高考最新-2018高考数学参数方程题 精品
- 格式:doc
- 大小:42.01 KB
- 文档页数:3
极坐标与参数方程高考真题1、(2018北京理10)在极坐标系中,直线cos sin a ρθρθ+=(0a >)与圆2cos ρθ=相切,则_______a =.2、(2018江苏21C )在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.3、(2018新课标Ⅰ理22)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.4、(2018新课标Ⅱ理22)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5、(2018新课标Ⅲ理22)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.6、(2018天津理12)已知圆2220x y x +-=的圆心为C ,直线1232x y t ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为_______.7、(2017新课标Ⅰ理22)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .8、(2017新课标Ⅱ理22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.9、(2017新课标Ⅲ理22)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ),M 为l 3与C 的交点,求M 的极径.10、(2017北京理11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP|的最小值为___________.11、(2017江苏21C )在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty ⎧=-+⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为2x 2s ,y ⎧=⎪⎨⎪=⎩(s 为参数)。
参数方程与极坐标1.设点P 在曲线2sin =θρ上,点Q 在曲线1cos sin x y θθ=+⎧⎨=⎩(θ为参数)上,求|PQ |的最小值( )A .1B .2C .3D .4 【答案】A 【解析】试题分析:首先把两曲线化为直角坐标方程:222,(1)1y x y =-+=,数形结合知过x=1的直线与圆相交的较近的两点间的距离就是PQ的最小值.考点:直线与圆的位置关系.2.在直角坐标系xOy 中,直线l 的参数方程为()4x tt y t =⎧⎨=+⎩为参数.曲线C 的参数方程为2()2x y θθθ⎧=+⎪⎨=+⎪⎩为参数,则直线l 和曲线C 的公共点有( )(A )0个 (B )1个 (C )2个 (D )无数个【答案】B 【解析】试题分析:()4x t t y t =⎧⎨=+⎩为参数即y=x+4,2()2x y θθθ⎧=+⎪⎨=+⎪⎩为参数 即22(2)(2)8x y -+-=,=l 和曲线C 的公共点有1个,选B 。
考点:本题主要考查参数方程与普通方程的互化,直线与圆的位置关系。
点评:小综合题,将参数方程化为普通方程,实现了“化生为熟”,研究直线与圆的位置关系,两种思路,一是“代数法”,二是“几何法”。
3.坐标系中,圆θρsin 2-=的圆心的极坐标是( ) A .)2,1(πB .)2,1(π- C .)0,1( D .(1,)π【答案】B 【解析】试题分析:圆θρsin 2-=即为圆22s i n ρρθ=-化成直角坐标方程为2220x y y ++=,所以圆心的直角坐标为()0,1-,极坐标是)2,1(π-.考点:圆的极坐标方程与直角坐标方程的互化.4.将点M 的极坐标⎪⎭⎫⎝⎛310π,化成直角坐标是( )(A)(5, (B)()5 (C)()5,5 (D)()5-,-5 【答案】A【解析】本题考查极坐标与直角坐标的互化由点M 的极坐标⎪⎭⎫⎝⎛310π,,知10,3πρθ== 极坐标与直角坐标的关系为cos sin x y ρθρθ=⎧⎨=⎩,所以⎪⎭⎫⎝⎛310π,的直角坐标为10cos 5,10sin 33x y ππ====即(5, 故正确答案为A5.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是ρ(sinθ+)=3,射线OM :θ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 【答案】(Ⅰ)ρ=2cosθ,(Ⅱ)2【解析】试题分析:(I )圆C 的参数方程(φ为参数).消去参数可得:(x﹣1)2+y 2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程. (II )由直线l 的极坐标方程是ρ(sinθ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解:(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程. (II )如图所示,由直线l 的极坐标方程是ρ(sinθ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.联立,解得,即Q .联立,解得或.∴P.∴|PQ|==2.考点:简单曲线的极坐标方程;直线与圆的位置关系.视频6.[选修4-4:坐标系与参数方程]已知极坐标系中的曲线2cos sin ρθθ=与曲线πsin 4ρθ⎛⎫+= ⎪⎝⎭交于A ,B 两点,求线段AB 的长. 【答案】2a = 【解析】试题分析: 由将cos ,sin x y ρθρθ==极坐标方程2cos sin ρθθ=及πsin 4ρθ⎛⎫+= ⎪⎝⎭化为直角坐标方程2x y =,2x y +=,联立方程组解得交点坐标()1,1A ,()2,4B -,根据两点间距离公式求线段AB 的长.试题解析:曲线2cos sin ρθθ=化为2x y =;…………………………………4分πsin 4ρθ⎛⎫+= ⎪⎝⎭同样可化为2x y +=,…………………………8分联立方程组,解得()1,1A ,()2,4B -, 所以AB ==所以3222a a -=(0a >),解得2a =(负值已舍).………………10分考点:极坐标方程化为直角坐标方程7.在平面直角坐标系xOy 中,已知直线l的参数方程是x y ⎧=⎪⎪⎨⎪=+⎪⎩,(t 为参数);以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为2cos()4ρθπ=+.(1)写出直线l 的普通方程与圆C 的直角坐标方程; (2)由直线l 上的点向圆C 引切线,求切线长的最小值.【答案】曲线C:02222=+-+y x y x (2)62. 【解析】 试题分析:先将圆C 的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线l 的参数方程化为普通方程, 根据勾股定理转化为求圆心到直线上最小值的问题.试题解析:(1曲线C:02222=+-+y x y x 4分 (2)因为圆C 的极坐标方程为θθρsin 2cos 2-=,所以θρθρρs i n 2c o s 22-=,所以圆C 的直角坐标方程为02222=+-+y x y x ,圆心为⎪⎪⎭⎫⎝⎛-22,22,半径为1, 6分因为直线l的参数方程为,x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),所以直线l上的点P+⎝向圆C引切线长是所以直线l上的点向圆C引的切线长的最小值是62. 10分考点:参数方程与极坐标,直线与圆的位置关系.8.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线2:sin2cosC aρθθ=(0)a>,过点()2,4P--的直线l的参数方程为(t为参数)。
参数方程与极坐标1.在平面直角坐标系xOy 中,直线l 的参数方程为,(1x tt y t =⎧⎨=+⎩为参数,t R ∈),圆C 的参数方程为cos 1,(sin x y θθθ=+⎧⎨=⎩为参数,[)0,2θπ∈),则圆心C 到直线l 的距离为( )A .0B .2C .2【答案】C【解析】试题分析:直线l 的普通方程为10x y -+=,圆的直角坐标方程为()2211x y -+=,圆心为()1,0C ,所以圆心C 到直线l 的距离为d == C. 考点:直线的参数方程与圆的极坐标方程. 2.⊙O 1极坐标方程为θρcos 4=,⊙O 2参数方程为θθθ(sin 22cos 2⎩⎨⎧+-==y x 为参数),则⊙O 1与⊙O 2公共弦的长度为( )A .2B .12+C .22D .1 【答案】C【解析】因为⊙O 1的普通方程为2240x y x +-=,⊙O 2的普通方程为22(2)4x y ++=,所以两圆作差可得0x y +=,所以圆O 1到直线x+y=0所以公共弦的长度为l ==3.已知点(1,0),M -直线:1l y x =+与曲线2c o s :(sin x C y ααα=⎧⎨=⎩为参数)两点相交于21,P P ,2121)2(;)1(P P MP MP 求求【答案】(1)1.2(2【解析】试题分析:解(1)曲线C :⎩⎨⎧==ααsin cos 2y x 的一般方程为:1422=+y x 直线l :1+=x y 的参数方程为:⎪⎪⎩⎪⎪⎨⎧=+-=ty t x 22221把直线方程⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 22221代入曲线C :1422=+y x ,得:062252=--t t 设21,t t 是方程的两根,则21MP MP =5621=t t 6分 21)2(P P =528564)522(4)(22122121=⨯+=-+=-t t t t t t . 12分 考点:直线与圆的位置关系点评:主要是考查了直线与圆的位置关系的运用,属于基础题。
【母题原题1】【2018新课标1,文22】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.【母题原题2】【2017新课标1,文22】在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【母题原题3】【2016新课标1,文23】在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解析】(Ⅰ)消去参数t得到C1的普通方程x2+(y-1)2=a2,C1是以(0,1)为圆心,a为半径的圆.【命题意图】1.掌握极坐标与直角坐标之间的转化公式,能利用极坐标的几何意义解题.2.理解参数方程中参数的几何意义并灵活应用几何意义进行解题. 【基础知识与解题技巧】 1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,将参数方程化为普通方程需消去参数.(2)如果知道变量x ,y 中的一个与参数t 的关系,例如,x =f (t ),把它代入普通方程,求出另一个变量与参数t 的关系y =g (t ),那么x f t y g t =⎧⎨=⎩(),()就是曲线的参数方程.(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性. (2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同. 2.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎪⎨⎪⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.1.【河南省2017-2018学年 高三最后一次模拟考试】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程;(2)若直线与曲线有两个不同的交点,求的取值范围.整理得.因为直线与曲线有两个不同的交点,所以,化简得.又,所以,且. 设方程的两根为,则,,所以,所以 .由,得,所以,从而,即的取值范围是.点睛:本题主要考查极坐标方程与直角坐标方程的互化,直线参数方程的几何意义及其应用等知识,意在考查学生的转化能力和计算求解能力.2.【湖北省黄冈中学2018届高三5月第三次模拟考试】已知极坐标系的极点与平面直角坐标系的原点重合,极轴与轴的正半轴重合,且长度单位相同.曲线的极坐标方程是.直线的参数方程为(为参数,).设,直线与曲线交于两点.(1)当时,求的长度;(2)求的取值范围.由,得化简得(其中),∴∴。
《2018年高考数学分类汇编》第十三篇:极坐标与参数方程一、填空题1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.2.【2018天津卷12】)已知圆2220x y x +-=的圆心为C ,直线21,232⎧=-⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 二、解答题1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ过点且倾斜角为的直线与交于两点. (1)求的取值范围;(2)求中点的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长. 参考答案 一、填空题1.21+2.21 二、解答题1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2221k =+,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. (02,αl O ⊙A B ,αAB P当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,221k =+,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 2.解:(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率.3.解:(1)的直角坐标方程为.当时,与交于两点. cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=2cos sin 0αα+=l tan 2k α==-O 221x y +=2απ=l O当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. 4.解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 2απ≠tan k α=l 2y kx =-l O 22||11k <+1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A tB t 222sin 10t t α-+=22sin A B t t α+=2sin P t α=P (,)x y cos ,2sin .P P x t y t αα=⎧⎪⎨=-+⎪⎩P 2sin 2,22cos 2x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos236AB==因此,直线l被曲线C截得的弦长为23。
2018年全国高考理科数学分类汇编——参数方程极坐标1.(江苏)在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.2.(全国1卷)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.3. (全国2卷)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l 的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.【解答】解:直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.4.(全国3卷)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).5.(天津)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.。
参数方程与极坐标1.曲线的参数方程为()2232{051x t t y t =+≤≤=-,则曲线是( ) A. 线段 B. 双曲线的一支 C. 圆弧 D. 射线 【答案】A【解析】由21t y =+代入232x t =+消去参数t 得()312350x y x y =++--=即 又05277,124t x y ≤≤∴≤≤-≤≤所以表示线段。
故选A2.直线34x t y t =-⎧⎨=+⎩,(t 为参数)上与点(3,4)P)A .)3,4(B .)5,4(-或)1,0(C .)5,2(D .)3,4(或)5,2( 【答案】D【解析】试题分析: 设直线34x ty t=-⎧⎨=+⎩ ,(t 为参数)上与点(3,4)P是(3,4)t t -+,则有=即211t t =⇒=±,所以所求点的坐标为)3,4(或)5,2(.故选D .考点:两点间的距离公式及直线的参数方程. 3.若直线的参数方程为()12{23x tt y t=+=-为参数,则直线的斜率为( ). A.23 B. 23- C. 32 D. 32- 【答案】D【解析】将直线消去参数化为普通方程为3270x y +-=,因此斜率为32-,故选D. 4.在同一坐标系中,将曲线x y 3sin 2=变为曲线x y sin =的伸缩变换是( )⎪⎩⎪⎨⎧==''23.A y y x x ⎪⎩⎪⎨⎧==y y x x 23.B ''⎪⎩⎪⎨⎧==y y x x 213.C '' ⎪⎩⎪⎨⎧==''213.D y y x x 【答案】C【解析】试题分析:曲线x y 3sin 2=变为曲线x y sin =需将横坐标扩大为原来的3倍,纵坐标缩小为原来的12因此''312x x y y ⎧=⎪⎨=⎪⎩ 考点:图像伸缩变化5.A 在直角坐标系xOy 中,曲线1C 的参数方程为2{2x cos y sin αα=+=+,(α为参数),直线2C的方程为,y =以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线1C 和直线2C 的极坐标方程; (2)若直线2C 与曲线1C 交于,A B 两点,求11.OA OB+ B 已知不等式36x x x +-<+的解集为(),m n .(1)求,m n 的值;(2)若0,0,0x y nx y m >>++=,求证: 16.x y xy +≥【答案】A (1)见解析;(2B (1)1,9m n =-=;(2)证明见解析. 【解析】试题分析:A (1)先消参转化为普通方程,再利用普通方程与极坐标的转化公式转化为极坐标;(2)根据极坐标中ρ的几何意义, 12=OA OB ρρ=,证明即可.B (1)分区间去绝对值号解不等式即可;(2)利用均值不等式证明.试题解析: A (1)曲线1C 的普通方程为()()22221x y -+-=,则1C 的极坐标方程为24cos 4sin 70ρρθρθ--+=,由于直线2C 过原点,且倾斜角为3π,故其极坐标为()3R πθρ=∈ (或tan θ=(2)由24470{3c o s s i n ρρθρθπθ--+==,得()2270ρρ-+=,故12121212112,7,OA OB OA OB OA OB ρρρρρρρρ+++==∴+===⋅B (1)由36x x x +-<+,得3{36x x x x ≥+-<+或0{36x x x x ≤-+-<+,解得19,1,9x m n -<<∴=-=(2)由(1)知0,0,91,x y x y >>+=()1199101016,y x x y x y x y ⎛⎫∴++=++≥+= ⎪⎝⎭当且仅当9y x x y =即11,124x y ==时取等号, 1116x y∴+≥,即16.x y xy +≥ 6.若一个动点P(x,y)到两个定点A(-1,0)、B(1,0)的距离差的绝对值为定值2a,求点P 的轨迹方程,并说明轨迹的形状.【答案】当a=1时两射线,当0<a<1时双曲线112222=--a y a x 【解析】略7.求过点A(3,)且和极轴成角的直线.【答案】ρ(sin θ+cos θ)=+【解析】设M(ρ,θ)为直线上一点,B 为直线与极轴的交点,A(3,),OA=3,∠AOB=, 由已知∠MBx=, 所以∠OAB=-=, 所以∠OAM=π-=. 又∠OMA=∠MBx-θ=-θ, 在△MOA 中,根据正弦定理得=.又sin =sin(+)=,将sin(-θ)展开化简可得ρ(sin θ+cos θ)=+,所以过A(3,)且和极轴成角的直线为:ρ(sin θ+cos θ)=+.8.选修4-4:坐标系与参数方程已知直线l 的参数方程是⎩⎪⎨⎪⎧x=22ty=22t+42(t 是参数),圆C 的极坐标方程为ρ=2cos(θ+π4).(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 【答案】(1))22,22(--;(2)62. 【解析】 试题分析:(1))4cos(2πθρ+=⇒ρθθ=⇒2cos sin ρθθ=⇒圆C 的直角坐标方程为02222=+-+y x y x ⇒圆心C 的直角坐标为)22,22(--; (2)法一: 由直线l 上的点向圆C 引切线长为=-+++-1)242222()2222(22t t 6224)4(2≥++t ; 法二:直线l 的普通方程为024=+-y x ⇒圆心C 到l 直线距离是52|242222|=++⇒直线l 上的点向圆C 引的切线长的最小值是621522=-.试题解析:解: (1) )4cos(2πθρ+=∴ϑθρsin 2cos 2-=,∴ϑρθρρsin 2cos 22-= ∴圆C 的直角坐标方程为02222=+-+y x y x ∴圆心C 的直角坐标为)22,22(--(2)法一: 由直线l上的点向圆C引切线长为1)242222()2222(22-+++-t t6224)4(40822≥++=++=t t t∴直线l 上的点向圆C 引切线长的最小值为62法二:直线l 的普通方程为024=+-y x ,圆心C 到l 直线距离是52|242222|=++,∴直线l 上的点向圆C 引的切线长的最小值是621522=-考点:1、极坐标;2、直线与圆的位置关系.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线C 的普通方程(,)0F x y =化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.9.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为: 1,{2,x tcos y tsin αα=+=+(t 为参数,0a π≤<),以O 为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程6sin ρθ=.(1)求曲线C 的直角坐标方程;(2)若点()1,2P ,设曲线C 与直线l 交于点,A B ,求11PA PB+最小值. 【答案】(1)()2239x y +-=;(2【解析】试题分析:(1)曲线C 的极坐标方程6sin ρθ=,两边同乘以ρ ,利用222,cos ,sin x y x y ρρθρθ=+==,可得结果;(2)直线参数方程代入曲线C 的直角坐标方程,利用韦达定理、直线参数的几何意义及三角函数的有界性,求11PA PB+最小值.试题解析:(1)由6sin ρθ=得26sin ρρθ=化为直角坐标方程为226x y y +=,即()2239x y +-=.(2)将直线l 的参数方程代入圆的直角坐标方程,得()22cos sin 70t t αα+--=,因为()24cos sin 470αα∆=-+⨯>故可设12,t t 是方程的两根, 所以()121227t t cos sin t t αα⎧+=--⎨=-⎩.又直线l 过点()1,2P ,结合t 的几何意义得:1212PA PB t t t t +=+=-==≥=.∴11PA PB PA PB PA PB ++==≥⋅10.已知曲线C 的方程22332y x x =-,设y tx =,t 为参数,求曲线C 的参数方程. 【答案】233232t x t t y ⎧-=⎪⎪⎨-⎪=⎪⎩, 【解析】解:将y tx =代入22332y x x =-, 得222332t x x x =-,即32223x t x =-(). 当 x =0时,y =0;当0x ≠时, 232t x -=. 从而332t t y -=.∵原点(0,0)也满足233232t x t t y ⎧-=⎪⎪⎨-⎪=⎪⎩,, ∴曲线C 的参数方程为233232t x t t y ⎧-=⎪⎪⎨-⎪=⎪⎩,(t 为参数).11.极坐标系中,B A ,分别是直线07sin 4cos 3=+-θρθρ和圆θρcos 2=上的动点,则B A ,两点之间距离的最小值是 【答案】1 【解析】试题分析:把极坐标方程化为直角坐标方程得,直线的方程为3470x y -+=,圆方程为222x y x +=,即22(1)1x y -+=,圆心为(1,0)C ,半径为1r =,圆心C 到已知直线的距离为2d ==在,所以AB 的最小值为211d r -=-=.考点:极坐标方程与直角坐标方程的互化,点到直线的距离.12.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,点A 的极坐标是(2,)6π,点B 是曲线32cos 12sin x y αα=+⎧⎨=+⎩(α为参数)上的任意点,则线段AB 长度的最小值是 .1 【解析】试题分析:点A 的直角坐标为,1),曲线32c o s 12s i n x y αα=+⎧⎨=+⎩的普通方程为22(3)(1)4x y -+-=,故曲线是一个以(3,1)为圆心,2为半径的圆,∴A 到圆心的距离为32=<,故点A 在圆内,∴线段AB 长度的最小值是2(31-.考点:参数方程与普通方程的互换、两点间距离公式.13.(坐标系与参数方程选做题)在极坐标系中,点A 在曲线2sin()4πρθ=+上,点B 在直线cos 1ρθ=-上,则||AB 的最小值是 ** .【解析】略14.(坐标系与参数方程选做题)在直角坐标系xoy 中, 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,则直线2()1x t t y t=-+⎧⎨=-⎩为参数和截圆22cos 30ρρθ+-=的弦长等于_______________.4 【答案】4【解析】直角坐标系中,直线21x ty t =-+⎧⎨=-⎩(t 为参数)的方程为10x y ++=,圆22cos 30ρρθ+-=方程为22230x y x ++-=即22(1)4x y ++=,则圆心(1,0)-在直线10x y ++=上,所以从而可知直线10x y ++=截圆22(1)4x y ++=的弦长为圆直径长4。
《2018年高考文科数学分类汇编》第十三篇:极坐标与参数方程 解答题1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.参考答案 解答题xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 2.解:(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率.3.解:(1)的直角坐标方程为.当时,与交于两点. 当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. 4.解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,2cos sin 0αα+=l tan 2k α==-O 221x y +=2απ=l O 2απ≠tan k α=l y kx =l O |1<1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A tB t 2sin 10t α-+=A B t t α+=P t αP (,)x y cos ,sin .P Px t y t αα=⎧⎪⎨=⎪⎩P 2,2222x y αα⎧=⎪⎪⎨⎪=-⎪⎩(α44απ3π<<)则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6. 连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos6AB ==因此,直线l 被曲线C 截得的弦长为.。
1、直线的倾斜角是
A、π/6
B、π/3
C、2π/3
D、5π/6
2、已知点A(-4,7π/6)和点B关于直线θ=π/3(ρ∈R)对称,求点B的坐标
A、(-4,π/2)
B、(-4,3π/ 2)
C、(4,π)
D、(4,3π/2)
3、直线与直线的位置关系是
A、平行
B、相交但不垂直
C、垂直
D、重合
4、方程(t为参数)表示的图形是
A、直线
B、一条射线
C、抛物线
D、两条射线
5、极坐标方程表示的曲线是
A、圆
B、椭圆
C、双曲线的一支
D、抛物线
6、参数方程(ψ为参数)所表示的曲线是
A、焦点在x轴上的双曲线
B、焦点在y轴上的双曲线
C、焦点在x轴上的椭圆
D、焦点在y轴上的椭圆
7、极坐标方程ρcosθ=sin2θ表示的曲线是
A、一个圆
B、一条直线和一条射线
C、一条直线及一个圆
D、一条射线及一个圆
8、直线(t为参数)被曲线(θ为参数)所截得的弦长为
A、B、161/4 C、D、
9、(x、y)是曲线(θ为参数,0≤θ<π)上的点;则y/x的取值范围是
A、B、
C、D、
10、在极坐标中,极点到直线的距离为。
11、双曲线焦距为。
12、曲线的直角坐标方程为。
13、直线(t为参数)上与点(-2,3)的距离等于的点的坐标为
14、极坐标方程表示的曲线中,离极点较近的那条准线的极坐标方程为。
15、已知一个圆的极坐标方程为,则圆心的极坐标为。
16、点M(4,π/3)到直线ρcos[θ-(π/3)]=2的距离为。