高考数学 参数方程
- 格式:doc
- 大小:32.00 KB
- 文档页数:5
高考数学知识点参数方程高考数学知识点:参数方程数学在高考中占据着重要的地位,其中一个重要的知识点就是参数方程。
参数方程是描述物体运动以及数学曲线的一种有效方式。
本文将从基本概念开始,逐步深入探讨参数方程的相关内容。
一、什么是参数方程?参数方程是一种使用参数表示变量关系的表达方式。
在平面直角坐标系中,我们通常使用 x 和 y 坐标轴来表示一个点的位置。
但在有些情况下,一个点的位置需要通过另外的变量来确定。
例如,我们可以使用时间作为参数来描述物体的运动轨迹。
二、参数方程的表示方法通常,参数方程可以用以下形式表示:x = f(t)y = g(t)其中,f(t) 和 g(t) 是关于参数 t 的函数。
通过不同的 t 值,我们可以得到一组点 (x, y) 的坐标。
三、平面曲线的参数方程1. 点的轨迹考虑一个点 P(x, y),沿着一条轨迹运动。
如果我们能够找到一个参数 t,能够唯一确定点的位置,那么我们可以使用参数方程来描述点的轨迹。
2. 直线的参数方程对于直线,我们可以使用参数方程表示。
例如,一条直线的参数方程可以写作:x = at + by = ct + d其中 a、b、c、d 是常数。
3. 圆的参数方程对于一个圆,我们可以使用参数方程表示。
以原点 O 为圆心,半径为 r 的圆的参数方程可以写作:x = r*cos(t)y = r*sin(t)其中,t 是参数,范围在[0, 2π]。
四、参数方程的应用1. 物体运动在物理学中,参数方程常常用于描述物体的运动轨迹。
例如,一个抛体运动的轨迹可以使用参数方程来表示。
2. 曲线绘制在计算机图形学中,参数方程可以用于生成各种复杂的曲线。
通过调整参数的取值,我们可以绘制出各种形状的曲线,如椭圆、双曲线等。
3. 函数的参数化有些函数无法用解析式直接表示,但可以通过参数方程来表示。
例如,钟摆的运动可以通过一个参数方程来描述。
五、参数方程的优点和不足1. 灵活性参数方程具有很大的灵活性,可以描述出各种复杂的曲线。
高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。
数学高考知识点参数方程在高考数学中,参数方程是一个重要的知识点。
参数方程是指用参数表示变量之间的关系,并通过参数的变化来描述这种关系。
参数方程不仅在数学中有着广泛的应用,同时也在物理、工程等多个领域中发挥着重要的作用。
一、参数的引入参数方程的引入可以简化问题的表达和计算。
举个例子,考虑一个直线上的点P,可以用其横坐标x和纵坐标y来表示。
但是如果直线是一个曲线,那么就无法简单地用一个表达式来表示。
这时,我们可以引入一个参数t,用t来表示点P在曲线上的位置。
于是,点P的横纵坐标可以分别表示为x(t)和y(t),这就是一个参数方程。
二、参数方程的优势相比于常规的函数方程,参数方程具有一些独特的优势。
首先,参数方程的描述更加直观。
通过引入参数,我们可以更加清晰地描述出几何图形的运动轨迹。
其次,参数方程使得求解问题更加简单。
通过参数的引入,我们可以将一个复杂的问题简化为多个参数方程的求解,提高了问题的可解性。
三、参数方程的应用参数方程在几何、物理、工程等领域中有着广泛的应用。
在几何学中,参数方程可以用来描述曲线、曲面的形状和位置。
例如,圆的参数方程可以表示为x = r*cos(t),y = r*sin(t),其中r为半径,t为参数。
在物理学中,参数方程可以用来描述物体的运动轨迹。
例如,一个抛物线的参数方程可以表示为x = v*cos(θ)*t,y =v*sin(θ)*t - (1/2)*g*t^2,其中v为初速度,θ为抛物线与水平方向的夹角,g为重力加速度。
在工程领域中,参数方程可以用来设计和分析曲线的形状和曲率。
例如,在建筑设计中,可以利用参数方程来描述建筑物的外观。
四、求解参数方程在高考中,我们经常会遇到求解参数方程的问题。
求解参数方程的关键在于确定参数的取值范围和方程的解析形式。
一般来说,我们可以通过限定参数的取值范围,确定曲线或曲面的一部分。
并且,我们可以通过消元、代入等数学方法,将参数方程转化为常规的函数方程,以便求解。
坐标系与参数方程高考知识点 2024数学2024年的高考数学考试中,坐标系与参数方程是一个重要的知识点。
本文将对坐标系和参数方程的概念、性质以及应用进行详细的论述。
一、坐标系的概念与性质坐标系是一种用来确定平面或空间中点位置的方法。
在平面上,常用的坐标系有直角坐标系和极坐标系;在空间中,常用的坐标系有直角坐标系和球坐标系。
1. 直角坐标系:直角坐标系是平面上最常用的一种坐标系,使用两个数值来确定平面上的点的位置。
我们用横坐标x和纵坐标y来表示一个点的位置,记作P(x, y)。
直角坐标系具有以下性质:- 原点:坐标系的交叉点称为原点,表示为O(0, 0)。
- 坐标轴:直角坐标系由两条相互垂直的直线组成,分别称为x轴和y轴。
- 单位长度:直角坐标系中x轴和y轴的单位长度相等。
2. 极坐标系:极坐标系是另一种表示点位置的方法,它使用距离和角度来确定点的位置。
对于平面上的点P,极坐标系表示为(r, θ),其中r为点P到原点的距离,θ为点P与正半轴的夹角。
极坐标系具有以下性质:- 极轴:极坐标系有一条特殊的直线称为极轴,通常与x轴重合。
- 极角:极坐标系中,与极轴正向的夹角称为极角,通常用θ表示。
- 极径:点P到原点的距离称为极径,用r表示。
二、参数方程的概念与性质参数方程是用参数的变化规律来确定点的位置的方法。
它通常由一组含有参数的方程组成,通过给参数赋值,可以确定出点的坐标。
在坐标系中,参数方程可以用来表示一条曲线或曲面。
常见的参数方程有平面曲线的参数方程和空间曲线的参数方程。
1. 平面曲线的参数方程:平面曲线的参数方程通常用两个参数t、u来表示。
例如,曲线C可以由参数方程表示为:x = f(t)y = g(t)其中t的取值范围确定了曲线上点的位置。
平面曲线的参数方程具有以下性质:- 曲线上的点的坐标是参数t的函数,参数t的值域决定了曲线的范围。
- 在参数方程中,可以通过改变参数的取值来绘制不同部分的曲线。
高三数学参数方程知识点数学是一门抽象而又具有普适性的学科,它的应用广泛,对于高三学生来说,数学的学习变得更加重要和密集。
本文将着重介绍高三数学中的参数方程知识点,帮助学生全面理解并有效记忆这一概念。
一、参数方程的定义与特点参数方程是指用一个参数表示所有的自变量和因变量之间的函数关系。
通常用t作为参数,表示自变量的取值范围。
在参数方程中,将自变量和因变量用参数表示,使得函数的自变量和因变量之间的关系更为灵活。
二、参数方程的表示方法参数方程的表示方法有多种形式,常见的有向量表示法和分量表示法。
1. 向量表示法在向量表示法中,自变量和因变量都用向量表示。
例如,对于平面上的一个点P,其参数方程可表示为:P(t) = (x(t), y(t))其中,x(t)和y(t)分别表示点P的x坐标和y坐标,t为参数。
2. 分量表示法在分量表示法中,将自变量和因变量都分别表示为关于参数t的函数。
例如,对于平面上的一个点P,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)分别表示x和y的函数,t为参数。
三、参数方程应用领域参数方程在数学中有广泛的应用,特别是在曲线的研究中起到重要作用。
下面分别介绍参数方程在平面曲线和空间曲线中的应用。
1. 平面曲线参数方程在平面曲线中的应用非常广泛,常见的曲线方程如圆、椭圆、抛物线、双曲线等都可以用参数方程表示。
通过参数方程,可以对曲线的形状和性质进行更深入的研究。
例如,对于圆的参数方程为:x = a*cos(t)y = a*sin(t)其中,a为半径,t为参数。
通过改变参数t的取值范围,可以绘制出一条圆的完整轨迹。
2. 空间曲线参数方程在空间曲线的研究中也起到重要作用,例如,直线、曲线、螺旋线等都可以通过参数方程来表示。
通过参数方程,可以描述物体在空间中的运动轨迹,从而研究物体的运动方式和变化规律。
四、参数方程的解法当给定一个参数方程时,我们需要求解参数方程对应的曲线方程或图形。
高考数学参数方程知识点整理归纳高中数学知识点之参数方程定义一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。
高中数学知识点之参数方程圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数直线的参数方程 x=x+tcosa y=y+tsina,x,y和a表示直线经过(x,y),且倾斜角为a,t为参数高考数学必考知识点1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)学好高中数学的方法有哪些1、有良好的学习兴趣(1)课前预习,对所学知识产生疑问,产生好奇心。
高考参数方程知识点归纳高考数学中的参数方程作为一个重要的知识点,是考查学生对于坐标系、直线方程和解析几何的基本理解和应用能力的一种方式。
参数方程是通过引入参数的方式来描述一条曲线或者曲面的方程,它与直角坐标系有着密切的联系,可以方便地表达出不同形状和特征的图形。
在这篇文章中,我们将对高考中常见的参数方程知识点进行归纳和总结。
1. 参数方程的基本概念和应用参数方程是一种用参数的形式来表示曲线或者曲面上的点的方程,它通常以参数的形式给出,通过改变参数的取值范围,可以得到不同位置的点,从而形成一条曲线或者曲面。
在解析几何中,参数方程可以用来描述直线、圆、椭圆、抛物线、双曲线等各种不同形状的曲线。
2. 参数方程与直线的关系直线可以通过参数方程的形式来表示,这种表示方式可以使得直线的方程更加简洁和直观。
一般而言,一条直线在参数方程中可以表示为x=at+b,y=ct+d,其中a、b、c、d 是常数。
通过给定不同的参数值,我们可以得到直线上的不同点,从而构成整条直线。
3. 参数方程与曲线的关系参数方程在描述曲线时可以给出曲线上每个点的坐标,从而实现对曲线形状的准确描述。
例如,给定一个参数方程 x=f(t),y=g(t),通过给定不同的参数 t 值,我们可以获得曲线上的不同点的坐标。
参数方程不仅可以表达直线,还可以表达各种曲线,如圆、椭圆、抛物线、双曲线等。
4. 参数方程的转换和应用有时候,我们需要将参数方程转换为直角坐标方程,或者将直角坐标方程转换为参数方程。
对于参数方程转换为直角坐标方程,我们可以通过将参数方程中的参数表示用 x、y 表示,然后通过联立方程求解得到直角坐标方程。
而对于直角坐标方程转换为参数方程,我们可以通过引入参数来对直角坐标进行参数化,从而得到参数方程。
5. 参数方程与面积的计算通过参数方程,我们还可以计算曲线所围成的面积。
对于曲线上的两个相邻点 P 和 Q,我们可以用线段 PQ 所围成的面积近似代替曲线围成的面积,并且随着线段 PQ 的长度逐渐缩小,所得到的近似值也会越来越接近实际面积。
第二节参数方程1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫做普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ).参数方程与普通方程互化的注意点(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性. (2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同.3.直线、圆与椭圆的普通方程和参数方程轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎝⎛⎭⎫α≠π2,点斜式⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆(x -a )2+(y -b )2=r 2 ⎩⎪⎨⎪⎧ x =a +r cos θ,y =b +r sin θ(θ为参数) 椭圆 x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数) [熟记常用结论]经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上的两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=⎪⎪⎪⎪t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、选填题1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析:选B 由⎩⎪⎨⎪⎧ x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.若直线l :⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数)与曲线C :⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数)相切,则实数m 的值为( )A.-4或6B.-6或4C.-1或9D.-9或1解析:选A 由⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数),得直线l :2x +y -1=0,由⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数),得曲线C :x 2+(y -m )2=5,因为直线l 与曲线C 相切,所以圆心到直线的距离等于半径,即|m -1|22+12=5,解得m =-4或m =6.故选A.3.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=04.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),则它们的交点坐标为________.解析:消去参数θ得普通方程为x 25+y 2=1(0≤y ≤1),表示椭圆的一部分.消去参数t 得普通方程为y 2=45x ,表示抛物线,联立两方程,可知两曲线有一个交点,解得交点坐标为⎝⎛⎭⎫1,255.答案:⎝⎛⎭⎫1,255 5.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)考点一 参数方程与普通方程的互化 [基础自学过关][题组练透]1.已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ].2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45,当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.[名师微点]将参数方程化为普通方程消参的3种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.[提醒] 将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.考点二 参数方程的应用 [师生共研过关][典例精析](2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. [解] (1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1, 即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎫α为参数,π4<α<3π4.[解题技法]一般地,如果题目中涉及圆、椭圆上的动点或求最值范围问题时可考虑用参数方程,设曲线上点的坐标,将问题转化为三角恒等变换问题解决,使解题过程简单明了.[过关训练]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.考点三 参数方程与极坐标方程的综合应用 [师生共研过关][典例精析](2019·柳州模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.[解] (1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2 θ4=1,即ρ2=364+5sin 2θ.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2=364+5sin 2θ,曲线D 的直角坐标方程为x 2+y 2+2x -23y =0.(2)由点A ⎝⎛⎭⎫22,π4,得⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0, 设M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[解题技法]参数方程与极坐标方程综合问题的解题策略(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[过关训练](2018·合肥质检)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ. (1)求曲线C 的直角坐标方程;(2)已知直线l 过点 P (1,0)且与曲线C 交于A ,B 两点,若|PA |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝⎛⎭⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2,故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α, t 1t 2=-1,|PA |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.[课时跟踪检测]1.设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围. 解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1), 所以,当直线l 经过圆C 的圆心时,直线l 的斜率k =52.(2)由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数),得圆C 的圆心是C (1,-1),半径为2.由直线l 的参数方程⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),得直线l 的普通方程为y -4=k (x -3)(斜率存在), 即kx -y +4-3k =0.当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径, 即|5-2k |k 2+1<2,解得k >2120.即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞. 2.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tanα·x +2-tan α;当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.3.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2a cos θ(a >0).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得, 曲线C 的直角坐标方程为y 2=2ax (a >0).由直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l 的普通方程为x -y +2=0.(2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax ,得t 2-22at +8a =0,由Δ>0得a >4,设M ,N 对应的参数分别为t 1,t 2,则t 1+t 2=22a ,t 1t 2=8a , ∵|PM |,|MN |,|PN |成等比数列,∴|t 1-t 2|2=|t 1t 2|,∴(22a )2-4×8a =8a ,∴a =5.4.(2019·青岛调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|P Q |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|P Q |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 5.(2018·辽宁五校联合体模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)分别交C 1,C 2于A ,B 两点(A ,B 异于原点),当k ∈(1,3]时,求|OA |·|OB |的取值范围.解:(1)由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,可得(x -1)2+y 2=cos 2α+sin 2α=1,即C 1的普通方程为(x -1)2+y 2=1.方程ρcos 2θ=sin θ可化为ρ2cos 2θ=ρsin θ (*),将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*)式,可得x 2=y , 所以C 2的直角坐标方程为x 2=y . (2)因为A ,B 异于原点,所以联立⎩⎪⎨⎪⎧(x -1)2+y 2=1,y =kx ,可得A ⎝⎛⎭⎫2k 2+1,2k k 2+1;联立⎩⎪⎨⎪⎧y =kx ,y =x 2,可得B (k ,k 2). 故|OA |·|OB |=1+k 2·2k 2+1·1+k 2·|k |=2|k |.又k ∈(1,3],所以|OA |·|OB |∈(2,23].6.(2019·惠州调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ=tan θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝⎛⎭⎫22,-π4,求1|PA |+1|PB |的值. 解:(1)由曲线C 1的参数方程消去参数t 可得,曲线C 1的普通方程为4x +3y -2=0. 由x =ρcos θ,y =ρsin θ可得,曲线C 2的直角坐标方程为y =x 2.(2)由点P 的极坐标为⎝⎛⎭⎫22,-π4,可得点P 的直角坐标为(2,-2),∴点P 在曲线C 1上.将曲线C 1的参数方程⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数)代入y =x 2,得9t 2-80t +150=0,设t 1,t 2是点A ,B 对应的参数, 则t 1+t 2=809,t 1t 2=503>0.∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1+t 2||t 1t 2|=815. 7.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值. 解:(1)由直线l 过点A ,得2cos ⎝⎛⎭⎫π4-π4=a ,故a =2,则易得直线l 的直角坐标方程为x +y -2=0.由点到直线的距离公式,得曲线C 1上的点到直线l 的距离d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,⎝⎛⎭⎫其中tan φ=233,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =1+t sin 3π4(t 为参数).易知曲线C 1的普通方程为x 24+y 23=1.把直线l 1的参数方程代入曲线C 1的普通方程, 得72t 2+72t -5=0, 设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=-107, 根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 8.(2019·郑州模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-32t ,y =m +12t (t为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝⎛⎭⎫θ-π6,直线l 与圆C 交于A ,B 两点. (1)若OA ⊥OB ,求直线l 的普通方程;(2)设P (3,1)是直线l 上的点,若|AB |=λ|PC |,求λ的值.解:(1)消去参数t ,得直线l 的普通方程为x +3y =3+3m ,将圆C 的极坐标方程ρ=8cos ⎝⎛⎭⎫θ-π6的两边同时乘ρ, 得ρ2=43ρcos θ+4ρsin θ,则圆C 的直角坐标方程为(x -23)2+(y -2)2=16,所以圆C 的圆心C (23,2),半径为4,且经过原点O ,数形结合得,若OA ⊥OB ,则直线l 经过圆心C ,即23+3×2=3+3m ,解得m =3, 即直线l 的普通方程为x +3y -43=0. (2)由P (3,1)是直线l 上的点,得m =1,此时直线l 的参数方程为⎩⎨⎧x =3-32t ,y =1+12t (t 为参数),代入到圆C 的方程(x -23)2+(y -2)2=16中,得t 2+2t -12=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1t 2=-12,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4+48=213, 又|PC |=2,|AB |=λ|PC |,所以λ=13.。
参数方程一、知识结构1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=at y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tgα=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, |t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=a t y y at x x s i nc o s 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数) φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数)3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x yt gy x θρ二、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21) C.双曲线的一支,这支过(-1,21)D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sinθ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21 ∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty t x 2cos cosC.⎪⎩⎪⎨⎧-+==t t y tgt x 2cos 12cos 1 D .⎪⎩⎪⎨⎧+-==t t y tgt x 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sinθ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是( ) A.ρsinθ=2 B.ρcosθ=2C.ρcosθ=-2D.ρcosθ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sinθ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cosθ=ρ2=OPOB ,得ρcosθ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ 把ρ=22y x + ρcosθ=x ,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( ) A.两条射线 B.两条相交直线 C.圆 D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.三.高考演练1.已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.2.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)过曲线C2的左顶点且倾斜角为的直线l交曲线C1于A,B两点,求|AB|.3.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.4.(2014•新课标II)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程ρ=2cosθ,θ∈[0,].(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.5.(2015•福建)在平面直角坐标系xoy中,圆C的参数方程为(t 为参数).在极坐标系(与平面直角坐标系xoy取相同的长度单位,且以原点O为极点,以轴非负半轴为极轴)中,直线l的方程为ρsin(θ﹣)=m,(m∈R)(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.6.(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.四、能力训练 (一)选择题 1.极坐标方程ρcosθ=34表示( ) A.一条平行于x 轴的直线 B.一条垂直于x 轴的直线 C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sinθ=21;②θ=6π和tgθ=33,③ρ2-9=0和ρ= 3;④ ⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( ) A.1 B .2 C.3 D .44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2π D.关于极轴对称5.极坐标方程ρ=sinθ+2cosθ所表示的曲线是( ) A.直线 B.圆 C.双曲线 D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m m m a x (m 是参数,ab≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty atx 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D. 3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22)C.│2p(t 1-t 2)│D.2p(t 1-t 2)2 13.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcosθ+25+3sinθ-25sin 2θ与x 轴两个交点距离的最大值是( ) A.5 B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tgθsecθ表示的曲线是 .19.直线⎩⎨⎧-=+-=t y tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC│·│BD│=3│GF 2│·│F 2H│成立的直线BD 是否存在?并说明理由 . (2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ│·│OP│=│OR│2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.S max =2ab,s max =2222b a b a +;25. 25)1(25)1(22-+-y x =1(x,y)不同时为零)。
第2讲 参数方程
1.(2017·合肥调研)在直角坐标系xOy 中,曲线C :⎩⎨⎧
x =2cos α+1,
y =2sin α+1(α为参
数),在以O 为极点,x 轴的非负半轴为极轴的极坐标系中,直线l :ρsin θ+ρcos θ=m .
(1)若m =0时,判断直线l 与曲线C 的位置关系;
(2)若曲线C 上存在点P 到直线l 的距离为2
2,求实数m 的取值范围. 解 (1)曲线C 的直角坐标方程为(x -1)2+(y -1)2=2,是一个圆; 直线l 的直角坐标方程为x +y =0, 圆心C 到直线l 的距离为d =|1+1|
12+12
=2=r , 所以直线l 与圆C 相切.
(2)由已知可得,圆心C 到直线l 的距离为d =|1+1-m |12+12≤3
22,解得-1≤m ≤5. 所以实数m 的取值范围为[-1,5].
2.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧
x =4cos θ,y =4sin θ(θ为参数),直
线l 经过点P (1,2),倾斜角α=π
6.
(1)写出圆C 的普通方程和直线l 的参数方程;
(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值. 解 (1)由⎩⎨⎧
x =4cos θ,y =4sin θ消去θ,
得圆C 的普通方程为x 2+y 2=16. 又直线l 过点P (1,2),且倾斜角α=π
6.
所以l 的参数方程为⎩⎪⎨⎪⎧
x =1+t cos π
6,
y =2+t sin π
6.
即⎩⎪⎨
⎪⎧
x =1+3
2t ,y =2+12t
(t 为参数).
(2)把直线l 的参数方程⎩⎪⎨
⎪⎧
x =1+3
2t ,
y =2+12t
代入x 2+y 2=16,
得⎝ ⎛⎭⎪⎫1+32t 2+⎝ ⎛
⎭⎪⎫2+12t 2=16,t 2+(3+2)t -11=0,
所以t 1t 2=-11.
由参数方程的几何意义,|P A |·|PB |=|t 1t 2|=11.
3.(2016·全国Ⅱ卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是⎩⎨⎧
x =t cos α,
y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |
=10,求l 的斜率.
解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.
(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.
于是ρ1+ρ2=-12cos α,ρ1ρ2=11.
|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2 α-44. 由|AB |=10得cos 2
α=38,tan α=±15
3.
所以l 的斜率为153或-15
3.
4.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为⎩⎨⎧
x =1+t cos α,
y =t sin α(t 为参数,0<α<π),
曲线C 的极坐标方程为ρsin 2θ=4cos θ. (1)求曲线C 的直角坐标方程;
(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值. 解 (1)由ρsin 2θ=4cos θ得(ρsin θ)2=4ρcos θ, ∴曲线C 的直角坐标方程为y 2=4x .
(2)将直线l 的参数方程代入y 2=4x 得到t 2sin 2α-4t cos α-4=0. 设A ,B 两点对应的参数分别是t 1,t 2, 则t 1+t 2=4cos αsin 2 α,t 1t 2=-4
sin 2α.
∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α≥4,当α=π
2时取到等号. ∴|AB |min =4,即|AB |的最小值为4.
5.(2014·全国Ⅱ卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡
⎦⎥⎤0,π2.
(1)求C 的参数方程;
(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.
解 (1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为
⎩⎨⎧
x =1+cos t ,
y =sin t
(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ),由(1)知C 是以C (1,0)为圆心, 1为半径的上半圆.因为C 在点D 处的切线与l 垂直,
所以直线CD 与l 的斜率相同,tan t =3,t =π
3.故D 的直角坐标为⎝ ⎛
⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭
⎪⎫32,32.
6.(2017·长沙模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨
⎧
x =3cos α,
y =sin α
(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫
θ-π4= 2.
(1)求C 的普通方程和l 的倾斜角;
(2)设点P (0,2),l 和C 交于A ,B 两点,求|P A |+|PB |的值. 解 (1)由⎩⎨⎧
x =3cos α,y =sin α消去参数α,得x 29+y 2
=1,
即C 的普通方程为x 29+y 2
=1.
由ρsin ⎝ ⎛⎭⎪⎫
θ-π4=2,得ρsin θ-ρcos θ=2,(*)
将⎩⎨⎧
x =ρcos θ,y =ρsin θ代入(*),化简得y =x +2, 所以直线l 的倾斜角为π
4.
(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧
x =t cos π
4,
y =2+t sin π
4(t
为参数), 即⎩⎪⎨
⎪⎧
x =2
2t ,y =2+2
2t
(t 为参数),
代入x 29+y 2
=1并化简,得5t 2+182t +27=0, Δ=(182)2-4×5×27=108>0, 设A ,B 两点对应的参数分别为t 1,t 2,
则t 1+t 2=-1825<0,t 1t 2=27
5>0,所以t 1<0,t 2<0,
182所以|P A|+|PB|=|t1|+|t2|=-(t1+t2)=
5.。