光的偏振和晶体的双折射
- 格式:ppt
- 大小:1.27 MB
- 文档页数:78
巧用偏振法鉴别石头眼镜作者:温应春更新时间:2008-1-23甘肃省天水市第十中学741029水晶石眼镜俗称石头眼镜。
石头眼镜和普通眼镜相比,前者是由晶体构成,后者是由非晶体构成。
一、晶体的双折射现象众所周知,晶体有一个很奇特的光学现象,就是双折射现象,那就是说当一束自然光通过晶体的时候,光线一分为二,一束是普通光,也叫寻常光(简称o光),另一束叫非常光(简称e光)。
非常光的偏振方向和寻常光的偏振方向是相互垂直的。
可是当一束自然光通过非晶体的时候,却只有普通的光现象,不会发生双折射的。
二、偏振光是一种电磁波,也是横波,一束自然光通过一个起偏器,就变成偏振光,偏振方向和起偏器的透振方向一致,再让这束偏振光通过一个检偏器,便没有光线透过了。
当然检偏器和起偏器的透振方向刚好垂直。
三、如何用偏振法区别晶体和非晶体如果在检偏器和起偏器之间放上一块普通玻璃,结果和上面的一样,即没有光线通过。
如果在检偏器和起偏器之间放上一块晶片,结果就截然相反,即有光通过检偏器了。
这是为什么呢?原因是通过起偏器P的偏振光的偏振方向虽然和检偏器垂直,但当这束偏振光再通过晶片的时候发生双折射现象,寻常光o的振动方向和原来一样,以致不能通过检偏器A了,可是非常光的振动方向和寻常光恰好垂直,所以透过了检偏器A。
如图1所示,(在相位差不等于的整数倍时,o光和e光构成椭圆偏振光。
)如图1、2所示。
用以上这些知识就可以简单的鉴别眼镜是石头眼镜还是玻璃眼镜了。
【实验目的】鉴别眼镜是石头眼镜还是玻璃眼镜【实验原理】双折射现象、偏振【实验器材】起偏器和检偏器各一个,石头眼镜一幅,普通玻璃一块。
【实验步骤】1、将起偏器和检偏器分开放置;2、在起偏器和检偏器之间分别放上石头镜片和普通玻璃片,有光通过的是石头镜片,没有光通过的便是普通玻璃片。
【注意事项】务必将起偏器和检偏器的透振方向垂直放置。
天然水晶是最早制做眼镜片的材料。
水晶质地坚硬,色泽美丽,光学性能稳定,受大气和化学药品的作用不起任何变化。
偏振光与双折射实验教案偏振与双折射实验教案赵东⼀、实验⽬的1、观察光在各向异性晶体中传播时产⽣的双折射现象,了解其规律;2、观察光的偏振现象,加深对各种偏振光的概念和规律的理解;3、掌握⼀些偏振光的产⽣和检验⽅法,以及了解相关仪器件的原理和使⽤⽅法。
⼆、实验原理1、光的横波性与偏振光的横波性是指光波的电⽮量与光的传播⽅向垂直。
在传播⽅向上垂直的⼆维空间中,电⽮量可能有各种各样的振动状态,我们称之为偏振。
简⽽⾔之,振动⽅向与传播⽅向垂直的波,叫横波。
光的偏振态可分为5种:⾃然光,线偏振光,部分偏振光,圆偏振光,椭圆偏振光。
后⾯将⼀⼀介绍。
2、⼆⾊性与偏振⽚(polarizer) 2.1⼆⾊性有的晶体对不同⽅向的电磁振动具有选择吸收的性质,当光照射到这种晶体的表⾯上时,振动的电⽮量与光轴(光轴的概念在后⾯介绍)平⾏时,被吸收得⽐较少,光可以较多地通过;电⽮量与光轴垂直时,被吸收得较多。
⽐如电⽓⽯晶体。
这种性质叫⼆⾊性。
2.2偏振⽚的制造这⾥先插⼊对偏振⽚的介绍。
能产⽣线偏振光(线偏振光的概念见后⾯)的晶⽚叫偏振⽚。
电⽓⽯对电⽮量垂直和平⾏与光轴⽅向的光的吸收程度的差别还不够⼤,我们要做的理想偏振⽚的要求是,最好能使⼀个⽅向的振动全部吸收掉。
在这⼀点上,碘硫酸奎宁晶体的性能要⽐电⽓⽯好得多,但是它的晶体很⼩。
通常的偏振⽚是在拉伸了的塞璐璐基⽚上蒸镀⼀层硫酸奎宁晶粒,基⽚的应⼒可以使晶粒的光轴定向排列起来,这样可得到⾯积很⼤的偏振⽚。
⼩知识:1852年海拉巴斯(Herapath)发现碘硫酸奎宁晶体有⼆向⾊性,这⼀发现被布儒斯特写⼊书中,当时在哈佛就读的学⽣兰德(Land)读了布儒斯特的书后,对此很感兴趣。
⼏年后,兰德发明⼀种⽅法,把细⼩的针状的碘硫酸奎宁晶体排列在塞璐璐基⽚上,制成了⾯积很⼤的线偏振器。
这是⼀种价廉物美的偏振⽚,⾄今还⼴泛运⽤科研和教学中。
2.3偏振⽚的透振⽅向偏振⽚上能透过的振动⽅向称为它的透振⽅向。
光的偏振与双折射现象光是一种电磁波,可以在真空中以及各种介质中传播。
而在传播过程中,光的偏振与双折射现象是光波特性中非常重要的内容。
本文将介绍光的偏振与双折射现象的基本概念和原理。
一、光的偏振偏振是指光波中的电场矢量在传播方向上的振动方式。
光波可分为非偏振光、偏振光和部分偏振光。
1. 非偏振光:光波中的电场矢量在各个方向上均匀分布,没有特定的振动方向。
2. 偏振光:光波中的电场矢量在某一特定方向上振动,而在其他方向上几乎无振动。
常见的偏振光有线偏振光和圆偏振光。
3. 部分偏振光:光波中的电场矢量在多个方向上振动,但是其中有一个主要的振动方向。
光的偏振可以通过偏振片进行实验观察和分析。
偏振片是由特殊材料制成的,在某一方向上只允许特定方向的电场矢量通过。
当非偏振光通过偏振片时,只有与偏振片振动方向一致的电场矢量能通过,其他方向上的电场矢量则被滤除,从而得到偏振光。
二、双折射现象双折射指的是某些特定材料在光线入射时会发生两个不同速度的折射现象。
这是由于光在这些材料中的传播速度与光的偏振方向有关。
具有双折射现象的材料被称为双折射材料,其中最常见的是石英晶体。
当光线垂直于晶体的光轴方向传播时,不会发生双折射现象;但当光线不垂直于光轴时,就会发生双折射现象。
双折射材料可以通过偏振光的传播方向和光轴方向之间的夹角来进行分类。
根据夹角的不同,可以分为正常双折射和畸变双折射。
1. 正常双折射:在该类材料中,晶体的光轴方向与偏振光的振动方向垂直。
在光线通过材料时,会出现两个折射光束,一个按照正常的折射定律折射(常光),另一个则不按照常规定律折射(特光)。
2. 畸变双折射:在该类材料中,晶体的光轴方向与偏振光的振动方向不垂直。
在光线通过材料时,除了产生两个折射光束外,还会出现不同程度的畸变现象,导致光的传播路径变得复杂。
三、应用领域1. 光学器件:光的偏振与双折射现象在光学器件的设计中起着重要作用。
例如,偏振片可以用于光的调节、滤波和分析等方面。
第五章 光的偏振和晶体的双折射§ 5.1光的偏振态偏振:振动方向相对于传播方向的不对称性。
一.光是横波1、 光是电磁波——横波2、 用二向色性晶体(电气石晶体、硫酸碘奎宁晶体)检验——横波。
最初的器件是用细导线做成的密排线栅(金质线栅,d=5.08×10-4mm ),光通过时,由于与导线同方向的电场被吸收,留下与其垂直的振动。
1928年,Harvaed 大学的Land (19岁)发明了人造偏振片,用聚乙烯醇膜浸碘制得。
到1938年,出现了H 型偏振片,原理相同。
3、名词起偏:使光变为具有偏振特性。
检偏:检验光的偏振特性。
透振方向:通过偏振仪器光的电矢量的振动方向。
二.光的偏振态偏振:振动方向相对于传播方向的不对称性。
对可见光,只考虑其电矢量。
1.自然光振动方向随机,相对于波矢对称。
光的叠加是按强度相加。
可沿任意方向正交分解,在任一方向的强度为总强度之半。
021I I自然光是大量原子同时发出的光波的集合。
其中的每一列是由一个原子发出的,有一个偏振方向和相位,但光波之间是没有任何关系的。
所以,他们的集合,就是在各个方向振动相等、相位差随机的自然光。
在直角坐标系中,一列沿z 向传播、振动方向与X 轴夹角为θ的光,在X 方向的振幅为θθcos A A x =,由于各个光波在X 方向的总强度是光强相加,故有22022220cos )(A d A d A I x x πθθθππθ===⎰⎰同理2A I y π= 而总光强22022A d A I πθπ==⎰,故021I I I y x == 2.平面偏振光(线偏振光)只包含单一振动方向的电矢量。
在任一方向的光强θθ20cos I I =,马吕斯定律。
用偏振片可以获得平面偏振光。
偏振仪器(起偏器)的消光比=最小透射光强/最大透射光强 3.部分偏振光 介于自然光和线偏光之间。
偏振度=(I MAX -I MIN )/(I MAX +I MIN ) 4.圆偏振光电矢量端点轨迹的投影为圆。
光的偏振与双折射光是电磁波的一种,它具有振动方向的特性,这种特性被称为偏振。
同时,当光通过一些特定的材料时,由于其晶体结构的影响,光会发生折射现象并被分割成两个方向不同的光线,这被称为双折射。
本文将深入探讨光的偏振和双折射的原理和应用。
一、光的偏振偏振是指光在传播过程中的振动方向。
正常光是做直线运动的,其中振动方向中的任意一方向都是等概率的。
当光经过某些介质或特定的装置时,其中某些振动方向的成分会被选择性地消除,只有特定方向的振动成分保留下来,这种光就成为偏振光。
具体来说,偏振光可以分为线偏振光和圆偏振光两种。
线偏振光是指光的振动方向沿着一条直线的光,可以通过偏振片进行过滤和调整。
圆偏振光是指光的振动方向沿着一个圆锥面上的某条直线旋转的光。
光的偏振对于某些领域具有重要意义。
在光学仪器中,通过使用偏振片可以减少或消除光的反射和干扰,提高成像的质量。
在光通信中,利用偏振来传输信息可以提高信号传输的稳定性和可靠性。
在3D电影技术中,通过控制光的偏振状态可以实现不同的景深效果,呈现出更真实的观影体验。
二、双折射现象当光传播过程中穿过某些晶体材料时,由于晶体结构的特殊性,光会被分成两个方向不同的光线,这种现象被称为双折射。
具体来说,双折射可分为正常双折射和非正常双折射两种情况。
正常双折射是指光的传播方向不会发生改变,只是光的传播速度不同,造成光线的折射角发生变化。
非正常双折射则是光的传播方向发生明显偏离,光线会分成两个方向完全不同的光线。
双折射现象使得光在经过双折射晶体时发生了分离和偏移,这在某些应用中具有重要的意义。
例如,各种仪器和设备中的偏振器件是基于双折射现象制作的,通过调整双折射晶体的结构可以控制光的传播路径和偏振状态。
三、光的偏振与双折射的应用根据光的偏振和双折射的原理,我们可以将其应用于许多领域。
以下是一些常见的应用领域:1. 光学器件:偏振片、偏振镜和各种光学滤波器等,通过选择性地透过或排除光的特定偏振成分,用于光学成像、干扰消除等。
双折射原理及应用双折射(birefringence)是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。
它们为振动方向互相垂直的线偏振光。
当光射入各向异性晶体(如方解石晶体)后,可以观察到有两束折射光,这种现象称为光的双折射现象。
两束折射线中的一束始终遵守折射定律这一束折射光称为寻常光,通常用o表示,简称o光;另一束折射光不遵守普通的折射定律这束光通常称为非常光,用e表示,简称e光。
晶体内存在着一个特殊方向,光沿这个方向传播时不产生双折射,即o光和e光重合,在该方向o光和e光的折射率相等,光的传播速度相等。
这个特殊的方向称为晶体的光轴。
光轴”不是指一条直线,而是强调其“方向”。
晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。
o光的主平面,e光的光振动在e光的主平面内。
如何解释双折射呢?惠更斯有这样的解释。
1.寻常光(o光)和非常光(e光)一束光线进入方解石晶体(碳酸钙的天然晶体)后,分裂成两束光能,它们沿不同方向折射,这现象称为双折射,这是由晶体的各向异性造成的。
除立方系晶体(例如岩盐)外,光线进入一般晶体时,都将产生双折射现象。
显然,晶体愈厚,射出的光束分得愈开。
当改变入射角i时,o光恒遵守通常的折射定律,e光不符合折射定律。
2.光轴及主平面。
改变入射光的方向时,我们将发现,在方解石这类晶体内部有一确定的方向,光沿这个方向传播时,寻常光和非常光不再分开,不产生双折现象,这一方向称为晶体的光轴。
天然的方解石晶体,是六面棱体,有八个顶点,其中有两个特殊的顶点A和D,相交于A、D两点的棱边之间的夹角,各为102°的钝角.它的光轴方向可以这样来确定,从三个钝角相会合的任一顶点(A或D)引出一条直线,使它和晶体各邻边成等角,这一直线便是光轴方向。
当然,在晶体内任何一条与上述光轴方向平行的直线都是光轴。
晶体中仅具有一个光轴方向的,称为单轴晶体(例如方解石、石英等)。
有些晶体具有两个光轴方向,称为双轴晶体(例如云母、硫磺等)。
晶体的双折射当光照射到各向异性晶体(单轴晶体,如方解石,石英,红宝石等)时,发生两个不同方向的折射;其中一个遵守折射定律,折射光线在入射面内,称为O光(ordinary ray 寻常光);另一束不遵守折射定律,不一定在入射面内的光称为e光(extraordinary ray 非常光),这两束光都是偏振光。
晶体产生双折射的原因:●晶体的各向异性;●O光和e光的传播速度不同,O光在晶体中各个方向的传播速度相同,因而折射率n o=c/υo=恒量;e光在晶体中的传播速度υe随方向变化,因而折射率n e=c/υe是变量,随方向变化。
由于o光和e光的折射率不同,故产生双折射。
实验发现,晶体中存在着某些特殊的方向,光沿着这些特殊的方向传播时,不发生双折射现象,这个特殊的方向称为光轴。
光轴仅标志一定的方向,不限于某一特殊的直线。
若沿光轴方向入射,O光和e光具有相同的折射率和相同的波速,因而无双折射现象。
以入射线为轴转方解石,光点O不动,e绕O转。
用偏振片检验,二者都是偏振光,且偏振方向相互垂直。
O光振动方向垂直于该光线(在晶体中)与光轴组成的平面。
e 光振动方向平行于该光线(在晶体中)与光轴组成的平面。
若光轴在入射面内,实验发现:O光、e光均在入射面内传播,且振动方向相互垂直。
惠更斯研究双折射现象提出:在各向异性的晶体中,子波源会同时发出o光、e光两种子波。
O光的子波,各方向传播的速度相同为v0,点波源波面为球面,振动方向始终垂直其主平面。
(如图1) O光只有一个光速v o 一个折射率n oe光的子波,各方向传播的速度不同。
点波源波面为旋转椭球面,振动方向始终在其主平面内.(如图2)●e光在平行光轴方向上的速度与O光的速度相同为v0●e光在垂直光轴方向上的速度与o光的速度相差最大,记为v e,其相应的折射率为n e图2n0 ,n e称为晶体的主折射率。
●正晶体 : n e> n o (υe< υo)如石英,冰等;●负晶体 : n e< n o (υe>υo)如方解石,红宝石等。
光的偏振与双折射解析偏振角和双折射率的计算偏振是指光波在传播过程中偏离自由传播状态的现象。
光可以被分为不同方向的偏振态,其中最常见的是线偏振光。
而双折射是指当光通过某些特殊的材料时,光波会分裂成两个不同的方向传播的光线。
观察和计算光的偏振角和双折射率是研究光学行为的重要方面。
一、光的偏振角计算光的偏振角是指光波的电场矢量与某一参考方向(通常为光的传播方向)之间的夹角。
偏振角主要有两种常见的表示方式:在光学坐标系中的偏振角和在物理坐标系中的偏振角。
1. 光学坐标系中的偏振角在光学坐标系中,我们可以将光的偏振角表示为矢量的向量积。
假设光波的电场矢量为E,传播方向为z轴,偏振方向为x轴,那么可以用一个右手坐标系表示光的偏振角。
具体的计算公式为:θ = arctan(Ey/Ex)其中Ex和Ey分别表示电场矢量在x轴和y轴方向上的分量。
2. 物理坐标系中的偏振角在物理坐标系中,我们可以将光的偏振角表示为与光传播方向之间的夹角。
这个夹角通常由检偏器来测量。
假设光波的电场矢量为E,传播方向为z轴,而光传播方向和检偏器方向之间的夹角为α,那么计算公式为:θ = arcsin(sin(α)/n)其中n为材料的折射率。
二、双折射率的计算双折射是指当光通过某些特殊材料时,由于其晶格结构导致光波在材料内部发生分裂,分裂成两个不同的方向传播的光线。
双折射通常通过计算材料的双折射率来描述。
双折射率可以通过使用传输矩阵法来计算。
传输矩阵法是一种基于薄膜的光学计算方法,适用于计算具有各向异性的材料的光学性质。
具体的计算方法需要根据材料的晶格结构和折射率张量来确定。
这里不再赘述详细的计算步骤,但需要强调的是,双折射率的计算需要考虑材料的晶体结构、入射光的方向和波长等因素。
总结:光的偏振与双折射是光学研究中的重要概念。
通过计算光的偏振角和双折射率,我们可以更深入地理解光在材料中的传播行为。
对于光学器件的设计和应用也起到了重要的指导作用。
生活中光的偏振现象例子生活中光的偏振现象例子如下:一、太阳光的偏振现象太阳光在大气中传播时会发生偏振现象。
当太阳光以一定角度入射到大气中时,由于大气分子对光的散射,使得光的方向发生改变,从而产生偏振现象。
二、偏振墨镜的偏振效应偏振墨镜是利用偏振光的特性来过滤掉特定方向的光线。
当光线通过偏振墨镜时,只有与墨镜偏振方向相同的光线可以透过,其他方向的光线则被滤除,从而产生偏振效应。
三、光的双折射现象双折射是指光在某些晶体中传播时,会发生折射率不同的现象。
这种现象是由于晶体内部原子结构的非均匀性导致的,使得光在晶体中传播时会分为两束光,即快光和慢光。
四、液晶显示屏的偏振技术液晶显示屏利用液晶分子的排列状态来控制光的偏振方向,从而实现图像的显示。
液晶显示屏中的液晶分子可以通过电场的作用改变其排列状态,进而改变光的偏振方向,实现图像的变化。
五、光的反射与折射的偏振效应当光线从一种介质射向另一种介质时,会发生反射和折射的现象。
在特定角度下,入射光线的偏振方向会影响其反射和折射的方向和强度,从而产生偏振效应。
六、光的散射的偏振效应当光线通过介质中的颗粒或分子时,会发生散射现象。
散射光中的偏振方向与入射光的偏振方向有关,不同的散射角度和介质颗粒的大小会影响散射光的偏振效应。
七、偏振滤光片的效应偏振滤光片可以选择性地通过或阻挡特定方向的偏振光。
通过调整偏振滤光片的方向和角度,可以控制光的偏振方向和强度,从而实现光的偏振效应。
八、光在水面上的偏振现象当光线以一定角度入射到水面上时,会发生反射和折射的现象。
入射光的偏振方向会影响反射和折射光的偏振方向和强度,从而产生光在水面上的偏振现象。
九、光在薄膜上的干涉现象当光线通过薄膜时,会发生干涉现象。
薄膜的厚度和折射率会影响干涉条纹的形成和移动,从而产生光的偏振现象。
十、光的旋光现象光的旋光现象是指光在某些物质中传播时,会使光的偏振方向发生旋转。
这种现象是由于物质分子的手性结构导致的,使得光的偏振方向发生改变。