光的偏振,反射和折射产生偏振和双折射现象
- 格式:pdf
- 大小:3.10 MB
- 文档页数:28
偏振光与双折射实验教案偏振与双折射实验教案赵东⼀、实验⽬的1、观察光在各向异性晶体中传播时产⽣的双折射现象,了解其规律;2、观察光的偏振现象,加深对各种偏振光的概念和规律的理解;3、掌握⼀些偏振光的产⽣和检验⽅法,以及了解相关仪器件的原理和使⽤⽅法。
⼆、实验原理1、光的横波性与偏振光的横波性是指光波的电⽮量与光的传播⽅向垂直。
在传播⽅向上垂直的⼆维空间中,电⽮量可能有各种各样的振动状态,我们称之为偏振。
简⽽⾔之,振动⽅向与传播⽅向垂直的波,叫横波。
光的偏振态可分为5种:⾃然光,线偏振光,部分偏振光,圆偏振光,椭圆偏振光。
后⾯将⼀⼀介绍。
2、⼆⾊性与偏振⽚(polarizer) 2.1⼆⾊性有的晶体对不同⽅向的电磁振动具有选择吸收的性质,当光照射到这种晶体的表⾯上时,振动的电⽮量与光轴(光轴的概念在后⾯介绍)平⾏时,被吸收得⽐较少,光可以较多地通过;电⽮量与光轴垂直时,被吸收得较多。
⽐如电⽓⽯晶体。
这种性质叫⼆⾊性。
2.2偏振⽚的制造这⾥先插⼊对偏振⽚的介绍。
能产⽣线偏振光(线偏振光的概念见后⾯)的晶⽚叫偏振⽚。
电⽓⽯对电⽮量垂直和平⾏与光轴⽅向的光的吸收程度的差别还不够⼤,我们要做的理想偏振⽚的要求是,最好能使⼀个⽅向的振动全部吸收掉。
在这⼀点上,碘硫酸奎宁晶体的性能要⽐电⽓⽯好得多,但是它的晶体很⼩。
通常的偏振⽚是在拉伸了的塞璐璐基⽚上蒸镀⼀层硫酸奎宁晶粒,基⽚的应⼒可以使晶粒的光轴定向排列起来,这样可得到⾯积很⼤的偏振⽚。
⼩知识:1852年海拉巴斯(Herapath)发现碘硫酸奎宁晶体有⼆向⾊性,这⼀发现被布儒斯特写⼊书中,当时在哈佛就读的学⽣兰德(Land)读了布儒斯特的书后,对此很感兴趣。
⼏年后,兰德发明⼀种⽅法,把细⼩的针状的碘硫酸奎宁晶体排列在塞璐璐基⽚上,制成了⾯积很⼤的线偏振器。
这是⼀种价廉物美的偏振⽚,⾄今还⼴泛运⽤科研和教学中。
2.3偏振⽚的透振⽅向偏振⽚上能透过的振动⽅向称为它的透振⽅向。
光的偏振与双折射现象光是一种电磁波,可以在真空中以及各种介质中传播。
而在传播过程中,光的偏振与双折射现象是光波特性中非常重要的内容。
本文将介绍光的偏振与双折射现象的基本概念和原理。
一、光的偏振偏振是指光波中的电场矢量在传播方向上的振动方式。
光波可分为非偏振光、偏振光和部分偏振光。
1. 非偏振光:光波中的电场矢量在各个方向上均匀分布,没有特定的振动方向。
2. 偏振光:光波中的电场矢量在某一特定方向上振动,而在其他方向上几乎无振动。
常见的偏振光有线偏振光和圆偏振光。
3. 部分偏振光:光波中的电场矢量在多个方向上振动,但是其中有一个主要的振动方向。
光的偏振可以通过偏振片进行实验观察和分析。
偏振片是由特殊材料制成的,在某一方向上只允许特定方向的电场矢量通过。
当非偏振光通过偏振片时,只有与偏振片振动方向一致的电场矢量能通过,其他方向上的电场矢量则被滤除,从而得到偏振光。
二、双折射现象双折射指的是某些特定材料在光线入射时会发生两个不同速度的折射现象。
这是由于光在这些材料中的传播速度与光的偏振方向有关。
具有双折射现象的材料被称为双折射材料,其中最常见的是石英晶体。
当光线垂直于晶体的光轴方向传播时,不会发生双折射现象;但当光线不垂直于光轴时,就会发生双折射现象。
双折射材料可以通过偏振光的传播方向和光轴方向之间的夹角来进行分类。
根据夹角的不同,可以分为正常双折射和畸变双折射。
1. 正常双折射:在该类材料中,晶体的光轴方向与偏振光的振动方向垂直。
在光线通过材料时,会出现两个折射光束,一个按照正常的折射定律折射(常光),另一个则不按照常规定律折射(特光)。
2. 畸变双折射:在该类材料中,晶体的光轴方向与偏振光的振动方向不垂直。
在光线通过材料时,除了产生两个折射光束外,还会出现不同程度的畸变现象,导致光的传播路径变得复杂。
三、应用领域1. 光学器件:光的偏振与双折射现象在光学器件的设计中起着重要作用。
例如,偏振片可以用于光的调节、滤波和分析等方面。
光的偏振实验方法总结光的偏振是指光波在传播过程中的振动方向。
而光的偏振实验方法是一种用来研究光的偏振性质的实验手段。
本文将对常见的光的偏振实验方法进行总结和介绍。
I. 光的偏振现象简介在探讨光的偏振实验方法之前,我们首先需要了解光的偏振现象。
光的偏振可以分为线偏振、圆偏振和非偏振光。
线偏振光是指光波振动方向只存在于一个平面内,而圆偏振光则是指振动方向按照圆周轨迹运动。
非偏振光则是指振动方向在各个方向上都有。
II. 光的偏振实验方法1. 波片法波片法是一种常见且重要的光的偏振实验方法。
其原理基于光的偏振现象,通过使用不同的波片,可以改变光波的偏振状态。
常见的波片有半波片和四分之一波片。
在实验中,我们可以通过旋转波片来改变光波的振动方向,从而实现光的偏振状态的调节和观察。
2. 偏振片法偏振片法是另一种常用的光的偏振实验方法。
它利用了具有特定光学性质的偏振片,可以选择性地透过或吸收特定方向上的光振动。
实验中,可以通过叠加两个偏振片,并调节它们之间的夹角,来观察光的偏振状态的变化。
3. 布儒斯特角测量法布儒斯特角测量法是一种利用光的偏振现象进行测量的方法。
根据布儒斯特定律,当入射光的折射角等于特定角度时,反射光变为全反射。
通过测量布儒斯特角,可以得到光的折射率以及光的偏振性质。
4. 双折射法双折射法是一种利用物质的双折射性质研究光的偏振现象的实验方法。
当光波通过具有双折射性质的物质时,会分离成两个不同方向振动的光波。
通过观察双折射晶体中不同方向光振动的现象,可以推测光的偏振状态。
5. 泽尼克斯板法泽尼克斯板是一种特殊的偏振装置,通过它可以产生特定的偏振状态。
在泽尼克斯板实验中,通过选择不同的泽尼克斯板以及旋转它们的方向,可以观察到光的偏振状态的变化。
III. 光的偏振实验的应用光的偏振实验方法在科学研究和实际应用中具有广泛的应用价值。
以下为一些常见应用领域:1. 光学仪器:光的偏振实验方法可以帮助设计和制造光学仪器,如偏振镜、偏振滤波器等。
一、实验目的1. 观察光的偏振现象,加深对光的波动性质的认识。
2. 掌握产生和检验偏振光的方法和原理。
3. 学习使用偏振片、波片等光学元件,了解其工作原理。
4. 验证马吕斯定律,研究偏振光透过两个偏振器后的光强与夹角的关系。
二、实验原理光是一种电磁波,其电场矢量E的振动方向决定了光的偏振状态。
自然光中的电场矢量在垂直于光传播方向的平面内振动方向是随机的,而偏振光则具有特定的振动方向。
偏振光可以通过以下几种方法产生:1. 利用起偏器(如偏振片)将自然光变为线偏振光。
2. 利用双折射现象将一束光分解为两束具有不同振动方向的偏振光。
3. 利用反射、折射等光学现象使自然光部分偏振。
检验偏振光的方法有:1. 利用检偏器(如偏振片)观察光强变化。
2. 利用光电池、光电倍增管等光电探测器检测偏振光。
马吕斯定律指出,当完全线偏振光通过检偏器时,光强I与入射光强I0、检偏器透光轴与入射线偏振光的光矢量振动方向的夹角θ的关系为:I = I0 cos²θ。
三、实验仪器与用具1. 中央调节平台和两臂调节机构2. 半导体激光器和电源3. 偏振片(两块)4. 1/4波片(两块)5. 光电倍增管探头及电源6. 光电流放大器7. 光具座8. 白屏9. 刻度盘四、实验步骤1. 将激光器、偏振片、1/4波片和光电倍增管探头依次放置在光具座上,调整光路,使激光束通过偏振片后成为线偏振光。
2. 将线偏振光通过1/4波片,观察光强变化,记录数据。
3. 将1/4波片旋转一定角度,观察光强变化,记录数据。
4. 将线偏振光通过第二个偏振片,观察光强变化,记录数据。
5. 将第二个偏振片旋转一定角度,观察光强变化,记录数据。
6. 根据记录的数据,验证马吕斯定律。
五、实验结果与分析1. 观察到线偏振光通过1/4波片后,光强发生变化,说明1/4波片具有改变光偏振状态的作用。
2. 当1/4波片旋转一定角度时,光强也随之变化,说明光强与偏振片透光轴与入射线偏振光的光矢量振动方向的夹角θ有关。
偏光显微镜原理方法偏光显微镜(Polarizing Microscope)是一种用于观察具有双折射性质的物质的显微镜。
它利用偏振光原理和双折射现象,在透射和反射条件下观察样品的结构和性质。
以下是偏光显微镜的原理和方法的详细介绍。
1.偏振光原理:正常光是沿所有方向传播的不偏振光,而偏振光是只沿一个方向振动的光。
偏振光通过偏振片(或称偏光镜)过滤器的作用,只允许同一方向的振动通过,在偏光显微镜中常用偏光片作为偏振片。
2.双折射现象:一些晶体材料具有双折射性质,即当光线通过晶体时,光线会分为普通光和振动方向与普通光不同的振动光两部分。
这是由于晶体内部结构对光的偏振方向的影响。
在偏光显微镜中,用偏振片控制光的振动方向,再通过各种光接收器件分离光的不同振动方向,可以观察到样品结构的细节和特性。
1.透射观察:透射观察是指将光源通过偏光片和透射物镜照射到样品上,并使用偏振片作为检测光的光源。
在透射光经过样品后,通过分光板和偏振片控制光的偏振角度,再由目镜观察样品。
透射观察可以用于分析晶体的各种光学性质,如晶体的双折射性质和晶体内部的晶格结构等。
2.反射观察:反射观察是指用反射光来观察样品。
可以选择直接照射样品或使用偏振镜来控制光的偏振角度。
反射观察可以用于分析非透明样品的表面形貌和结构特征,如金属和金属合金的晶体结构、树脂和纤维材料的内部结构等。
3.旋光度测定:通过偏光显微镜观察样品旋光度的方法称为旋光度测定。
通过旋光板将样品的旋光角度转换为光的偏振角度,然后通过偏振片和目镜观察样品的旋光程度。
这种方法常用于对具有旋光性质的物质进行定性和定量分析,如蔗糖、酒精和氨基酸等。
在进行偏光显微镜观察时,还需要进行样品的处理和样品盖玻璃的选择:1.样品处理:样品为非透明或有封闭的样品时,需要将样品加工成薄片或薄片,并使用微小切割工具和研磨机进行处理,以便光线可以透过样品并在显微镜中观察到。
2.样品盖玻璃:样品盖玻璃通常是指用于封装样品并保护样品的透明玻璃片。
光的偏振与折射率光的偏振是指光波在传播过程中,振动方向只沿着某一个特定的方向进行的现象。
而折射率是指光线在由一种介质射入另一种介质时,由于介质的密度不同而使光线发生偏折的性质。
1. 光的偏振光的偏振现象是由于光波的电矢量在传播方向上只沿着特定振动方向进行的结果。
正常光是一种无偏振的光,它的电矢量在所有方向上都有均匀的分布。
然而,当光经过特定的材料或结构时,它可能会发生偏振现象。
1.1 偏振光的产生偏振光可以通过偏振片的使用来产生。
偏振片是一种具有特殊结构的材料,可以选择性地吸收或透过特定方向上的光。
当正常光通过偏振片时,只有与偏振片特定方向相匹配的光能够透过,其他方向上的光则会被吸收或阻挡。
1.2 光的偏振方向光的偏振方向可以分为线偏振、圆偏振和椭偏振。
线偏振光的电矢量只沿着一个方向进行振动,而圆偏振光的电矢量沿着圆形轨迹进行振动。
椭偏振光是介于线偏振和圆偏振之间的光,它的电矢量在一个平面上完成一个椭圆形轨迹。
2. 折射率折射率是光线由一种介质进入另一种介质时发生偏折的度量。
它表示了光在两种介质中传播速度的差异。
不同的介质具有不同的折射率,导致光线被折射或偏折的现象。
2.1 折射定律折射定律描述了光线在从一种介质进入另一种介质时的偏折行为。
根据折射定律,光线的入射角和折射角之间的正弦值之比等于两种介质的折射率之比。
这一定律可以用数学公式表示为:n₁sinθ₁ =n₂sinθ₂,其中n₁和n₂分别表示两种介质的折射率,θ₁和θ₂分别表示入射角和折射角。
2.2 光在不同介质中的传播速度折射率与光在介质中的传播速度有密切关系。
光速在真空中的数值为常数,但在不同介质中,光速会发生变化。
当光从光密介质进入光疏介质时,其中散射介质的折射率较小,光的传播速度加快;相反,当光从光疏介质进入光密介质时,光的传播速度减慢。
2.3 折射率与光的密度折射率还与光的密度有关。
光在不同介质中传播时,由于介质的密度变化,光的传播速度也会发生改变。
大学物理中的光的偏振光的振动方向与偏振现象在大学物理中,光是一个重要的研究对象。
它的性质和现象被广泛研究和应用。
其中,光的偏振现象是一个引人注目的课题,它与光的振动方向密切相关。
本文将对大学物理中的光的偏振光的振动方向与偏振现象展开论述。
一、光的偏振光的振动方向光是一种电磁波,具有电场和磁场的振动。
在传播过程中,光的电场和磁场垂直于传播方向,在空间中形成一个电矢量和磁矢量的交叉振动。
这种交叉振动的方向就是光的偏振方向,也称为光的振动方向。
光的振动方向可以在不同平面上进行,我们称之为线偏振光。
常见的线偏振光有水平偏振光、垂直偏振光、左旋偏振光和右旋偏振光。
水平偏振光和垂直偏振光的振动方向分别沿着水平和垂直的方向,左旋偏振光和右旋偏振光的振动方向则绕着传播方向旋转。
二、光的偏振现象光的偏振现象指的是光在与物体接触或经过物质介质时,会发生振动方向的改变。
这一现象主要与介质的性质以及光的入射角度有关。
1. 介质的探测性质介质对光的振动方向的选择性吸收作用称为偏振。
不同的介质对不同方向的振动光有不同的吸收度,导致振动方向被选择性地吸收和消除。
光通过经过介质后,原本包含各个方向振动的非偏振光变成了具有特定振动方向的偏振光。
2. 偏振器为了研究和应用偏振光,人们设计了偏振器来选择或产生具有特定振动方向的光。
偏振器是一种能够透过特定方向光的光学装置。
通过偏振器,我们可以选择性地得到特定方向的偏振光。
3. 双折射某些物质在光的传播过程中会改变其折射率,导致光的传播速度和波长的变化。
这种现象被称为双折射。
双折射现象使得经过此类物质的光出现了两个不同的折射光线,其振动方向也会发生变化。
三、光的偏振现象的应用光的偏振现象在生活和科学研究中有着广泛的应用。
1. 偏振光在偏振镜中的应用偏振镜是一种光学器件,能够透过或者阻挡特定方向的偏振光。
偏振镜应用于太阳镜、摄影镜头等领域,能够有效减少光的反射和折射,提高图像的清晰度。
2. 光的偏振在液晶显示技术中的应用液晶显示屏的原理就是利用光的偏振和双折射现象。
光的偏振与双折射现象光是一种电磁波,可以表现出多种性质,其中偏振和双折射现象是光学中的重要现象。
本文将介绍光的偏振和双折射现象的原理与应用。
一、偏振现象偏振是指光波传播过程中,光的振动方向发生了限制或者变化的现象。
光的偏振可以通过偏光片来实现。
偏光片是一种特殊的光学材料,可以选择性地传递特定方向上的光振动,而将其他方向上的振动滤除掉。
常见的偏光片有偏振片和偏振镜。
偏振现象的应用十分广泛。
在摄影领域,使用偏振镜可以有效地减少光的反射,增强色彩鲜艳度和对比度。
在液晶显示领域,液晶屏通过对光进行偏振来实现显示效果。
此外,偏振现象也在光通信、材料研究和光学器件制造等领域得到广泛应用。
二、双折射现象双折射现象是指光在某些特定材料中传播时,分裂成两个独立的光线的现象。
这是由于这些材料的晶体结构对于光波的传播方向有特殊的影响。
双折射现象也称为光的双折射或者倍频效应。
双折射现象最早被发现于石英晶体。
当光通过石英晶体时,会分裂成一个普通光线和一个额外光线,它们分别遵循普通折射定律和额外折射定律。
这两条光线有不同的折射率和传播速度,因此会呈现出不同的传播路径和相位差。
这种现象可以被用来制造光学器件,如偏光棱镜和波片。
双折射现象在光学领域具有重要应用。
例如,在显微镜中,使用偏光器和波片可以增强对样品内部结构的观察。
在激光技术中,偏折光的双折射可以用来改变激光的传输特性和调节光强。
总结光的偏振和双折射现象是光学中的重要现象。
它们不仅有基础研究意义,而且在光学器件和技术应用中起到重要作用。
深入了解和掌握光的偏振和双折射现象,将有助于我们更好地理解光的本质和应用。
光的偏振与双折射光是电磁波的一种,它具有振动方向的特性,这种特性被称为偏振。
同时,当光通过一些特定的材料时,由于其晶体结构的影响,光会发生折射现象并被分割成两个方向不同的光线,这被称为双折射。
本文将深入探讨光的偏振和双折射的原理和应用。
一、光的偏振偏振是指光在传播过程中的振动方向。
正常光是做直线运动的,其中振动方向中的任意一方向都是等概率的。
当光经过某些介质或特定的装置时,其中某些振动方向的成分会被选择性地消除,只有特定方向的振动成分保留下来,这种光就成为偏振光。
具体来说,偏振光可以分为线偏振光和圆偏振光两种。
线偏振光是指光的振动方向沿着一条直线的光,可以通过偏振片进行过滤和调整。
圆偏振光是指光的振动方向沿着一个圆锥面上的某条直线旋转的光。
光的偏振对于某些领域具有重要意义。
在光学仪器中,通过使用偏振片可以减少或消除光的反射和干扰,提高成像的质量。
在光通信中,利用偏振来传输信息可以提高信号传输的稳定性和可靠性。
在3D电影技术中,通过控制光的偏振状态可以实现不同的景深效果,呈现出更真实的观影体验。
二、双折射现象当光传播过程中穿过某些晶体材料时,由于晶体结构的特殊性,光会被分成两个方向不同的光线,这种现象被称为双折射。
具体来说,双折射可分为正常双折射和非正常双折射两种情况。
正常双折射是指光的传播方向不会发生改变,只是光的传播速度不同,造成光线的折射角发生变化。
非正常双折射则是光的传播方向发生明显偏离,光线会分成两个方向完全不同的光线。
双折射现象使得光在经过双折射晶体时发生了分离和偏移,这在某些应用中具有重要的意义。
例如,各种仪器和设备中的偏振器件是基于双折射现象制作的,通过调整双折射晶体的结构可以控制光的传播路径和偏振状态。
三、光的偏振与双折射的应用根据光的偏振和双折射的原理,我们可以将其应用于许多领域。
以下是一些常见的应用领域:1. 光学器件:偏振片、偏振镜和各种光学滤波器等,通过选择性地透过或排除光的特定偏振成分,用于光学成像、干扰消除等。
光的偏振与双折射光是一种电磁波,当光通过某些介质时,它的振动方向会发生变化。
这就是光的偏振现象。
同时,某些晶体还具有双折射特性,即光在进入晶体时会分裂成两束光线,这也与光的偏振有关。
1. 光的偏振现象光的偏振是指光波中的电场矢量在空间中振动的方向。
一般情况下,光是以各个方向振动的无偏振光,但当光通过特定介质时,电场矢量的振动方向会被限制为特定的方向,这种现象称为光的偏振。
一个常见的产生偏振光的方法是通过偏振片。
偏振片是一种由有机高分子或无机晶体制成的透明薄片,其中的分子或晶格结构能够选择性地吸收或透过特定方向上的光振动。
当光通过偏振片时,与偏振片相垂直的振动方向的光会被吸收或减弱,而与偏振片平行的振动方向的光则可以透过。
2. 马吕斯定律与双折射除了偏振现象,光还具有双折射特性。
在某些晶体中,光通过时会发生不同的折射现象,即一个入射光线会分裂成两束光线,并沿不同的方向传播。
这种现象被称为双折射。
双折射的性质可以由马吕斯定律描述。
马吕斯定律规定,当光线从一个介质(称为主光轴)进入具有双折射性质的晶体时,将会被分为两束光线,一束沿主光轴方向传播,称为普通光线;另一束则沿着与主光轴垂直的方向传播,称为非普通光线或称为振动光线。
这两束光线的传播速度和折射率都不同,因此它们在晶体中的传播路径也会发生偏离或弯曲。
当这两束光线再次离开晶体时,它们的振动方向也会发生改变,这进一步与光的偏振相关。
3. 光的偏振与双折射的应用光的偏振和双折射现象在许多领域都有重要的应用。
以下是一些相关的应用举例:3.1 光学器件偏振片广泛应用于各种光学器件中。
例如,在摄影领域中,偏振片可以用于控制光线的入射角度和减少反光;在液晶显示器中,偏振片则用于调控和控制液晶分子的取向,从而实现图像的显示。
3.2 光通信在光纤通信中,光的偏振也是一个重要的考虑因素。
由于光信号本身也是具有偏振的,因此需要采取相应的措施来保持光信号的传输质量。
通过使用偏振保持器和偏振控制器,可以控制和调整光信号的偏振状态,以确保光信号在光纤中的传输稳定性和可靠性。
生活中光的偏振现象例子生活中光的偏振现象例子如下:一、太阳光的偏振现象太阳光在大气中传播时会发生偏振现象。
当太阳光以一定角度入射到大气中时,由于大气分子对光的散射,使得光的方向发生改变,从而产生偏振现象。
二、偏振墨镜的偏振效应偏振墨镜是利用偏振光的特性来过滤掉特定方向的光线。
当光线通过偏振墨镜时,只有与墨镜偏振方向相同的光线可以透过,其他方向的光线则被滤除,从而产生偏振效应。
三、光的双折射现象双折射是指光在某些晶体中传播时,会发生折射率不同的现象。
这种现象是由于晶体内部原子结构的非均匀性导致的,使得光在晶体中传播时会分为两束光,即快光和慢光。
四、液晶显示屏的偏振技术液晶显示屏利用液晶分子的排列状态来控制光的偏振方向,从而实现图像的显示。
液晶显示屏中的液晶分子可以通过电场的作用改变其排列状态,进而改变光的偏振方向,实现图像的变化。
五、光的反射与折射的偏振效应当光线从一种介质射向另一种介质时,会发生反射和折射的现象。
在特定角度下,入射光线的偏振方向会影响其反射和折射的方向和强度,从而产生偏振效应。
六、光的散射的偏振效应当光线通过介质中的颗粒或分子时,会发生散射现象。
散射光中的偏振方向与入射光的偏振方向有关,不同的散射角度和介质颗粒的大小会影响散射光的偏振效应。
七、偏振滤光片的效应偏振滤光片可以选择性地通过或阻挡特定方向的偏振光。
通过调整偏振滤光片的方向和角度,可以控制光的偏振方向和强度,从而实现光的偏振效应。
八、光在水面上的偏振现象当光线以一定角度入射到水面上时,会发生反射和折射的现象。
入射光的偏振方向会影响反射和折射光的偏振方向和强度,从而产生光在水面上的偏振现象。
九、光在薄膜上的干涉现象当光线通过薄膜时,会发生干涉现象。
薄膜的厚度和折射率会影响干涉条纹的形成和移动,从而产生光的偏振现象。
十、光的旋光现象光的旋光现象是指光在某些物质中传播时,会使光的偏振方向发生旋转。
这种现象是由于物质分子的手性结构导致的,使得光的偏振方向发生改变。