珠丝杠专用轴承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题)z 1--------齿轮1的齿数 z2--------齿轮2的齿数最后按满足下式的条件选择伺服电机M Ms ≤1Ms-----伺服电机的额定转距(2)惯量匹配计算 为使伺服进给系统的进给执行部件具有快速相应能力,必须选用加速能力大的电动机,亦即能够快速响应的电机(如采用大惯量伺服电机),但又不能盲目追求大惯量,否则由于不能从分发挥其加速能力,会不经济的。
伺服电机选型与计算
每种型号电机的规格项内均有额定转矩、最大转矩及电机惯量等参数,各参数与负载转矩及负载惯量间必定有相关联系存在,选用电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、机构的重量、机构的运动方式(水平、垂直、旋转)等;运动条件与电机输出功率无直接关系,但是一般电机输出功率越高,相对输出转矩也会越高。
因此,不但机构重量会影响电机的选用,运动条件也会改变电机的选用。
惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的电机输出转矩。
选用伺服电机规格时,依下列步骤进行。
(1)明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。
(2)依据运行条件要求选用合适的负载惯最计算公式,计算出机构的负载惯量。
(3)依据负载惯量与电机惯量选出适当的假选定电机规格。
(4)结合初选的电机惯量与负载惯量,计算出加速转矩及减速转矩。
(5)依据负载重量、配置方式、摩擦系数、运行效率计算出负载转矩。
(6)初选电机的最大输出转矩必须大于加速转矩加负载转矩;如果不符合条件,必须选用其他型号计算验证直至符合要求。
(7)依据负载转矩、加速转矩、减速转矩及保持转矩,计算出连续瞬时转矩。
(8)初选电机的额定转矩必须大于连续瞬时转矩,如果不符合条件,必须选用其他型号计算验证直至符合要求。
(9)完成选定。
富士伺服电机选型计算资料一、关于富士伺服电机的基本资料1. 输出功率(Pout):也就是电机实际输出的功率,通常用单位瓦特(W)表示。
2. 转速(N):电机输出的转速,通常用单位转每分钟(rpm)表示。
3.转矩(T):电机产生的转矩,通常用单位牛顿米(Nm)表示。
4.电压(V):电机工作时所需的电压,通常用单位伏特(V)表示。
5.电流(I):电机工作时所需的电流,通常用单位安培(A)表示。
二、富士伺服电机选型计算方法1.计算输出功率:输出功率(Pout)= 转矩(T)× 转速(N)/ 9550单位:W2.计算所需电流:所需电流(I)= 输出功率(Pout)/ 电压(V)单位:A3.确定电机型号:根据所需输出功率和所需电流,在富士伺服电机的型录中找到适合的型号。
4.考虑额定功率:在选型时,要考虑到电机的额定功率与所需输出功率的关系。
通常情况下,额定功率应大于所需输出功率,以保证电机能够正常工作。
5.考虑载荷惯性:在选型时,要考虑到负载的惯性对电机的影响。
如果负载的惯性较大,需要选择功率较大的电机来满足负载的加速度和减速度要求。
6.考虑工作环境:在选型时,还要考虑工作环境的特殊要求,如温度、湿度、振动等因素。
7.考虑控制系统:在选型时,还要考虑控制系统的要求,如控制精度、速度响应时间等因素。
三、富士伺服电机选型计算示例假设需要选型一台富士伺服电机,输出功率要求为2000W,工作电压为220V,负载惯性为0.03kg·m²,工作环境温度为25℃。
首先计算所需电流:所需电流(I)= 输出功率(Pout)/ 电压(V)所需电流(I)=2000W/220V≈9.09A接下来根据所需输出功率和所需电流,在富士伺服电机的型录中找到适合的型号。
假设找到了型号为MHN309D,额定功率为2200W,额定电流为10A。
然后考虑负载惯性,根据负载惯性为0.03kg·m²,选择合适的电机。
伺服电机和丝杆选型计算1.伺服电机选型计算:伺服电机是一种将电能转化为机械能的装置,它通过电机驱动系统的精确控制,实现对机械位置、转速和力矩的精确控制。
在选型时,需要考虑以下几个方面:1.1额定输出功率:根据机械系统的工作要求和负载要求,确定伺服电机的额定输出功率。
通常,额定输出功率应略大于所需的最大功率。
1.2额定转速:根据工作要求和负载要求,确定伺服电机的额定转速。
通常,额定转速应略大于所需的最大转速。
1.3额定转矩:根据负载的特性和工作要求,确定伺服电机的额定转矩。
通常,额定转矩应略大于所需的最大转矩。
1.4动态响应速度:根据控制系统的要求,确定伺服电机的动态响应速度。
通常,要求动态响应速度能够满足系统的响应时间要求。
1.5额定电压:根据工作环境和电源供应的要求,确定伺服电机的额定电压。
通常,额定电压应与电源供应的电压相匹配。
2.丝杆选型计算:丝杆是一种将旋转运动转化为直线运动的装置,它通常由丝杆和螺母组成。
在选型时,需要考虑以下几个方面:2.1螺距:根据工作要求,确定丝杆的螺距。
螺距是丝杆每转一周所移动的距离,通常用毫米/转表示。
2.2进给速度:根据机械系统的工作要求,确定丝杆的进给速度。
进给速度是丝杆上点的线速度,通常用毫米/秒表示。
2.3进给力:根据工作负载和系统要求,确定丝杆的进给力。
进给力是丝杆在工作过程中所受的力,通常用牛顿表示。
2.4精度等级:根据工作要求,确定丝杆的精度等级。
精度等级决定了丝杆的运动精度,通常用C级、T级等表示。
2.5长度:根据机械系统的工作空间和要求,确定丝杆的长度。
丝杆的长度应能够满足系统的工作范围要求。
伺服电机选型计算公式伺服电机选型计算公式是指通过一系列的计算公式来确定伺服电机的合适参数,以满足特定需求。
伺服电机选型的主要目标是确定伺服电机的额定转矩、额定电流、额定功率等参数,以及选择合适的伺服驱动器。
下面将介绍一些常用的伺服电机选型计算公式。
1.负载的转矩计算公式:负载的转矩是伺服电机选型的基础,通过计算负载的转矩,可以确定伺服电机的额定转矩。
负载的转矩可以通过以下公式计算:负载转矩=(负载力*负载半径)/(传动效率*减速比)2.伺服电机的额定转矩计算公式:伺服电机的额定转矩是指在额定转速下,电机能够提供的最大转矩。
额定转矩可以通过以下公式计算:额定转矩=(负载转矩+加速扭矩)/传动效率3.伺服电机的额定电流计算公式:伺服电机的额定电流是指在额定转矩下,电机所需的额定电流。
额定电流可以通过以下公式计算:额定电流=额定转矩*电流系数/额定转速4.伺服电机的额定功率计算公式:伺服电机的额定功率是指在额定转矩和额定转速下,电机所提供的对外功率。
额定功率可以通过以下公式计算:额定功率=额定转矩*额定转速/9.555.伺服驱动器的额定功率计算公式:伺服驱动器的额定功率是指驱动器所能提供的最大功率。
额定功率可以通过以下公式计算:额定功率=伺服电机的额定功率/驱动器的效率除了上述几个常用的伺服电机选型计算公式外,还需要考虑一些其他因素,例如:负载的加速时间、负载的惯性矩、伺服系统的控制精度等,这些因素都会对伺服电机的选型产生影响,需要综合考虑。
同时,还需要根据具体的应用环境和需求,选择合适的伺服电机和驱动器型号,以确保系统的性能和可靠性。
需要注意的是,伺服电机选型计算公式只是一个参考,实际选型过程中还需要考虑一系列的工程参数和实际情况,同时也需要借助一些专业的伺服电机选型软件,以更准确地确定伺服电机的参数。
常见传动机构负载惯量计算方法及实例引言转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形象地理解为一个物体对于旋转运动的惯性。
在负载加速和减速的过程中,惯量是一个非常重要的参数,因此在运动控制中需要非常熟练的掌握常用传动机构的惯量计算方法。
本文整理了各种常见机构的惯量计算方法,给出两种应用案例中,雷赛伺服电机选型计算例题。
1 伺服驱动系统中,常见5种传动机构的负载惯量计算方法1.1常见物体惯量计算模型1长为L的细棒,旋转中心通过细棒的中心并与细棒垂直,如下图所示。
在棒上离轴x处,取一长度元dx,假设棒的质量密度为λ,则长度元的质量为dm=λdx,根据转动惯量计算公式:得到将λl=m 代入上式,得模型2长为L的细棒,旋转中心通过细棒的一端A并与细棒垂直,如下图所示。
同理可得出将λl=m 代入上式,得模型3半径为R的质量均匀的细圆环,质量为m,旋转中心通过圆心并与环面垂直取一长度元dx,假设棒的质量密度为λ,则长度元的质量为dm=λdl,根据转动惯量计算公式:得到将λ=m/2πR代入上式,得模型4质量为m、半径为R、厚度为h的圆盘或实心圆柱体,绕轴心转动取任意半径为r,宽度为dr的薄圆环,设ρ为圆盘的密度,dm为薄圆环的质量,则此圆环转到的惯量为将代入得由可得按照此公式,直径为D的圆柱体绕中心轴旋转的惯量为:其中L为圆柱长度,ρ为密度模型5丝杆带动的负载惯量注:式中Pb为丝杠导程(螺距)总结模型1与模型2可以应用于均匀的长条形或棒状负载结构的惯量计算。
模型3可应用于同步轮负载结构的惯量计算。
模型4可应用于丝杆本身惯量的计算或圆柱体结构的惯量计算。
模型5可应用于丝杆带动的负载惯量计算。
注:常见刚体惯量计算助记1.2伺服驱动系统中,常见5种传动机构的负载惯量计算方法在上述五种模型的基础上,可以给出伺服驱动系统中,常见5种传动机构的负载惯量计算方法(丝杆机构、同步带轮机构,齿轮齿条结构、圆盘结构、长臂结构)丝杆结构丝杆惯量联轴器惯量丝杆上负载惯量加速力矩匀速力矩总力矩同步带轮/齿条结构负载惯量皮带惯量同步轮/齿轮惯量匀速力矩加速力矩总力矩转盘结构转盘惯量联轴器惯量加速力矩长臂结构长臂惯量负载惯量加速力矩2 计算选型举例雷赛公司的交流伺服电机一般有不同惯量的型号可供用户选用,如60、80机座电机都有中惯量和小惯量两种。
伺服电机及减速机选型计算1)关于负载条件①基本负载2000kg(⼯件+夹具+回转变位器+配重)②负载重⼼位置0.1m(假定为0.1m,设计时务必⼩于这个值)③负载系数×1.2Motor减速机 减速⽐=1712)电机规格(a12/3000i)项⽬额定输出额定转数最⾼转数3)减速机RV320E-1714) 【关于电机扭矩】负载扭矩[N?m] ……⽤于回转的扭矩选择电机规格时,乘以负载系数。
T L=∑mgr×Z TL=∑mgr×Z=2000×1.2×9.8×0.1×1/342≒6.877 <12 电机的额定扭矩(Z:确认减速⽐、输出轴的转数有⽆问题。
)(重⼒平均负载扭矩=最⼤负载扭矩/2^0.5/综合减速⽐=2000×1.2×9.8×0.1/2^0.5/342=4.86) ?慣性⼒矩[kg?m2] :向电机轴(输⼊轴)的换算。
I=∑mr2×Z2I=mr2×Z 2=2000×1.2×0.12×(1/342)2≒0.36×10-4I=m(D 2+d 2)÷8×Z 2=I=∑mr2×Z 2⾓加速度 [rad/s^2] :最⼤加速时的负载 dω/dt=(2π/60) N/⊿tdω/dt=(2π/60) N/⊿t=(2π/60)×3000/0.2≒1570.8(N:电机额定转数rpm、⊿t:加速时间sec) ?加速扭矩[kg ?m^2/s^2=N ?m] ……⽤于加速的扭矩 Ta=I ?dω/dt Ta=I ?dω/dt=74×10-4×1570.8≒11.62瞬时最⼤扭矩[kg ?m^2/s^2=N ?m] Tmax=TL+ Ta <电机的最⼤扭矩Tmax=TL+ Ta=6.877+11.62=18.5 <35 电机的最⼤扭矩 变位器最⾼⾓速度ωpmax=额定转数÷综合减速⽐×360°÷60sec=3000÷342×360÷60 ≒52.63°/sec 加減速时间tA=t1=设计值=0.2sec⾓加速度dωp/dt=ωpmax/tA =263.15°/sec2停⽌时间t4=1.0sec以内。